用户名: 密码: 验证码:
大型动力离心机设计理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
按照装备振动台与否,土工离心机大致可分为静力试验离心机和动力试验离心机(也称离心机振动台)两大类,本文将后者简称为动力离心机。动力离心机(Dynamic Centrifuge)是目前国际公认研究岩土地震工程和土动力学最先进、最有效的科学试验平台,而我国仅拥有数台辅助建设的中小型动力离心机设备,且主要技术指标与国际存在很大差距。国内大型动力离心机则为空白,这与我国辽阔的地域、复杂的工程地质条件、高速发展的经济建设以及严峻的地震形势十分不相称。大型动力离心机系统十分复杂而庞大,涉及技术多,成功经验少,建设过程具有问题多、难度大、历时长、花费高等特点。全球仅有两台大型动力离心机,且自建设后一直不断改进,其中UC Davis大型动力离心机建设周期累计长达16年。国际当前动力离心机研制技术和试验技术均不成熟,尚处于初级发展阶段,而国内对大型动力离心机的认识仅限于指标和功能的了解,缺乏系统的关键技术和设计理论研究。
     本文以国内对大型动力离心机的迫切需要为背景,以工程力学研究所DCIEM-40-300大型动力离心机建设为蓝本,就大型动力离心机的设计理论和关键技术展开研究,确定关键技术和设计难点,剖析主要难点和关键问题,对其中关键问题进行系统地分析、建模、推导、计算和验证。完成的主要工作和成果如下:
     1.详细总结了国内外动力离心机及土工离心机发展现状,提出了两者性能评价指标差异和规模划分标准;阐述了动力离心机研制技术和试验技术当前研究进展,指出了国内动力离心机发展的重点方向与趋势;提出了中国地震局工程力学研究所DCIEM-40-300大型动力离心机设计指标,阐明了其总体规模和功能特点。
     2.密切跟踪国际相关技术最新发展,剖析了国际上仅有的UC Davis和PWRI两台大型动力离心机设备建设经验、结构组成和设计方法;分析了大型动力离心机系统各部分的机械结构、运动约束及功能条件的内在影响和制约;确定了四个子系统的关键技术、设计重点和难点,指出了离心振动台是整个系统的研制核心。
     3.针对大型动力离心机的研制核心,深入研究高振动容量和高振动负载下离心振动台设计的新问题和主要难点,引进融合国际最新技术,提出了大型离心振动台整体和主要部件的总设计新方法与基本理论;以DCIEM-40-300大型动力离心机设计指标为样本,提出了设计思路与基本方法,给出了主要部件结构、参数确定和元件选型,计算了负载特性及安全校核;建立和求解了等效吊篮质量计算模型和公式。
     4.以大型离心振动台总体设计方法为基础,分等级建立和求解了三种离心振动台动力分析模型和传递函数,给出了三类不同设计条件下离心振动台液压机构基本动力特性;以DCIEM-40-300设计指标为样本,利用求解出的传递函数,分析了吊篮主要参数对离心振动台动力性能的影响规律,提出了改进离心振动台动力性能的设计方法。
     5.建立了离心振动台与吊篮伺服控制动力仿真模型,研究了离心振动台三参数反馈//输入伺服控制设计方法,提出了最佳参数求解标准;给出了动力离心试验功能要求下,现有伺服控制理论拓展液压系统频宽和提高稳定性的最大能力,探讨了大型离心振动台电液伺服控制系统设计的优化方法。
     6.研究了试验数据采集系统环境条件、功能要求及传感器设计问题,提出了一种多信号类型、不等数量线制、多通道复用式的大型动力离心试验数据采集系统设计方法;研究了理想条件下试验模型箱的设计要求,给出了多种结构型式,提出了一套柔性剪切模型箱设计新方法和基本理论;提出了试验图像采集系统基本设计要求和总体设计方法。
     7.研究了设备总体结构布局方法和土建设计关键问题;分析了设备基础荷载条件和发生方式,建立了大型动力离心机基础振动分析模型和计算方法,提出了DCIEM-40-300基础设计方案;建立了风阻功率的计算模型,推导出了其解析计算公式,提出了便于工程应用的简化计算方法,解释了主机室空气运动的内在机理。
Depending on the equipment of centrifugal shakers, geotechnicalcentrifuges can be generally classified as static testing centrifuges anddynamic testing centrifuges (also known as centrifuge shaking tables), whilstthe name of latter classification is shortened as dynamic centrifuges herein.Presently dynamic centrifuges are internationally acknowledged as the mostadvanced and the most effective scientific experiment platforms ingeotechnical earthquake engineering and soil dynamics. Whereas only a fewmedium and small dynamic centrifuges established as an auxiliary functionexist in China, and moreover their major technical parameters lag far behindthe international levels. No large dynamic centrifuge has been constructed inChina, which situation hardly sorts with t the wide territory, complicatedengineering geotechnical conditions, rapid economy growth and seriousseismic risks in China. One large dynamic centrifuge is a quite complicatedand huge system involving multidisciplinary techniques and lackingsuccessful experience, furthremore its construction is characterized by manyproblems, great difficulties, long period, and huge cost. Currently only twolarge dynamic centrifuges have been constructed and have being improvedconstantly since their completion, while the one in USA has an accumulativeconstruction period of approximately16years. The manufacture technologyand test technology of dynamic centrifuges are both worldly undeveloped andstill in primary phase. Additionally the acquaintance of large dynamiccentrifuges is very limited and confined to the indexes and functions in China,so what lacks more is systematic study on the key technology and designtheory of large dynamic centrifuges.
     Based on the urgent need for large dynamic centrifuges in China and thelarge dynamic centrifuge (DCIEM-40-300) construction in Institute ofEngineering Mechanics taken as application background, this paper focuseson the design theory and key technology of large dynamic centrifuges to study,in which the key technology and design difficulties are firstly ascertained andthen the main difficulties and critical problems are analyzed referring tomodeling, formulation, calculation, validation and other process. The mainconclusive and creative works can be outlined, as follows:
     1.By detailed summaries on the developments both at home and abroad,the performance evaluation index differences and the grading standards fordynamic centrifuges and geotechnical centrifuges are put forward. Byreviewing the status of dynamic centrifuge manufacture technology and testtechnology, the principal development key and trend in China are proposed.Meanwhile, the design indexes of DCIEM-40-300dynamic centrifuge arepresented, and its scale and functions are also illustrated.
     2. Following the newly development of correlation technology, theconstruction experience, structural composition and design methods of thetwo existing large dynamic centrifuges in UC Davis and PWRI respectivelyare deeply analyzed. Studying mechanical structures, dynamic restrictions andfunctional inherent conditions of each part of a large dynamic centrifugesystem fixes the key technology, design points and difficulties of foursubsystems, in which the centrifugal shaker is identified as the core of wholesystem.
     3.Based on the core of a large dynamic centrifuge, the new problems andmain difficulties of the centrifugal shaker with high shaking capacity and highshaking payload are studied in detail. Moreover, the new design method andbasic theory of the whole and the major components of large centrifugalshakers are proposed, in which the international latest technologies areemployed. Taking the design indexes of DCIEM-40-300dynamic centrifugeas a sample, the design procedures and basic methods are presented, includingthe main structure design, parameter definition and component selection,meanwhile the load characteristics and mechanical properties are also checked.An equivalent mass calculation model for buckets is established andformulated.
     4.Based on the overall design method of large centrifugal shakers, theanalytic models and transfer functions of centrifugal shaker dynamics areestablished and calculated on three levels respectively, by which the hydraulicmechanistic dynamic features of centrifugal shakers under three differentdesign conditions are showed. Also, taking the design indexes ofDCIEM-40-300dynamic centrifuge as a sample and utilizing the transferfunctions calculated ahead, the influence of main parameters of buckets oncentrifugal shaker dynamics is analyzed, and then the optimum designmethods for centrifugal shakers are proposed.
     5. The servo-control simulation model for centrifugal shakers andbuckets is built to study the three parameter feedback and feedforwardcontrollers of centrifugal shakers, meanwhile, the standards for calculating theoptimized parameters are given. Then, the best ability of current servo-controltheory to improve the frequency band and stability of hydraulic systems ispresented on the function request of dynamic centrifuge tests. Simultaneously,the optimum design methods for the servo-control system of large centrifugalshaker are discussed.
     6.By studying the operating environments, functional requirements andtransducer design problems of test data acquisition systems, a large scaledesign method for large dynamic centrifuges to gather multi-type signals andmulti-wire sensors is proposed and characterized with multiplexing functions.Under ideal conditions, the design requirements and structure types of testcontainers are analyzed, meantime the design method and fundamental theoryof new flexible shear beam containers are developed. In addition, the basic requirement and overall method for design of a new test image acquisitionsystem are also provided.
     7.The structural layout method of equipments and the critical problemsof civil construction are systematically researched. By investigating theloading condition of machine foundation and the generation mode of vibration,the foundation vibration models for large dynamic centrifuges are developedas well as calculation methods, and the foundation design of DCIEM-40-300dynamic centrifuge is presented. Otherwise, the mathematical model andcalculation method of wind resistance power are derived, and a simplifiedcalculation method is also presented to convenient for engineeringapplications. The intrinsic mechanism of air movement of operation halls isexplained.
引文
[1]安培浚,赵纪东.美国国家地震减灾计划2008~2012年战略计划介绍[J],科学研究动态检测快报,2008(42):1-6.
    [2]白冰,周健.土工离心模型试验技术的一些进展[J].大坝观测与土工测试,2001,25(1):36-39.
    [3]包承纲.土力学的发展和土工离心模拟试验的现状[J].岩土力学,1988,9(4):23-30.
    [4]包承纲.我国离心模拟试验技术的现状和展望[J].岩土工程学报,1991,13(6):92-97.
    [5]包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院报,1998,15(2):1-7.
    [6]陈家胜,高玉,易进栋,等.50g-t土工离心机数据采集系统[J].电子技术应用,1992(9):2-4.
    [7]陈云敏,韩超,凌道盛,等. ZJU400离心机研制及其振动台性能评价[J].岩土工程学报,2011,33(12):1887-1894.
    [8]陈正发,刘桂凤.关于土工离心机振动台发展的思考[J].岩土工程界,2004,7(1):18-19.
    [9]陈正发,于玉贞.土工动力离心模型试验研究进展[J].岩石力学与工程学报,2006,25(supp.2):4026-4033.
    [10]邓丽军,陈正发,于玉贞,等.电液伺服土工离心机振动台数据采集系统开发[J].试验技术与管理,2006,23(8):58-61.
    [11]董龙雷,闰桂荣,廖红建.岩土工程中动态离心模型试验技术的应用[J].岩石力学与工程学报,2000,19(6):789-793.
    [12]杜延龄.大型土工离心机基本设计原则[J].岩土工程学报,1993,15(6):10-17.
    [13]关广丰.液压驱动六自由度振动试验系统控制策略研究[D].哈尔滨:哈尔滨工业大学,2007.
    [14]郭迅.地震工程试验联网最新进展[J].地震工程与工程振动,2006,26(4):37-41.
    [15]韩俊伟.电液伺服系统的发展与应用[J].机床与液压,2012,40(2,4,6):7-10.
    [16]韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台[J].地震学报,1998,20(3):327-331.
    [17]韩俊伟,于丽明,赵慧,等.地震模拟振动台三状态控制的研究[J].哈尔滨工业大学学报,1999,31(3):21-28.
    [18]侯兴民,廖振鹏,黄浩华.动力基础频域响应分析[J].工程力学,2003,20(4):122-127.
    [19]侯瑜京. LXJ-4-450土工离心机在岩土工程中的应用[J].北京水利,1998(5):55-56.
    [20]侯瑜京.土工离心机振动台及其试验技术[J].中国水利水电科学研究院学报,2006,4(1):15-22.
    [21]胡黎明.离心模型试验技术在环境岩土工程中的应用与展望[J].土壤与环境,2001,10(4):327-330.
    [22]胡小华.囊式蓄能器和活塞式蓄能的选择与使用[J].液压与气动,1993(1):35-37.
    [23]黄浩华.电液伺服系统在地震工程研究中的应用[J],测控技术,1996,15(4):32-33.
    [24]黄浩华,杨学山,程建伟,等.小型伺服式电动振动台[J].世界地震工程,2002,18(3):69-72.
    [25]黄茂松,曹杰.隧道地震响应简化分析与动力离心试验验证[J].岩石力学与工程学报,2010,29(2):271–280.
    [26]机械设计手册编委会.机械设计手册-液压传动与控制[M].北京:机械工业出版社,2007.23.
    [27]蒋东旗,谢定义.动力机器基础设计的数值方法研究[J].土木工程学报,2002,35(1):74-78.
    [28]蒋建群,周华飞,张土乔.弹性半空间体在移动集中荷载作用下的稳态响应[J],岩土工程学报,2004,26(4):440-444.
    [29]蒋建群,周华飞,张土乔.移动荷载下粘弹性地基上无限大板的稳态响应[J].中国公路学报,2006,19(1):6-11.
    [30]雷虎民,田昌会,李荣林,等.振动台在离心环境中的离心力自恰克服方法研究[J].机床与液压,2001(5):20-23.
    [31]李洪人.液压控制系统[M].北京:国防工业出版社,1990.225.
    [32]李京爽,侯瑜京,徐泽平,等.砂土自由场地基水平垂直振动离心模拟试验[J].岩土力学,2011,32(Supp.2):208-214.
    [33]林明,王新伦,冯晓军,等.60-gt土工离心机电气系统设计[J].测控技术,2004,23(1):58-60.
    [34]凌道盛,郭恒,蔡武军,等.地铁车站地震破坏离心机振动台模型试验研究[J].浙江大学学报,2012,46(12):2201-2209.
    [35]柳飞,郑西来,杨俊杰,等.基础埋深对承载力离心模型试验中粒径效应的影响[J].岩土工程学报,2010,32(10):1621-1627.
    [36]刘光磊,宋二祥,刘华北.可液化地层中地铁隧道地震响应数值模拟及其试验验证[J].岩土工程学报,2007,29(12):1815-1822.
    [37]刘晶波,刘祥庆,王宗纲.离心机振动台试验叠环式模型箱边界效应[J].北京工业大学学报,2008,34(9):931-937.
    [38]刘晶波,赵冬冬,王文晖.土-结构动力离心试验模型材料研究与相似关系设计[J].岩石力学与工程学报,2012,31(Supp.1):3181-3187.
    [39]刘守华.土工离心机的研制与应用[J].水利水运科学研究,1989(4):60-64.
    [40]刘守华,蔡正银,徐光明,等.超深厚吹填粉细砂地基大型离心模型试验研究[J].岩土工程学报,2004,26(6):846–850.
    [41]吕建民,郭玉荣,肖岩.结构远程协同试验研究进展[J].建筑科学与工程学报,2006,23(4):38-43.
    [42]马军辉.吊篮刚度对离心机振动台控制特性的影响[D].哈尔滨:哈尔滨工业大学,2011.
    [43]濮家骝.土工离心模型试验及其应用的发展趋势[J].岩土工程学报,1996,18(5):92-94.
    [44]濮家骝,高汉棪.浅基础承载力离心模型试验研究[J].岩土工程学报,1998,10(6):1-18.
    [45]濮家骝,李树勤.土工离心模型试验及其在岩土工程中的应用[C].//首届全国岩土力学与工程青年工作会议论文集.杭州:浙江大学出版社,1992.11-16.
    [46]冉光斌.土工离心机及振动台发展概述[J].环境技术,2007(3):25-29.
    [47]饶芳.美国国家地震减灾计划中的三大网络系统[J], e-Science,2008(2):76-77.
    [48]任广福,陈敏.弹性半空间理论在动力机器基础振动控制中的应用[J].振动与冲击,1989,29(1):20-25.
    [49]茹继平,肖岩.美国地震工程模拟网络系统NEES计划及其在我国试验远程协同结构试验的设想[J].建筑结构学报,2002,23(6):91-94.
    [50]孙锐,袁晓铭,王永志,等. NEES系统中振动离心机最新进展及国内振动离心机发展设想[J].世界地震工程,2010,26(1)31-39.
    [51]孙述祖.土工离心机设计综述(一)[J].水利水运科学研究,1991(1):109-121.
    [52]苏栋,李相菘.地震历时对砂土抗液化性能影响的试验研究[J].岩土力学,2006,27(10):1815-1818.
    [53]苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究[J].岩土工程学报,2006,28(4):423-427.
    [54]苏栋,李相菘.砂土自由场地震响应的离心机试验研究[J].地震工程与工程振动,2006,26(2):166-170.
    [55]汪明武, Susumu Iai.地下RC结构物地震响应特征土工离心模型试验的模拟[J].地震工程与工程振动,2007,27(3):150-155.
    [56]王春行.液压控制系统[M].北京:机械工业出版社,2008.143.
    [57]王年香,章为民.深层搅拌法加固码头软基离心模型试验研究[J].岩土工程学报,2001,23(5):634-638.
    [58]王年香,章为民.混凝土面板堆石坝动态离心模型试验研究[J].岩土工程学报,2003(4):503-507.
    [59]王永志,振动离心机系统工作原理与初步设计[D],哈尔滨:中国地震局工程力学研究所,2010.
    [60]王永志,黄浩华,袁晓铭,等.振动容量40gt大型动力离心机基础稳定性研究[J].土木工程学报,2013,46(Supp2):207-213.
    [61]王永志,孙锐,陈龙伟,等.大型振动离心机试验辅助系统分析[J].世界地震工程,2010,26(Supp):253-257.
    [62]王永志,孙锐,袁晓铭.大型振动离心机总体布局及土建关键技术[J].土木建筑与环境工程,2010,32(Supp2):591-593.
    [63]王永志,袁晓铭,孙锐.40g-t水平单向离心振动台总体设计方法研究[J].地震工程与工程振动,2011,31(6):11-17.
    [64]王永志,袁晓铭,孙锐.大型振动离心机设备设计关键技术研究[J].世界地震工程,2011,27(2):113-123.
    [65]王永志,袁晓铭,孙锐. CSIEM-40-300大型振动离心机设想与关键技术[J],长江科学院院报.2012,29(4):89-94.
    [66]王永志,袁晓铭,孙锐.大型振动离心机土建总体设计与关键技术研究[J].世界地震工程,2012,28(2):51-56.
    [67]吴宏伟,侯瑜京, Vanlaak P A.饱和堤坝单向及双向动力离心模型试验[C].//第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003.1049-1052.
    [68]吴建平,顾尧章,余祖国.砂雨法成型中影响试验密度的因素[J].水电自动化与大坝监测,1995(3):33-39.
    [69]吴俊贤,倪至宽,高汉棪.土石坝的动态反应:离心机模型试验与数值模拟[J].岩石力学与工程学报,2007,26(1):1-14.
    [70]谢欣.大型土工离心机数据采集与监测系统研制[J].大坝观测与土工测试,1992(4):15-20.
    [71]邢建营,邢义川,梁建辉.土工离心模型试验研究的进展与思考[J].水利与建筑工程学报,2005,3(1):27-31.
    [72]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2011.386.
    [73]徐光明,吴宏伟.大圆筒岸壁码头的量纲分析和离心模拟[J],岩土工程学报,2007,29(10):1544-1552.
    [74]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-86.
    [75]严侠,牛长春,牛宝良.多维波形再现数字控制系统研制[J],机床与液压,2009,37(6):146-149.
    [76]杨贵,何敦明,刘汉龙,等.土石坝动力离心模拟试验颗粒流数值模拟[J].河海大学学报,2011,39(3):296-301.
    [77]杨俊杰,豊澤康男.遠心力載荷装置を用ぃた補強砂地盤の支持力実験[J].土と基礎,2003,51(11):47-49.
    [78]杨俊杰,刘强,柳飞,等.离心模型试验中离心加速度取值误差探讨[J].岩土工程学报,2009,31(2):241-246.
    [79]杨俊杰,柳飞,丰泽康男,等.砂土地基承载力离心模型试验中的粒径效应研究[J].岩土工程学报,2007,29(4):477-483.
    [80]杨小平,杨位洸,邱俊琛,等.基于弹性半空间理论的基坑支护结构内力与变形分析方法[J].岩石力学与工程学报,2004,23(6):1007-1009.
    [81]姚燕明,周顺华,李尧臣.离心模型试验边界效应分析[J].力学季刊,2004,25(2):291-296.
    [82]尹益辉,刘远东,王兴伦,等.旋臂式离心机负载转矩及其驱动电机额定功率的计算方法[J].机电工程,2011,28(6):659-662.
    [83]尹益辉,余绍蓉,冯晓军,等.机室开有通风口的土工离心机的风阻功率[J].绵阳师范学院学报,2010,29(5):1-5.
    [84]袁晓铭.地震工程学与地震灾害预防发展规划研究[J],大地测量与地球动力学,2008,28:80-91.
    [85]袁晓铭,曹振中,孙锐,等.汶川8.0级地震液化特征初步研究[J],岩石力学与工程学报,2009,28(6):1288-1296.
    [86]于玉贞,陈正发.土工离心机振动台系统的发展研究[J].水利水电技术,2005,36(5):19-21.
    [87]张嘎,牟太平,张建民.基于图像分析的土坡离心模型试验变形场测量[J].岩土工程学报,2007,29(1):94–97.
    [88]张建红,劳敏慈,胡黎明.非饱和土中水分迁移及污染物扩散的离心模拟[J].岩土工程学报,2002,24(5):622–625.
    [89]张建民,于玉贞,濮家骝,等.电液伺服控制离心机振动台系统研制[J].岩土工程学报,2004,26(6):843-845.
    [90]张俊,杨志银.土工离心模型试验的发展与应用[J].岩土工程界,2005,8(6)29-30.
    [91]张敏,吴宏伟.颗粒图像测速技术在离心试验变形分析中的应用[J].岩石力学与工程学报,2010,29(Supp.2):3858-3864.
    [92]张霆,刘汉龙,胡玉霞,等.鼓式土工离心机技术及其工程应用研究[J].岩土力学,2009,30(4):1191-1196.
    [93]章为民,窦宜.土工离心模拟技术的发展[J].南京水利科学研究院水利水运科学研究,1995(3):294-301.
    [94]章为民,赖忠中,徐光明.电液式土工离心机振动台的研制[J].水利水运工程学报,2002(1):63-66.
    [95]郑人龙.离心模型试验在土工上的应用[J].郑州工学院学报,1983(2):25-44.
    [96]朱朝峰,赵荣炼.离心模型模拟法在若干工程中的应用状况[J].水利发电学报,1993(3):102-107.
    [97]中华人民共和国机械工业部.动力机器基础设计规范(GB50040-96)[S].北京:中国计划出版社,2002.
    [98]周健,刘宁.离心模型试验技术应用的新进展[J].上海地质,2002(1):52-56.
    [99]朱维新.土工离心模型试验研究综述[J].岩土工程学报,1986(2):82-95.
    [100] Aboim C., Scott R.F., Lee J. R., et al. Centrifuge earth dam studies: earthquaketests and analyses [R]. Report to National Science Foundation, Grant No.CEE-7926691.1983.
    [101] Adalier K., and Elgamal A. W.. Experimental results of model No.7at RPI[C].//Proceeding of the International Conference on Verification of NumericalProcedures for the Analysis of Soil Liquefaction Problems. Rotterdam: BalkemaA. A.,1993.799-808.
    [102] Arulanandan K., Canclini J., and Anandarjah A.. Simulation of earthquake motionin the centrifuge [J]. Journal of Geotechnical Division, ASCE,1982,108:730.
    [103] Arulanthan R., Boulanger R. W., Kutter B. L., et al. New tool for shear wavevelocity measurements in model tests[J]. Geotechnical Testing Journal23(4):444.
    [104] Arulanandan K., and Scott R. F.. Project VELACS-control test results [J].Journal of the Geotechnical Engineering, ASCE,1993,119(8):1276.
    [105] Ashford S. A., and Juirnarongrit T.. Performance of lifelines subjected to lateralspreading[R]. Pacific Earthquake Engineering Research Center,2006.
    [106] Atik L. A., and Sitar N.. Seismic Earth Pressures on Cantilever RetainingStructures[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(10):1324.
    [107] Boulanger R. W., Wilson D. W., Idriss I. M., et al. Examination and reevalautionof SPT-based liquefaction triggering case histories [J]. Journal of Geotechnicaland Geoenvironmental Engineering,2012,138(8):898.
    [108] Brandenberg S. J., Boulanger R. W., Kutter B. L., et al. Behavior of pilefoundations in laterally spreading ground during centrifuge tests [J]. Journal ofGeotechnical and Geoenvironmental Engineering,2005,131(11):1378.
    [109] Bradenberg S. J., Boulanger R. W., Kutter B. L., et al. Load transfer between pilegroups and laterally spreading ground during earthquakes[C].//Proceedings of the13th World Conference on Earthquake Engineering. Vancouver. Canada: IEEEPress,2004.
    [110] Chazelas J.L, Escoffier S., Garnier J., et al. Original technologies for provenperformances for the new LCPC earthquake simulator[J]. Bulletin of EarthquakeEngineering,2008(6):723.
    [111] Cragic W. H.. Simulation of foundations for offshore structures using centrifugemodeling [M]. London: Applied Science Publishers LTD,1983.
    [112] Dashti S., Bray, J. D., Pestana J. M., et al. Mechanisms of seismically inducedsettlement of buildings with shallow foundations on liquefiable soil[J]. Journal ofGeotechnical and Geoenvironmental Engineering,2010,136(1):151.
    [113] Dashti S., Bray J. D., Pestana J. M., et al. Centrifuge testing to evaluate andmitigate liquefaction-induced building settlement mechanisms [J]. Journal ofGeotechnical and Geoenvironmental Engineering.2010,136(7):918.
    [114] Dief H. M., and Figueroa J. L.. Shake table calibration and specimen preparationfor liquefaction studies in the centrifuge [J]. Geotechnical Testing Journal,2003,26(4):402.
    [115] Elgamal A., Yang Z.H., Lai T., et al. Dynamic response of saturated dense sand inlaminated centrifuge container[J]. Journal of Geotechnical and GeoenvironmentalEngineering.2005,131(5):598.
    [116] Escoffier S., Chazelas J. L., and Garnier J.. Centrifuge modeling of raked piles[J].Bulletin of Earthquake Engineering,2008(6):689.
    [117] Esposito G., Allersma H. B., and Selvadural A. S.. Centrifuge modeling ofLNAPL transport in partially saturated sand [J]. Journal of Geotechnical andGeoenvironmental Engineering,1999,125(12):1066.
    [118] Fiegel G. L., Hudson M., Idriss I. M., et al.. Effect of model containers ondynamic soil response[C].//Centrifuge94: Proceedings of the InternationalConference on Geotechnical Centrifuge Modeling. Singapore,1994.145-150.
    [119] Fuglsang L.D., and Oveson N.K.. The application of the theory of modeling tocentrifuge studies[C].//Centrifuge in Soil Mechanics,1988.119-138.
    [120] Fujii N.. Development of an electromagnetic centrifuge earthquake simulator
    [C].//Centrifuge91: Proceedings of the International Conference on GeotechnicalCentrifuge Modeling. Boulder, Colorado,1991.351–354.
    [121] Gerolymos N., Escoffier S., Gazetas G., et al. Numerical modeling of centrifugecyclic lateral pile load experiments[J]. Earthquake Engineering and EngineeringVibration,2009,8(1):61.
    [122] Hushmand B., Scott R. F., and Crouse C. B.. Centrifuge liquefaction tests inlaminar box[J].1988,38(2):253.
    [123] http://nees.ucdavis.edu [DB/OL]
    [124] http://www.nees.org [EB/OL]
    [125] http://www.nsf.gov[EB/OL]
    [126] http://www.pwri.go.jp[DB/OL]
    [127] Ilankatharan M., and Kutter B. L.. Modeling input motion boundary conditionsfor simulations of geotechnical shaking table tests [J]. Earthquake Spectra,2010,26(2):349.
    [128] Kim M. K., Lee S. H., Choo Y. W., et al. Seismic behaviors of earth-core andconcrete-faced rock-fill dams by dynamic centrifuge tests [J]. Soil Dynamic andEarthquake Engineering,2011(31):1579.
    [129] Kimura T., Kusakabe O., and Saitoh K.. Geotechnical model test of bearingcapacity problems in a centrifuge [J]. Geotechnique,1985,35(1):33.
    [130] Kimura T., Takemura J., and Saitoh K.. Development of a simple mechanicalshaker using a cam shaft[C].//Centrifuge88: Proceedings of the InternationalConference on Geotechnical Centrifuge Modeling. Paris,1988.107-110.
    [131] Kusakabe O.. Geotechnical centrifuge technology[M]. Blakie Academic andProfessional,1995.
    [132] Kusakabe O.. Application of centrifuge modeling to foundation engineering[J].Foundation and Construction,1993,11(1):1.
    [133] Kutter B. L.. Deformation of centrifuge models of clay embankments due to‘bumpy road’ earthquakes [C].//Proc. of the Conference on Soil Dynamics andEarthquake Engineering. Southampton: IEEE Press,1982.331-349.
    [134] Kutter B. L.. Recent advances in centrifuge modeling of seismicshaking[C]//Proceedings of3rd International Conference on Recent Advances inGeotechnical Earthquake Engineering and Soil Dynamics. Missouri,1995.
    [135] Kutter, B. L., Idriss I. M., Khonke T., et al. Design of a Large EarthquakeSimulator at UC Davis[C].//Centrifuge94: Proceedings of the InternationalConference on Geotechnical Centrifuge Modeling. Singapore,1994.169-175.
    [136] Kutter B. L., and James R. G.. Dynamic Centrifuge Model Tests on ClayEmbankments [J]. Geotechnique,1989,39(1):91.
    [137] Lenart G., Abdoun T., Zeghal M., et al. Physical Modeling and Visualization ofSoil Liquefaction under High Confining Stress [J]. Earthquake Engineering andEngineering Vibration.2005,4(1):47.
    [138] Ling H. I., Liu H., Kaliakin V. N., et al. Analyzing dynamic behavior ofgeosynthetic-reinforced soil retaining walls [J]. Journal of EngineeringMechanics,2004,130(8):911.
    [139] Madabhushi S. G., Ghosh B., and Kutter B. L.. Role of input motion in excesspore pressure generation in dynamic centrifuge modeling[J]. International Journalof Physical Modeling in Geotechnics2006(3):25.
    [140] Madabhushi S. G., Houghton N. E., and Haigh S. K.. A new automatic sand pourerfor model preparation at University of Cambridge[C]//International conference onphysical modeling in geotechnics. Hong Kong,2006.
    [141] Madabhushi S. G., and Schofield A. N.. Simulation of Earthquake in aGeotechnical Centrifuge[C].//Proceedings of the International Conference onEarthquake Geotechnical Engineering, ISTokyo’95. Tokyo,1995.
    [142] Malushitsky Y. N.. The centrifugal model testing of waste-heap embankments[M].London: Cambridge University Press,1975.
    [143] Malvick E. J., Kutter B. L., and Boulanger R. W.. Postshaking shear strainlocalization in a centrifuge model of a saturated sand slope[J]. Journal ofGeotechnical and Geoenvironmental Engineering,2008,134(2):164.
    [144] Mason H. B., Bray J. D., Kutter B. L., et al. Earthquake motion selection andcalibration for use in a geotechnical centrifuge[J]. Physical Modeling inGeotechnics,2010(5):361.
    [145] Matsuo O., Tsutsumi T., Okamura M., et al. Development and operation of largecentrifuge at PWRI[C].//Proceedings of the30th Joint Meeting on Wind andSeismic Effects. Gaithersburg, America,1998.158-166.
    [146] Meehan C. L., Boulanger R. W., and Duncan J. M.. Dynamic centrifuge testing ofslickensided shear surfaces[J]. Journal of Geotechnical and GeoenvironmentalEngineering,2008,134(8):1086.
    [147] Mikasa M., Takada N., and Yamada K.. Significance of centrifuge model test insoil mechanics[C].//Proc8th International Conference Soil Mechanic. FoundationEngineering. Moscow,1973,2:273-278.
    [148] Okamura M., Takemura J., and Kimura T.. A study on bearing capacity of shallowfooting on sand[J]. Journal of Geotechnical Engineering,1993,463/III-66:85.
    [149] Okamura M., Takemura J., and Ueno K.. The similarity of centrifugal model testand the technology-advantage and disadvantage[J]. Soil Mechanics andFoundation Engineering,2004,52(10):7.
    [150] Ovesen N.K.. Centrifuge testing applied to bearing capacity problems of footingson sand[J]. Geotechnique.1975,25:394.
    [151] Ovesen N. K.. The use of physical models in design: the scaling lawrelationships[C].//Proc7th European Conference on Soil Mechanics andFoundation Engineering. Brighton,1979.319-323.
    [152] Peiris L. N., Madabhushi S. G., and Schofield A. N.. Centrifuge modeling ofrock-fill embankments on deep loose saturated sand deposits subjected toearthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(9):1364.
    [153] Peiris L. N.. Centrifuge modeling of rock-fill embankments on deep loosesaturated sand deposits[D], England: University of Cambridge,1998.
    [154] Pitilakis D., and Clouteau D.. Equivalent linear substructure approximation ofsoil–foundation–structure interaction model presentation and validation[J].Bulletin of Earthquake Engineering,2010(8):257.
    [155] Rovithis E., Kirtas E., and Pitilakis K. Experimental p-y loops for estimatingseismic soil-pile interaction[J]. Bulletin of Earthquake Engineering,2009(7):719.
    [156] Saleh S., and Madabhushi S. P.. An investigation into the seismic behaviour ofdams using dynamic centrifuge modeling [J]. Bulletin of Earthquake Engineering,2010(8):1479.
    [157] Santamarina J. C., and Goodings D. J.. Centrifuge modeling: a study ofsimilarity[J]. Geotechnical Testing Journal,1989.12(2):163.
    [158] Sharp M. K., Dobry R., and Phillips R.. CPT-Based evaluation of liquefaction andlateral spreading in centrifuge [J]: Journal of Geotechnical and GeoenvironmentalEngineering,2010,136(10):1334.
    [159] Siddiquee M. A., and Tanaka T.. A numerical simulation of bearing capacity offooting on sand[C].//Pro.27th Annual Meeting of Japanese Society Soil Mechanicand Foundation Engineering,1992,2:1413-1416.
    [160] Steedman R. S., Marcuson W. F., and Ledbetter R. H.. Modeling dynamic fieldphenomena with the army centrifuge[J].1998:349.
    [161] Sushi I. K., and Chaudhary J. K.. Effects of initial fabric and shearing directionon cyclic deformation characteristics of sands [J]. Soils and Foundations,2002,42(1):147.
    [162] Takemura J., Takahashi A., and Aoki Y.. Development of horizontal-vertical2Dshaker in a centrifuge [C].//International Conference on Physical Modeling inGeotechnics. Newfoundland: St. Johns,2002.163-168.
    [163] Tani K., and Craig W. H.. Development of centrifuge cone penetration test toevaluate the undrained shear strength profile of a model clay bed [J]. Soils andFoundations,1995,35(2):37.
    [164] Tani K., and Craig W. H.. Shake down physical modeling of huge foundationssubjected to wave loading[C].//Proceeding of39th Symposium of JSSMFE,203-210, Japan,1993.
    [165] Tatsuoka F., Goto S., Tanaka T., et al. Particle size effects on bearing capacity offooting on granular material [C].//Proc.IS-NAGOYA.1997.133-138.
    [166] Tatsuoka F., and Haibara O. Shear resistance between sand and smooth orlubricated surfaces[J]. Soils and Foundations,1985,25(1):89.
    [167] Tatsuoka F., Molemkamp F., Torii T., et al. Behavior of lubrication layers inelement tests[J]. Soils and Foundations,1984,24(1):13.
    [168] Tatsuoka F., Okahara M., Tanaka T., et al. Progressive failure and particle sizeeffect in bearing capacity of a footing on sand[C].//Geotechnical EngineeringCongress, ASCE.1991, II:788-802.
    [169] Taylor R.N.. Geotechnical centrifuge technology [M]. UK: Blackie Academic andProfeesional,1995.
    [170] Van P. A., Elgamal A. W., and Dobry R.. Design and performance of anelectrohydraulic shaker for the RPI centrifuge [C].//Centrifuge94: Proceedings ofthe International Conference on Geotechnical Centrifuge Modeling. Singapore,1994:139-144.
    [171] Van P. A., Laak, K., Adalier, R., et al. Design of RPI‘s large servo-hydrauliccentrifuge shaker [C].//Centrifuge98: Proceedings of the InternationalConference on Geotechnical Centrifuge Modeling. Tokyo,1998.105-110.
    [172] Wang Y. Z., Wang W. M., and Yuan X. M.. Tracking study on international largescale centrifugal shakers of40g-t and key technology [J]. Applied Mechanics andMaterials,2013,256-259:145.
    [173] Wang Y. Z., Wang Y. L., Chen Z. S., et al. Underground space form design oflarge centrifugal shaker system and analysis of machine foundation vibration[J].Applied Mechanics and Materials,2012,238:795.
    [174] Wang Y. Z., Yuan X. M., Huang H. H., et al. Critical technique and design methodof test data acquisition system on a centrifugal shaker[J]. Advanced MaterialsResearch,2012,430-432:1898.
    [175] Wang Y. Z., Yuan X. M., and Sun R.. General layout and key constructiontechnologies of large scale centrifugal shakers [J]. Applied Mechanics andMaterials,2011,90-93:1627.
    [176] Wang Y. Z., Yuan X. M., and Sun R.. Study on the testing auxiliary system of alarge scale centrifugal shaker [J]. Advanced Materials Research,2011,368-373:959.
    [177] Wang Y. Z., Yuan X. M., and Sun R.. Coupling control and analytical model of theshaker on a centrifuge [J]. Advanced Materials Research,2012,418-420:2110.
    [178] Wei Y. C., Lee C. J., Huang W. Y., et al. Application of Hilbert-Huang transformto characterize soil liquefaction and quay wall seismic responses modeled incentrifuge shaking-table tests[J]. Soil Dynamic and Earthquake Engineering,2010(30):614.
    [179] Wilson D. W., Boulanger R. W., Feng X., et al. The NEES geotechnical centrifugeat UC Davis[C].//Proceedings of the13th World Conference on EarthquakeEngineering. Vancouver. Canada: IEEE Press,2004.
    [180] Wilson, D. W., Boulanger, R. W., and Kutter, B. L.. Observed seismic lateralresistance of liquefying sand [J]. Journal of Geotechnical and GeoenvironmentalEngineering,2000,126(10):898.
    [181] Wilson D. W., Boulanger R. W., Kutter B. L., et al. Dynamic centrifuge tests ofpile-supported structures in liquefiable sand[C].//National Seismic Conference onBridges and Highways. Davis,1995.
    [182] Wilson D.W., Kutter B.L., Ilankatharan M., et al. The UC Davis high-speedwireless data acquisition system[C].//Proc.7th International Symposium on FieldMeasurements in Geomechanics. Boston: IEEE Press,2007.1-12.
    [183] Yamaguchi H., Kimura T., and Fuji N.. On the scale effect of footing in densesand[C].//Pro9th International Conference Soil Mechanic Found Engineering,1997.795-798.
    [184] Yu Y. Z., Deng L. J., Sun X., et al. Centrifuge modeling of a dry sandy sloperesponse to earthquake loading[J]. Bulletin of Earthquake Engineering,2008(6):447.
    [185] Zelikson A., Devaure B., and Badel D.. Scale modeling of soil structureinteraction during earthquake using a programmed series of explosions duringcentrifuge[C].//Proc. International Conference on Recent Advances inGeotechnical Earthquake Engineering and Soil Dynamics,1981.361-366.
    [186] Zeng X., and Schofield A. N. Design and performance of an equivalent shearbeam container for earthquake centrifuge modeling [J]. Geotechnique,1996,46(1):83–102.
    [187] Zeng X., Wu J., and Young B. A.. Influence of viscous fluids on properties ofsand [J]. Geotechnical Testing Journal,1998,21(1):45-51.
    [188] Zhao Y., Elshafie M. B., Deeks A. D., et al. Calibration and use of a newautomatic sand pourer [C]//International conference on physical modeling ingeotechnics. Hong Kong,2006.
    [189] Zhou Y. G., Chen Y. M., and Shamoto Y.. Verification of the soil-type specificcorrelation between liquefaction resistance and shear-wave velocity of sand bydynamic centrifuge test [J]. Journal of Geotechnical and GeoenvironmentalEngineering,2010,136(1):165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700