用户名: 密码: 验证码:
内生细菌在重金属植物修复中的作用机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业生产的发展,有毒重金属污染越来越受到关注。重金属能在生物体内累积,最终通过食物链危害人类的健康。传统的重金属污染土壤修复技术通常都耗费较高而且对环境有较大伤害。因此,急需一种行之有效且经济的去除环境中重金属的方法。原位植物修复技术因其成本低、环境友好且行之有效而受到国内外研究者的关注,被认为是一种极具前景的污染环境修复方法。然而,重金属的植物修复的实际应用还有不少问题亟待解决,譬如重金属植物毒性、修复周期长且污染物提取量有限等。现有的植物修复强化措施(譬如转基因和螯合剂等)虽然有效但费用昂贵且对环境有潜在风险。因此,寻求一条经济且有效的微生物强化途径提高植物修复效率将意义重大。
     本文自镉超累积植物龙葵中分离得到多株内生菌,通过多种性能指标筛选菌株Serratia nematodiphila LRE07作为模式菌株,用以研究利用植物-内生菌共生系统强化植物修复的可行性。将菌株S. nematodiphila LRE07接种到龙葵种子后,通过营养液培养方法深入研究了系列镉处理浓度下龙葵植株生长、生理参数、光合成色素和镉吸收累积特性,探讨了内生菌接种对植物抗压性能的影响。在此基础上,研究了镉胁迫下植物对营养元素的摄取、脂质过氧化水平和活性氧代谢的变化,以揭示内生菌在降低重金属植物毒性和促进植物生长中的可能作用机制。另外,还研究了菌株S. nematodiphila LRE07的稳定性和其在非宿主植物体内的作用效果。主要的研究内容和结果如下:
     ①龙葵内生菌的分离与筛选
     用于内生菌分离的龙葵植株采自株洲冶炼厂(27°52′N,113°05′E)污水排水渠堤,自该植物不同组织体内分离得到97株内生菌,其中大部分为细菌。通过最小抑制浓度测定发现所有内生菌对重金属均有不同程度抗性,这表明超累积植物是筛选重金属抗性菌株的天然资源。自龙葵根部得到一株产深红色色素的细菌,命名为LRE07。通过16S rDNA分析鉴定该菌株为沙雷氏菌株(Serratianematodiphila)。S. nematodiphila LRE07表现出对多种重金属均有较高抗性,尤其是对铜、镉和铬。同时,对该菌株进行植物促生相关的生物学性能测定,结果发现S. nematodiphila LRE07具有产吲哚乙酸、铁载体和增溶矿质磷酸盐的能力。上述性能表明该菌株具有重金属抗性和植物促生潜力,因此确定S. nematodiphilaLRE07为下一步实验菌株。
     ②内生菌接种对龙葵植株生长和镉吸收的影响
     通过营养液培养方法,研究龙葵植株对镉胁迫的响应和内生菌接种对植株抗压性能的影响。接种21天和70天后取植物样测定菌株接种效率。结果表明内生菌S. nematodiphila LRE07成功接种入植株体内,自宿主植物根部和地上部分组织内重分离得到的菌落数表现出依赖时间增长的趋势,镉胁迫未对内生菌生长造成抑制作用。上述结果表明S. nematodiphila LRE07能与宿主植物和谐共生。镉浓度的递增对龙葵生长造成了不同程度抑制作用,表现在植株的分蘖数、鲜重和株高。随着重金属接触时间延长,0μM和10μM浓度下接种植物和未接种植物的分蘖数比率均有增加,但高浓度(50和100μM)下分蘖数比率很快达到恒定值甚至在实验后期减少。营养液中重金属浓度越高,植物的分蘖数比率越低。在同一镉胁迫浓度下,接种内生菌的植株分蘖数比率要高于未接种植株(P <0.05,MANOVAs),即接种植株的叶片数更多。内生菌接种对植株生长的有利影响在植株鲜重、株高和根重上也有体现。内生菌的积极意义在低镉胁迫(10μM)下尤为显著,在该浓度下,接种植物生长未见显著抑制,其生物量比未接种植株提高了58%。
     内生菌的接入对宿主植物植物光合作用色素含量有积极影响。随着镉浓度的升高和接触时间延长,植物光和色素含量呈现线性减少趋势。但是,在镉胁迫条件下(除了100μM,第三天样品外),接种内生菌的植物叶片中类胡萝卜素、叶绿素a和叶绿素b的含量均要高于未接菌的植株(P <0.05, MANOVAs)。另外,在同一镉浓度下,由镉胁迫导致的植物光合作用色素含量的减少量要明显小于未接菌植株,即接入内生菌的植株光合作用色素受镉影响较小。
     随着营养液中重金属镉浓度的增加,植物累积了大量镉在其根部和地上部分。然而,内生菌接种与否对单位质量植物组织累积镉没有显著差异(除了茎部,镉10和100μM),即单位干重植株组织吸收的镉量相近。相比于未接菌对照植株,虽然内生菌株的植入没有极大改变重金属镉在其宿主植物组织中的浓度,但是提高了植物的生物量,由此产生的结果就是接菌的植物单株重金属镉提取量有极大提高(在10μM Cd条件下,增长量达到72±5%),这反映出内生菌的植入提高了植物提取效率。
     ③内生菌在降低重金属植物毒性和促进植物生长中的可能作用机制
     Cd导致了植物组织中Fe含量的提高,然而Mn和Zn的含量均有所减少,除了根部Zn含量没有显著变化。这些结果表明Cd改变了其他重金属离子在植物体内的传输。接种内生菌S. nematodiphila LRE07减缓了这种由镉诱导了金属含量变化。在10、50、100μM镉浓度条件下,接种内生菌株的植株各组织(根、茎、叶)中Mn的含量都要高于未接种植株。相比于未接菌对照,接菌植物在其叶部和颈部吸收了更多的Fe和Zn。
     不论接菌与否,植物组织中丙二醛含量随着镉浓度和接触时间均呈现线性提高。但是,从结果可以看出,接菌植株的丙二醛含量要低于未接菌对照,虽然两者之间没有统计性差别。另外,丙二醛含量随接触时间的增加量在接菌植株中也要小得多。
     为了反映镉胁迫条件下植物体内抗氧化代谢酶的活性,我们选取了SOD,GPX, CAT和APX作为解毒活性氧毒害作用酶系的代表,测定了这些酶在镉胁迫状况下的变化。镉诱导使得SOD含量显著增加,在10μM和50μM镉浓度条件下接菌植株SOD的活性要明显要于未接种植物。CAT活性在两种处理之间没有显著区别。10μM和50μM镉条件下,接菌植物叶片中GPX和APX活性要明显高于未接菌植物。镉浓度的提高导致了两种处理的植物的根部GPX含量都呈线性增加,但是在50μM和100μM镉浓度条件下,接菌植株根部GPX含量要明显高于未接菌植株。上述结果表明接种内生菌株S. nematodiphila LRE07提高了宿主植物的抗氧化能力、降低了镉胁迫导致的活性氧伤害。
     ④内生菌的稳定性和在非宿主植物体内的作用
     通过比较不同处理的两代植物体内内生菌菌落和植物生长状况,探讨内生菌在宿主植物体内的稳定性。结果发现,两代植物体内的目的菌株的菌落数没有显著性差异。PCR-DGGE图谱分析显示两代植株体内细菌DNA呈现较高一致性。同时传代内生菌保存对植物生长的积极影响,两代植株各项生长指数均没有显著性差异。这表明内生菌能能植物体内稳定存活,并在植物子代中保持原有活性。
     将S. nematodiphila LRE07接种入豌豆并将植株置于镉胁迫条件下以探讨内生菌对非宿主植物的作用。结果发现重金属胁迫抑制植物种子萌发,内生菌接种没能缓解重金属对非宿主植物豌豆发芽率的胁迫影响。接种S. nematodiphilaLRE07能提高植物生物量,对提高植物对抗重金属胁迫有一定积极意义。但整体而言,接菌处理对非宿主植物生长无显著积极影响。
Toxic metal pollution has received considerable attention over the years as aresult of increased industrial activities. Heavy metals can be accumulated inorganisms and finally threaten human health through food chains. Therefore, aneffective and affordable solution is urgently needed to remove toxic metals fromenvironment. Established technologies to remediate metal contaminated soils arefrequently expensive and environmentally invasive. In situ phytoremediation has beenproposed as a low-cost, environmentally friendly and effective method to removetoxicant from contaminated soils. However, phytoremediation of heavy metal still hasto deal with some important shortcomings such as phytotoxicity, slower thanmechanical methods, and a limited contaminant uptake. Some phytoremediationenhancing strategies, such as transgenics and chelating agent, are comparativelyavailable but usually expensive and posing potential risks to environment. Therefore,it is important to search a microbe-strengthened phytoremediation approach toenhance plant remediation economically.
     In the present study, a number of endophytes were isolated from Cdhyperaccumulator plant Solanum nigrum L.. An excellent strain Serratianematodiphila LRE07was selected to study the feasibility of phytoremediationenhancement using plant-endophyte symbiotic system. After inoculating with S.nematodiphila LRE07, plant Solanum nigrum L. was grown in hydroponics withincreasing Cd concentrations. The growth, physiological parameters, photosyntheticpigments, and Cd accumulation characteristics were investigated to study the effect ofendophyte inoculation on plant stress resistance. Further, the nutrient uptake, lipidperoxidation levels, and activated oxygen metabolism were determined order to knowthe possible mechanisms of endophyte in phytotoxicity reduction and growthpromotion involved in phytoremediation. Moreover, the stability of S. nematodiphilaLRE07and the effects of endophyte inoculation on non-host plant were investigated.The main results were indicated as follows:
     ①Isolation and selection of endophytic bacteria from Solanum nigrum L.
     97endophytes were isolated from cadmium hyperaccumulator Solanum nigrum L.which collected at the sewage discharge canal bank of Zhuzhou Smeltery (27°52′N,113°05′E). Most of them were bacterial endophytes. All endophytes showed different degrees of heavy metals resistance by minimal inhibitory concentration test,suggesting that endophytes of hyperaccumulators are a main source which heavymetals resistant bacteria derived from. A carmine-pigmented bacterium, named asstrain LRE07, was selected from the root of Solanum nigrum L.. The isolated strainwas identified as Serratia nematodiphila by using16S rDNA analysis. S.nematodiphila LRE07showed a high degree of resistance to heavy metals, especiallyto Cu, Cd and Cr. Meanwhile, it had the ability to produce indole acetic acid andsiderophore and could solubilize mineral phosphate. The characters mentioned abovesuggested that endophytic bacterium LRE07was capable of facilitating the plantgrowth and the biomass yield. Finally, the strain LRE07was determined for the nextstep of experimental strain.
     ②Effect of endophyte inoculation on growth and cadmium uptake of Solanumnigrum L.
     Physiological responses of S. nigrum seedings to Cd stress and the effect ofendophyte inoculation on plant stress resistance were investigated by nutrient solutionculture method. After21and70d of growth, plant samples were harvested todetermine the inoculation efficiency. Endophytic bacteria were isolated from rootsand shoots separately and plated on LB medium. The results showed that S.nematodiphila LRE07was inoculated into plant successfully. The number of CFU thatcould be re-isolated showed a time-dependent growth in roots and shoots of their hostplants and it was not inhibited by the presence of Cd. The number of re-isolated CFUtended to increase with time, indicating that S. nematodiphila LRE07could liveconcordantly with its host plants.
     The increasing concentration of Cd produced growth inhibition of S. nigrum L.,measured as tillers, FW and shoot height. At0and10μM Cd, the ratio increased overtime for both infected and non-infected plants. However, at50and100μM Cd theratio rapidly reached constant values and even decreased at the end of the experiment.The higher the Cd concentration applied to the nutrient solution, the weaker the ratioof the tillers was obtained. It can be seen that the infected plants showed higher ratiovalues than noninfected controls in an equal Cd concentration as shown in Table2(P<0.05, MANOVAs), that is, greater number of leaves were obtained in infected plants.Similar beneficial effects of endophytic bacterium LRE07on plant growth wereobserved in FW, shoot height, and root weight. At10μM Cd, no visible growthinhibition was observed for infected plants and the FW of these plants increased by58%compared with non-infected ones.
     With increasing Cd concentration there was a net decrease in pigment contentfrom day0to the end of the experiment whether the plants were infected or not.Endophyte-infection positively influenced the photosynthetic pigment contents of itshost plant. It can be seen that for all Cd concentrations (except for day3at100μM),chlorophyll a, chlorophyll b, and carotenoid of infected plants leaves were higher thannon-infected ones (P <0.05, MANOVAs). In addition, the decreases of photosyntheticpigment caused by Cd exposure in infected plants were much less than that of inendophyte-free plants.
     Increasing concentrations of Cd in nutrient solutions led to an increase of Cdcontents in shoots and roots. Nevertheless, no significant differences were observedbetween infected and non-infected plants (except in stem: Cd10and100μM). On adry-weight basis, the plants infected and non-infected with S. nematodiphila LRE07took up approximately the same amount of cadmium. Compared with noninoculatedcontrols, endophyte inoculation did not greatly influence the cadmium concentrationsin plant tissues, but achieved a higher biomass production, thus resulting in more totalCd-uptake per plant (72±5%increase at10μM), reflecting the promotion ofphytoextraction efficiency.
     ③Possible mechanisms of endophyte bacterium in Cd phytotoxicity reduction andplant growth promotion.
     Cd produced increase in the uptake of Fe in tissues, while the uptake of Mn andZn were decreased except no significant changes of Zn in the root. These resultsindicated that Cd induced alteration on translocation of other heavy metals in planttissues. The inoculation of endophyte S. nematodiphila LRE07alleviated thisCd-induced changes on metal contents. Mn content in infected plant tissues (roots,leaves and stems) was higher, either at10,50or100μM, than that of in non-infectedcontrols. Compared with non-symbiotic controls, symbiotic plants assimilated moreFe and Zn in leaves and stems.
     The MDA content showed a linear enhancement with time and with the increasein concentration of Cd whether the plants infected or not. However, it can be seen thatthe MDA contents in infected plants were lower than that of in the noninfected plants,although differences were not statistically significant. In addition, the increment valueof MDA content with time was smaller in infected plants than those in noninfectedplants.
     Activities of enzymes (SOD, GPX, CAT and APX) detoxifying the cells fromactive oxygen species were measured as representative enzymes involves in antioxidant metabolism upon Cd exposure. Cd induced obvious increase in the contentof SOD, and SOD activity is higher in infected plant tissues compared to non-infectedplants for Cd concentration of10and50μM. CAT activity in leaves showed nosignificant differences between both types of plants. Leaves of infected plants showedhigher activity of GPX and APX compared with non-symbiotic plants at10and50μM.In roots, increasing cadmium concentrations caused a linear enhancement of GPX inboth infected and non-infected plants, while for50and100μM Cd the GPX activityof infected plants were significantly higher compared with non-infected ones. Theseresults suggested that the presence of the endophytic bacterium S. nematodiphilaLRE07improved the antioxidative capability of its host plant and reduced ROS injurycaused by Cd exposure.
     ④Stability of endophyte in plant generation and effect of endophyte inoculationon growth and Cd resisitanse of non-host plant
     Stability of endophyte in host plant generation was investigated by comparingthe endophytic bacterial conoly and plant growth condition of two different treatedplant generations. The results showed that there were no significant differencesbetween CFUs of objective strain in two plant generations. As a result of DGGEanalysis, the endophytic bacteria community composition was relatively highconsistency between the generations. Meanwhile, endophytic bacteria remained thepositive effect on plant growth, resulting in no significant differences in growthparameters between the generations. These results suggested that endophytic bacteriacould survive in plant steadily and remain its activity in plant offspring seeds.
     Effect of endophyte inoculation on growth and Cd resisitanse of non-host plantwas investigated by inoculating S. nematodiphila LRE07into pea (non-host plant of S.nematodiphila LRE07) with Cd explosure. The results showed that Cd inhibited thegermination of pea seed. The endophyte inoculation could not alleviate the stresseffect in pea germination caused by Cd explosure. The inoculation of S.nematodiphila LRE07could promote plant growth under some Cd concentrations. Buton the whole, the endophyte inoculation could not significantly improve the growth ofits non-host plant.
引文
[1]环境保护部主编.国家污染物环境健康风险名录(化学第一分册).第一版.中国环境科学出版社,2009,197-220
    [2]周启星,宋玉芳,等.污染土壤修复原理与方法.科学出版社,2004,4-8
    [3]戴清文,曾志明,王继玉.江西省主要金属厂矿对畜牧业影响的初步调查.农业环境保护,1993,12(3):124-126
    [4]雷鸣,曾敏,郑袁明,等.湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价.环境科学学报,2008,28(6):1212-1220
    [5]胡克林,张凤荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征.环境科学学报,2004,24(3):463-468
    [6]李录久,许圣君,李光雄,等.土壤重金属污染与修复技术研究进展.安徽农业科学,2004,32(1):156-158
    [7]周泽义.中国蔬菜重金属污染及控制.资源生态环境网络研究动态,1999,10(3):21-27
    [8]陈志良,仇荣亮.重金属污染土壤的修复技术.环境保护,2002,29(6):21-23
    [9]孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究.农业环境科学学报,2003,22(2):248-251
    [10]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1197-1203
    [11]郭朝晖,朱永官.典型矿冶周边地区土壤重金属污染及有效性含量.生态环境,2004,13(4):553-555
    [12]吴瑞娟,金卫根,邱峰芳.土壤重金属污染的生物修复.安徽农业科学,2008,36:2916-2918
    [13]高岩,骆永明.蚯蚓对土壤污染的指示作用及其强化修复的潜力.土壤学报,2005,42:140-148
    [14]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展.土壤通报,2004,35:366-370
    [15]李飞宇.土壤重金属污染的生物修复技术.环境科学与技术,2011,34:148-151
    [16] Salt D E,Blaylock M,Kumar N P B A,et al. Phytoremediation:A novelstrategy for the removal of toxic metals from the environment usingplants.Nature Biotechnology,1995,13:468-474
    [17]丁佳红,刘登义,等.重金属污染土壤植物修复的研究进展和应用前景.生物学杂志,2004,21(4):6-9
    [18]张秋芳.土壤重金属污染治理方法概述.福建农业学报,2000,15(增刊):200-203
    [19]陈志良,仇荣亮,等.重金属污染土壤的修复技术.环境保护,2001,8:17-19
    [20]佟洪金,涂仕华,等.土壤重金属污染的治理措施.西南农业学报,2003,16(增刊):33-37
    [21] Evans L J.Chemistry of metal retention by soils.Journal of EnviornmentalTechno1ogy,1989,23:1047-1056
    [22] Baker A J M,McGrath S P,Sidoli C M D,et al.The possibility of in situ heavymetal decontamination of polluted soils using crops of metal-accumulatingplants.Resources,Conservation and Recycling,1994,11:41-49
    [23] Cunningham S D. Promises and prospects of phytoremediation. PlantPhysiology,1996,110:715-719
    [24] Baker A J M,Brooks R R.Tererstrial higher plants which hyperaccumulateelements: A review of their distribution, ecology and phytochemistry.Biorecovery,1989,1:81-126
    [25] Baker A J M,Brooks R R,PeaseA J,et al.Studies on copper and cobalttolerance in three closely related taxa within the genus Silence L(Caryophyllaceae) from Zaire.Plant and Soil,1983,73:377-385
    [26] Baker A J M,Reeves R D,Hajar A S M. Heavy metal accumulation andtolerance in British populations of the metallophyte Thlaspi caerulescensJ.&C.Presl (Brassicaceae). New Phytologist,1994,127:61-68
    [27] Chen T B,Wei C Y,Huang Z C,et al.An arsenic hyperaccumulator and itscharacter in accumulating arsenic.Chinese Science Bulletin,2002,47(3):207-210
    [28]韦朝阳,陈同斌,等.大叶井口边草——一种新发现的富集砷的植物.生态学报,2002,22(5):777-778
    [29] Yang X E, Long X X, Ni W Z, et al. Sedum afredii H: a new zinchyperaccumulator plant first found in China.Chinese Science Bulletin,2002,47(13):1003-1006
    [30]薛生国,陈英旭,等.中国首次发现的锰超积累植物商陆.生态学报,2003,23(5):935-937
    [31]魏树和,周启星,等.一种新发现的镉超积累植物龙葵(Solanum nigrum L).科学通报,2004(24):2568-2573
    [32] Chappell J. Phytoremediation of TCE in groundwater using Populus. USEnvironmental Protection Agency. http://clu-in.org/products/intern/phytotce.htm.1998
    [33] Zhao F,Dunham S,McGrath S.Arsenic hyperaccumulation by different fernspecies.New Phytologist,2002,156(1):27-31
    [34] Zhao F,Lombi E,McGrath S.Assessing the potential for zinc and cadmiumphytoremediation with the hyperaccumulator Thlaspi caerulescens.Plant andSoil,2003,249(1):37-43
    [35] Vara Prasad M and de Oliveira Freitas H.Metal hyperaccumulation in plants:Biodiversity prospecting for phytoremediation technology.Electronic Journal ofBiotechnology,2003,6:285-321
    [36]陈英旭,等.土壤重金属的植物污染化学.北京:科学出版社,2008,90-91
    [37]江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7:92-99
    [38] Sandalio L M,Dalurzo H C,Gómez M,et al.Cadmium-induced changes in thegrowth and oxidative metabolism of pea plants. Journal of ExperimentalBotany,2001,52:2115-2126
    [39]于方明,仇荣亮,等.Cd对小白菜生长及氮素代谢的影响研究.环境科学,2008,29(2):506-511
    [40]周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究.应用与环境生物学报,1999,5:11-15
    [41]张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17:199-205
    [42]段昌群,王焕校,曲仲湘.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究.环境科学,1992,13:31-35
    [43] Gao S Y, Wang H X, Wu Y S. The effects of zinc pollution on somephysiological and biological indexes of Vicia fiaba L.China EnvironmentalScience,1992,12:281-284
    [44] Atici O,Agar G,Battal P.Changes in phytohormone contents in chickpea seedsgerminating under lead or zinc stress.Biologia Plantarum,2005,49:215-222
    [45]宇克莉,邹婧,邹金华.镉胁迫对玉米幼苗抗氧化酶系统及矿质元素吸收的影响.农业环境科学学报,2010,29(6):1050-1056
    [46]张笑一,潘渝生.重金属致毒的化学机理.环境科学研究,1997,10(2):45-49
    [47] Weast R C.CRC Handbook of chemistry and physics,64th edn.Boca Raton,CRC Press.1984
    [48]刘家忠,龚明.植物抗氧化系统研究进展.云南师范大学学报,1999,19(6):1-11
    [49]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125
    [50]王宝山.逆境植物生理学.北京:高等教育出版社,2010,5-10
    [51] Schützendübel A, Polle A. Plant responses to abiotic stresses: heavymetal-induced oxidative stress and protection by mycorrhization.Journal ofExperimental Botany,2002,53:1351-1365
    [52] Sharma S S,Dietz K J.The relationship between metal toxicity and cellularredox imbalance.Trends in Plant Science,2009,14:43-50
    [53] Hall J L. Cellular mechanisms for heavy metal detoxification andtolerance.Journal of Experimental Botany,2002,53:1-11
    [54]赵中秋,崔玉静,朱永官.菌根和根分泌物在植物抗重金属中的作用.生态学杂志,2003,22(6):81-84
    [55]孙琴,王晓蓉,丁士明.超积累植物吸收重金属的根际效应研究进展.生态学杂志,2005,24(1):30-36
    [56] Colpaert J,van Assche J.Zinc toxicity in ecomycorrhizal Pinus sylvestris.Plantand soil,1992,143:201-211
    [57] Blaszkowski J.Effects of five Glomus spp.(Zygomycetes) on growth andmineral nutrition of Triticum aestivum L..Acta Mycologica,1993,28(2):201-210
    [58] Weissenhorn I,Leyval C,Belgy G,et al.Arbuscular mycorrhizal contributionto heavy metal uptake by maize (Zea mays L.) in pot culture with contaminatedsoil.Mycorrhiza,1995,5:245-251
    [59] Hildebrandt U,Karldorf M,Bothe H.The zinc violet and its colonization byarbuscular mycorrhizal fungi.Journal of Plant Physiology,1999,154:709-717
    [60] Blaudez D, Botten B, Chalot M. Cadmium uptake and subcellularcompartmentation in the ectomycorrhizal fungus Paxillus involutus.Microbiology-UK,2000,146:1109-1117
    [61]黄艺,黄志基.外生菌根与植物抗重金属胁迫机理.生态学杂志,2005,24(4),422-427
    [62] Wainwright SJ,Woolhouse HW.Some Physiological Aspects of Copper andZinc Tolerance in Agrostis tenuis Sibth.: Cell Elongation and MembraneDamage.Journal of Experimental Botany,1977,28:1029-1036
    [63] De Knecht J A,Koevoets P L M,Verkleij J A C,et al.Evidence against a roleof phytochelatins in naturally selected increased cadmium tolerance in Silenevulgaris (Moench) Garcke.New Phytologist,1992,122:681688
    [64] Cataldo D A,Garland T R,Wildung R E.Nickel in plants I. Uptake kineticsusing intact soybean seedings.Plant Physiology and Biochemistry,1978,62:563-565
    [65] Godbold D L.Cadmium uptake in Norway spruce.Tree Physiology,1991,9:349-357
    [66] Hamer D H.Metallothionein.Annual Review of Biochemistry,1986,55:913-951
    [67]邬飞波,张国平.植物螯合肽及其在重金属耐性中的作用.应用生态学报,2001,14(4):481-485
    [68]谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理.植物生态学报,2006,30(4):703-712
    [69] Grill E,Winnacker E L,Zenk M H.Phytochelatins:the principal heavy-metalcomplexing peptides of higher plant.Science,1985,230:674—676
    [70]冯保民,麻密.植物络合素及其合酶在重金属抗性中的功能研究进展.应用与环境生物学报,2003,9(6):657-661
    [71] Grill E, Winnacker E L, Zenk M H. Phytochelatins: a class ofheavy-metal-binding peptides from plants, are functionally analogous tometallothioneins.Proceedings of the National Academy of Sciences USA,1987,84:439—443
    [72]蔡保松,雷梅,陈同斌,等.植物螯合肽及其在抗重金属胁迫中的作用.生态学报,2003,23:2125-2132
    [73] Rauser W E.Phytochelatins and related peptides.Plant Physiology,1995,109:1141-1149
    [74]张玉秀,柴团耀,Gerard B.植物耐重金属机理研究进展.植物学报,1999,41:453-457
    [75]袁祖丽,孙晓楠,刘秀敏.植物耐受和解除重金属毒性研究进展.生态学报,2008,17(6),2494-2502
    [76] Nishizono H.The role of the root cell wall in the heavy metal tolerance ofAthyrium Yokoscense.Plant and Soil,1987,101:15-20
    [77]孙涛,张玉秀,柴团耀.印度芥菜(Brassica juncea L.)重金属耐性机理研究进展.中国生态农业学报,2011,19(1):226-234
    [78]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展.遗传,2003,25(2):225-231
    [79]秦小琼,贾士荣.植物抗氧化逆境的基因工程(综述).农业生物技术学报,1997,5(1):14-23
    [80] Salt D E,Smith R D,Raskin I. Phytoremediation. Annual Review ofPlant Physiology and Plant Molecular Biology.1998,49:643-668
    [81] Puschenreiter M,Stoger G,Lombi E,et al.Phytoextraction of heavy metalcontaminated soils with Thlaspi goesingense and Amaranthus hybridus:rhizosphere manipulation using EDTA and ammonium sulphate.Journal of PlantNutrition and Soil Science,2001,164:615–621
    [82] Sheoran I S, Singal H R, Singh R. Effect of cadmium and nickel onphotosynthesis and the enzymes of the photosynthetic carbon reduction cycle inpigeonpea (Cajanus cajan L.).Photosynthesis Research,1990,23:345–351
    [83] Cherian S, Oliveira M M. Transgenic plants in phytoremediation: recentadvances and new possibilities.Environmental Science and Technology,2005,39:9377-9390
    [84] Martinez M,Bernal P,et al.An engineered plant that accumulates higher levelsof heavy metals than Thlaspi caerulescens,with yields of100times morebiomass in mine soils.Chemosphere,2006,64:478–485
    [85] Turgut C,Katie Pepe M,Cutright T J.The effect of EDTA and citric acid onphytoremediation of Cd, Cr, and Ni from soil using Helianthusannuus.Environmental Pollution,2004,131:147-154
    [86]艾军勇,张道勇,牟书勇,等.EDTA对波士顿蕨吸收Hg的影响及其光合响应.应用与环境生物学报,2011,17(2):219-222
    [87]刘亮,王光军,曾敏,等.EDTA对湘潭锰矿废弃地栾树吸收镉的影响.中南林业科技大学学报,2011,31(5):174-177
    [88] Weller D M,Thomashow L S.Current challenges in introducing beneficialmicroorganisms into the rhizosphere. In:O’Gara,F,Dowling,D.N.(Eds.),Molecular Ecology of Rhizosphere Microorganisms. B. Boesten VHC,Weiheim,New York,1994,1–5
    [89] Glick B R.The enhancement of plant growth by free-living bacteria.CanadianJournal of Microbiology,1995,41:109–117
    [90] Rajkumar M,Ae N,Freitas H.Endophytic bacteria and their potential toenhance heavy metal phytoextraction.Chemosphere,2009,77:153-160
    [91] Glick B R,Penrose D M,Li J.A model for the lowering of plant ethyleneconcentrations by plant growth promoting bacteria. Journal of TheoreticalBiology,1998,190:63–68
    [92] Saleem M,Arshad M,Hussain S,et al.Perspective of plant growth promotingrhizobacteria (PGPR) containing ACC deaminase in stress agriculture.Journalof Industrial Microbiology and Biotechnology,2007,34:635–648
    [93] Harrison J J,Ceri H,Turner R J.Multimetal resistance and tolerance inmicrobial biofilms.Nature Reviews Microbiology,2007,5:928–938
    [94] Sheng X F,Xia J J.Improvement of rape (Brassica napus) plant growth andcadmium uptake by cadmium-resistant bacteria.Chemosphere,2006,64:1036–1042
    [95] Andow D A, Zwahlen C. Assessing environmental risks of transgenicplants.Ecology Letters,2006,9:196-214
    [96] Nowack B,VanBriesen J M.Chelating agents in the environment,in:Nowack,B.,VanBriesen,J.M.,(Eds.) Biogeochemistry of chelating agents.AmericanChemical Society,Washington,DC,2005,1-18
    [97] Watrud L S,Lee E H,Fairbrother A,et al.Evidence for landscape-level,pollen-mediated gene flow from genetically modified creeping bentgrass withCP4EPSPS as a marker.Proceedings of the National Academy of Sciences,USA,2004,101(40):14533-14538
    [98] Bizily S P, Rugh C L, Meagher R B. Phytodetoxification of hazardousrganomercurials by genetically engineered plants.Nature Biotechnology,2000,18:213–217
    [99]蒋先军,骆永明,赵其国,等.镉污染土壤植物修复的EDTA调控机理.土壤学报,2003,40(2):205-209
    [100] Rufyikiri G,Huysmans L,Wannijn J,et al.Arbuscular mycorrhizal fungi candecrease the uptake of uranium by subterranean clover grown at high levels ofuranium in soil.Environmental Pollution,2004,130:427-436
    [101] Kuklinsky-Sobral J,Araújo W L,Mendes R,et al.Isolation and characterizationof soybean-associated bacteria and their potential for plant growthpromotion.Environmental Microbiology,2004,6:1244-1251
    [102]邹文欣,谭仁祥.植物内生菌研究新进展.植物学报,2001,43(9):881-892
    [103] Stierle A,Strobel G,Stierle D.Taxol and taxane production by Taxomycesandreanae,an endophytic fungus of Pacific yew.Science,1993,260(5105):214-216
    [104] Fisher P J, Petrini O, Scott H M.The distribution of some fungal andbacterial endophytes in maize.New Phytologist,1992,122:299-305
    [105] Anorld A E.A retropical fungal endophyte shyper diverse.Ecology Letters,2000,3:267-274
    [106] Schulz B,Boyle C.The endophytic continuum.Mycological Research,2005,109(6):661-686
    [107] Lodewyckx C,Vangronsveld J,Porteous F,et al.Endophytic bacteria and theirpotential applications.Critical Reviews in Plant Sciences,2002,21(6):583-606
    [108] Glick B R.Using soil bacteria to facilitate phytoremediation.BiotechnologyAdvances,2010,28:367-374
    [109] Newman L A,Reynolds C M.Bacteria and phytoremediation:new uses forendophytic bacteria in plants.Trends in Biotechnology,2005,23:6-8
    [110] Chen L, Luo S, Xiao X, et al. Application of plant growth-promotingendophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction ofCd-polluted soils.Applied Soil Ecology,2010,46:383-389
    [111] van Veen J A, van Overbeek L S, van Elsas J D. Fate and activity ofmicroorganisms introduced into soil. Microbiology and Molecular BiologyReviews,1997,61:121-135
    [112] Doty S L.Enhancing phytoremediation through the use of transgenics andendophytes.New Phytologist,2008,179:318-333
    [113] Mastretta C,Taghavi S,van der Lelie D,et al.Endophytic bacteria from seedsof Nicotiana tabacum can reduce cadmium phytotoxicity.International Journalof Phytoremediation,2009,11:251-267
    [114] Siciliano S D,Fortin N,Mihoc A,et al.Selection of specific endophyticbacterial genotypes by plants in response to soil contamination.Applied andEnvironmental Microbiology,2001,6:2469–2475
    [115] Van Aken B,Yoon J M,Schnoor J L.Biodegradation of nitro-substitutedexplosives2,4,6-trinitrotoluene,hexahydro-1,3,5-trinitro-1,3,5-triazine,and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbioticMethylobacterium sp. associated with poplar tissues (Populus deltoides×nigraDN34).Applied and Environmental Microbiology,2004,70:508–517
    [116] Barac T,Taghavi S,Borremans B,et al.Engineered endophytic bacteriaimprove phytoremediation of water-soluble,volatile,organic pollutants.NatureBiotechnology,2004,22:583–588
    [117] Idris R,Trifonova R,et al.Bacterial communities associated with floweringplants of the Ni hyperaccumulator Thlaspi goesingense. Applied andEnvironmental Microbiology,2004.70:2667–2677
    [118]周乃元,王仁武.植物修复--治理土壤重金属污染的新途径.中国生物工程杂志,2002,22(5):53-57
    [119] Canet L,Ilpide M,Seta P.Efficient facilitated transport of lead,cadmium,zinc and silver across a flat sheet-supported liquid membrane mediated bylasalocid A.Separation Science and Technology,2002,37:1851–1860
    [120] Esalah J O,Weber M E,Vera J H.Removal of lead,cadmium and zinc fromaqueous solutions by precipitation with sodium di-(n-octyl)phosphinate.Canadian Journal of Chemical Engineering,2000,78:948–954
    [121] Toles C A,Marshall W E.Copper ion removal by almond shell carbons andcommercial carbons: batch and column studies. Separation Science andTechnology,2002,37:2369–2383
    [122] Zouboulis A I,Matis K A,Lanara B G,et al.Removal of cadmium from dilutesolutions by hydroxyapatite. II. Flotation studies. Separation Science andTechnology,1997,32:1755–1767
    [123] Singh O V,Labana S,Pandey G,et al.Phytoremediation:an overview ofmetallic ion decontamination from soil. Applied Microbiology andBiotechnology,2003,61:405–412
    [124] Bottini R,Cassan F,Piccoli P.Gibberellin production by bacteria and itsinvolvement in plant growth promotion and yield increase. AppliedMicrobiology Biotechnology,2004,65:497–503
    [125] Saikkonen K,Lehtonen P,Helander M,et al.Model systems in ecology:dissecting the endophyte–grass literature.Trends in Plant Science,2006,11:428-433
    [126] Taghavi S,Barac T,Greenberg B,et al.Horizontal gene transfer to endogenousendophytic bacteria from poplar improves phytoremediation of toluene.Appliedand Environmental Microbiology,2005,71:8500–8505
    [127] Reinhold-Hurek B,Hurek T.Life in grasses:diazotrophic endophytes.Trendsin Microbiology,1998,6:139–144
    [128] Wei S H,Zhou Q X,Wang X,et al.A newly-found Cd-hyperaccumulatorSolanum nigrum L..Chinese Science Bulletin,2004,49:2568-2573
    [129] Barzanti R,Ozino F,Bazzicalupo M,et al.Isolation and characterization ofendophytic bacteria from the nickel hyperaccumulator plant Alyssumbertolonii.Microbial Ecology,2007,53:306-316
    [130]肖潇.基于镉超累积植物内生菌的重金属污染修复研究:[湖南大学博士学位论文].长沙:湖南大学,2011,20-21
    [131] Luo S,Wan Y,Xiao X,et al.Isolation and characterization of endophyticbacterium LRE07from cadmium hyperaccumulator Solanum nigrum L. and itspotential for remediation.Applied Microbiology and Biotechnology,2011,89:1637-1644
    [132] McCord J M,Fridovich I.Superoxide dismutase:An enzymatic function forerythrocuprein (hemocuprein).Journal of Biological Chemistry,1969,244:6049-6055
    [133] Sch ner S,Heinrich Krause G.Protective systems against active oxygen speciesin spinach:response to cold acclimation in excess light.Planta,1990,180:383-389
    [134] Cakmak I,Marschner H.Magnesium deficiency and high light intensity enhanceactivities of superoxide dismutase, ascorbate peroxidase, and glutathionereductase in bean leaves.Plant Physiology,1992,98:1222-1227
    [135] Koricheva J,Roy S,Vranjic J A,et al.Antioxidant responses to simulated acidrain and heavy metal deposition in birch seedlings.Environmental Pollution,1997,95:249-258
    [136] Schwyn B,Neilands J B.Universal chemical assay for the detection anddetermination of siderophores.Analytical Biochemistry,1987,160:47–56
    [137] Belimov A A,Hontzeas N,Safronova V I,et al.Cadmium-tolerant plantgrowth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L. Czern).Soil Biology and Biochemistry,2005,37:241–250
    [138] Gordon S A,Weber R P.Colorimetric estimation of indoleacetic acid.PlantPhysiology,1951,26:192–195
    [139] Nautiyal C S. An efficient microbiological growth medium for screeningphosphate solubilizing microorganisms.FEMS Microbiology Letters,1999,170:265–270
    [140] Watanabe F S,Olsen S R.Test of an ascorbic acid method for determiningphosphorous in water and NaHCO3extracts from soil.Soil Science Society ofAmerica Journal,1965,29:677–678
    [141]孙剑秋,郭良栋,臧威,等.药用植物内生真菌多样性及生态分布.中国科学:C辑,2008,38(5):475-484
    [142] Zhang C X,Yang S Y,Xu M X,et al.Serratia nematodiphila sp.nov.,associated symbiotically with the entomopathogenic nematodeHeterorhabditidoides chongmingensis (Rhabditida:Rhabditidae).InternationalJournal of Systematic and Evolutionary Microbiology,2009,59:1603–1608
    [143] Dastager S G,Deepa C K,Pandey A.Potential plant growth-promoting activityof Serratia nematodiphila NII-0928on black pepper (Piper nigrum L.).WorldJournal of Microbiology and Biotechnology,2011,27:259-265
    [144] Patil C D,Patil S V,Salunke B K,et al.Insecticidal potency of bacterial speciesBacillus thuringiensis SV2and Serratia nematodiphila SV6against larvae ofmosquito species Aedes aegypti, Anopheles stephensi, and Culexquinquefasciatus.Parasitology Research,2012,110:1841–1847
    [145] Buchanan RE, Gibbons NE (ed.) Bergey's manual of determinativebacteriology,8th ed.The Williams&Wilkins Co.,Baltimore,1974
    [146] Bidlan R, Manonmani H K. Aerobic degradation ofdichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P.ProcessBiochemistry,2002,38:49-56
    [147] Li M T, Hao L L, Sheng L X, et al. Identification and degradationcharacterization of hexachlorobutadiene degrading strain Serratia marcescensHL1.Bioresource technology,2008,99:6878-6884
    [148] Yao R S,Sun M,Wang C L,et al.Degradation of phenolic compounds withhydrogen peroxide catalyzed by enzyme from Serratia marcescens AB90027.Water Research,2006,40:3091-3098
    [149] Rajkumar M,Ae N,Prasad M N V,et al.Potential of siderophore-producingbacteria for improving heavy metal phytoextraction.Trends in Biotechnology,2010,28(3):142-149
    [150] Maria L. Accumulation of metals by microorganisms—processes andimportance for soil systems.Earth Science Reviews,2000,51(1-4):1-31
    [151] Chang J,Law R,Chang C.Biosorption of lead,copper and cadmium by biomassof Pseudomonas aeruginosa PU21.Water Research,1997,31(7):1651-1658
    [152] Vullo D,Ceretti H,Daniel M,et al.Cadmium,zinc and copper biosorptionmediated by Pseudomonas veronii2E.Bioresource Technology,2008,99(13):5574-5581
    [153] Yan G,Viraraghavan T.Heavy-metal removal from aqueous solution by fungusMucor rouxii.Water Research,2003,37(18):4486-4496
    [154] Yin P,Yu Q,Jin B,et al.Biosorption removal of cadmium from aqueoussolution by using pretreated fungal biomass cultured from starchwastewater.Water Research,1999,33(8):1960-1963
    [155] Aksu Z.Equilibrium and kinetic modelling of cadmium (II) biosorption byC.vulgaris in a batch system:effect of temperature.Separation and PurificationTechnology,2001,21(3):285-294
    [156] Cruz C,da Costa A,Henriques C,et al.Kinetic modeling and equilibriumstudies during cadmium biosorption by dead Sargassumsp.biomass.Bioresource Technology,2004,91(3):249-257
    [157] Zhang C B,Huang L N,Shu W S,et al.Structural and functional diversity ofa culturable bacterial community during the early stages of revegetation near aPb/Zn smelter in Guangdong,PR China.Ecological Engineering,2007,30(1):16-26
    [158]孙嘉龙,肖唐付,周连碧,等.微生物与重金属的相互作用机理研究进展.地球与环境,2007,35(4):367-374
    [159]符波,廖潇逸,丁丽丽,等.环境扫描电镜对废水生物样品形态结构的表征研究.中国环境科学,2009,30(1):93-98
    [160] Yang J,Panek H R,O'Brian M R.Oxidative stress promotes degradation of theIrr protein to regulate haem biosynthesis in Bradyrhizobiumjaponicum.Molecular Microbiology,2006,60:209-218
    [161] Martins P F,Carvalho G,Grat o P L,et al.Effects of the herbicides acetochlorand metolachlor on antioxidant enzymes in soil bacteria.Process Biochemistry,2011,46:1186–1195
    [162] Lin X,Xu X,Yang C,et al.Activities of antioxidant enzymes in three bacteriaexposed to bensulfuron-methyl.Ecotoxicology and Environmental Safety,2009,72:1899–1904
    [163] Buckova M, Godocikova J, Zamocky M, et al. Isolates of Comamonasspp. exhibiting catalase and peroxidase activities and diversity of theirresponses to oxidative stress.Ecotoxicology and Environmental Safety,2010,73:1511-1516
    [164] Lenartova V, Holovska K, Javorsky P. The influence of mercury on theantioxidant enzyme activity of rumen bacteria Streptococcus bovis andSelenomonas ruminantium. FEMS Microbiology Ecology,1998,27(4):319–325
    [165] Wang M,Kan G,Shi C,et al.Heavy metal tolerance of an Antarctic bacterialstrain O5and it antioxidant enzyme activity changes induced by Cu2+.IEEEInternational Conference on Systems Biology,2001,303-306
    [166] Rodrigues V D,Martins P F,Gaziola SA,et al.Antioxidant enzyme activityin Acidithiobacillus ferrooxidans LR maintained in contact withchalcopyrite.Process Biochemistry,2010,45:914-918
    [167]郑洲,缪锦来,丁炳,等.汞对南极细菌Pseudoalteromonas sp.NJ62抗氧化酶活性的影响.海洋科学进展,2005,23,1-5
    [168] Abskharon R N N,Hassan S H A,Kabir M H,et al.The role of antioxidantsenzymes of E. coli ASU3, a tolerant strain to heavy metals toxicity, incombating oxidative stress of copper. World Journal of Microbiology andBiotechnology,2010,26(2):241–247
    [169]钱斯亮,蔡宇杰,廖祥儒,等.热稳定性过氧化物酶高产菌的筛选、鉴定及酶学性质研究.西北农业学报,2008,17(2),238-242
    [170] Shafiq H,Mirza M S,Malik K A.Production of phytohormones by the nitrogenfixation bacteria isloated from sugarcan.Biohorizons,1999,2:61-76
    [171] Crouch I J, Smith M T, Van S J, et al. Identificaiton of Auxins in a commercialseaweed concentrate. Journal of Plant Physiology,1992,139:590-594
    [172]黄晓东,季尚宁,等.植物促生菌及其促生机理续.现代化农业,2002,7:13-15
    [173] Jacobson C B, Pastemak J J, Glick B R. Partial purification and characterizationof1-aminocyclopropane-1carboxylate deaminase from growth promotingrhizobacterium P.puitda GR12-2. Canadian Journal of Microbiology,1994,40:1019-1025
    [174] Sun Y,Cheng Z,Glick B R.The role of1-aminocyclopropane-1-carboxylate(ACC) deaminase in plant growth promotion by the endophytic bacteriumBurkholderia phytofirmans PsJN.FEMS Microbiology Letters,2009,296:131–136
    [175] Wellburn A R.The spectral determination of chlorophyll a and chlorophyll b,as well as total carotenoids,using various solvents with spectrophotometers ofdifferent resolution.Journal of Plant Physiology,1994,144:307-313
    [176] Weyens N, Croes S, Dupae J, et al. Endophytic bacteria improvephytoremediation of Ni and TCE co-contamination.Environmental Pollution,2010,158:2422-2427
    [177] Zhang X X,Li C J,Nan Z B.Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodiumgansuense.Journal of Hazardous Materials,2010,175:703-709
    [178] Bonnet M,Camares O,Veisseire P.Effects of zinc and influence of Acremoniumlolii on growth parameters,chlorophyll a fluorescence and antioxidant enzymeactivities of ryegrass (Lolium perenne L.cv Apollo).Journal of ExperimentalBotany,2000,51:945-953
    [179] Vessey J K.Plant growth promoting rhizobacteria as biofertilizers.Plant andSoil,2003,255:571–586
    [180]唐艳葵,韦星任,蓝梓铭,等.浮萍在Cd、Zn污染水体植物修复中的应用潜力研究.安徽农业科学,2010,38:15163-15165
    [181] Somashekaraiah B V,Padmaja K,Prasad A R K.Phytotoxicity of cadmium ionson germinating seedlings of mung bean (Phaseolus vulgaris):Involvement oflipid peroxides in chlorphyll degradation.Physiologia Plantarum,1992,85:85-89
    [182] Sun R,Zhou Q,Jin C.Cadmium accumulation in relation to organic acids inleaves of Solanum nigrum L.as a newly found cadmium hyperaccumulator,Plant and Soil,2006,285:125–134
    [183] Marques A P G C,Oliveira R S,Rangel A O S S,et al.Zinc accumulation inSolanum nigrum is enhanced by different arbuscular mycorrhizalfungi.Chemosphere,2006,65:1256-1263
    [184] Bradl HB.Adsorption of heavy metal ions on soils and soils constituents,Journal of Colloid and Interface Science,2004,277:1–18
    [185] Malandrino M,Abollino O,Giacomino A,et al.Adsorption of heavy metalson vermiculite:Influ-ence of pH and organic ligands.Journal of Colloid andInterface Science,2006,299:537-546
    [186] Sun R L, Zhou Q X, Sun F H, et al. Antioxidative defence andproline/phytochelatin accumulation in a newly discoveredCd-hyperaccumulator,solanum nigrum L..Environmental and ExperimentalBotany,2007,60(3):468-476
    [187] Heath R L,Packer L.Photoperoxidation in isolated chloroplasts: I.Kinetics andstoichiometry of fatty acid peroxidation. Archives of Biochemistry andBiophysics,1968,125:189–198
    [188] Mishra S,Srivastava S,Tripathi R D,et al.Lead detoxification by coontail(Ceratophyllum demersum L.) involves induction of phytochelatins andantioxidant system in response to its accumulation.Chemosphere,2006,65:1027–1039
    [189] de Azevedo Neto A D,Prisco J T,Enéas-Filho J,et al.Effect of salt stress onantioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerantand salt-sensitive maize genotypes.Environmental and Experimental Botany,2006,56:87-94
    [190] Ma Y,Prasad M N V,Rajkumar M,et al.Plant growth promoting rhizobacteriaand endophytes accelerate phytoremediation of metalliferoussoils.Biotechnology Advances,2011,29:248–258
    [191] Sheng X F,Xia J J,Jiang C Y,et al.Characterization of heavy metal-resistantendophytic bacteria from rape (Brassica napus) roots and their potential inpromoting the growth and lead accumulation of rape.Environmental Pollution,2008,156:1164–1170
    [192] Gussarson M,Asp H,Adalsteinsson S,et al.Enhancement of cadmium effectson growth and nutrients composition of birch (Betula pendula) by buthioninesulphoximine (BSO).Journal of Experimental Botany,1996,23:211-215
    [193] H nsch R,Mendel R R.Physiological functions of mineral micronutrients (Cu,Zn,Mn,Fe,Ni,Mo,B,Cl).Current Opinion in Plant Biology,2009,12:259-266
    [194] Halliwell B,Gutteridge J M C.Free radicals in biology and medicine.2nded.Clarendon,Oxford,UK,1989
    [195] Baltruschat H,Fodor J,Harrach B D,et al.Salt tolerance of barley induced bythe root endophyte Piriformospora indica is associated with a strong increase inantioxidants.New Phytologist,2008,180:501-510
    [196] Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B-and ozone-inducedbiochemical changes in antioxidant enzymes of Arabidopsis thaliana.PlantPhysiology,1996,110:125-136
    [197] Uraguchi S,Watanabe I,Yoshitomi A,et al.Characteristics of cadmiumaccumulation and tolerance in novel Cd-accumulating crops,Avena strigosa andCrotalaria juncea.Journal of Experimental Botany,2006,57:2955-2965
    [198] Pinto A P,Alves A S,Candeias A J,et al.Cadmium accumulation andantioxidative defences in Brassica juncea L.Czern,Nicotiana tabacum L.andSolanum nigrum L.International Journal of Environmental AnalyticalChemistry,2009,89:661-676
    [199] Cao X D, Ma L Q, Tu C. Antioxidative responses to arsenic in thearsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).EnvironmentalPollution,2004,128:317–325
    [200] Teske A,Wawer C,Muyzer G,et al.Distribution of sulfate-reducing bacteriain a stratified fjord (Mariager Fjord, Denmark) as evaluated bymost-probable-number counts and denaturing gradient gel electrophoresis ofPCR-amplified ribosomal DNA fragments. Applied and EnvironmentalMicrobiology,1996,62(4):1405-1415
    [201] Saikkonen K, Wali P, Helander M, et al. Evolution of endophyte-plantsymbioses.Trends in Plant Science,2004,9(6):275-280
    [202] Muyzer G,Brinkhoff T,Nübel U,et al.Denaturing gradient gel electrophoresis(DGGE) in microbial ecology.In:Mol Microb Ecol Manual.Dordrecht:Kluwer,1998,1-27
    [203] Long H H,Schmidt D D,Baldwin I T.Native bacterial endophytes promote hostgrowth in a species-specific manner; phytohormone manipulations do notresult in common growth responses.Plos One,2008,3(7):1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700