用户名: 密码: 验证码:
硅对水分胁迫下水稻生理生化特性、亚显微结构及相关基因表达的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻在营养生长阶段如遭受水分亏缺,则不利于形成壮苗,也将影响其后的生殖生长。水稻主动吸收并积累的硅元素对于水稻生长发育、抵御胁迫以及高产优质具有独特作用。在水分胁迫下,研究施硅对水稻植株生理生化特性的影响,有助于明确硅对水稻生长发育的调控机制,为水稻抗旱栽培和硅肥推广施用提供理论依据。目前国内外对此方面的相关研究相对较少,因而阐明施硅对水分胁迫下水稻生长的调控机理具有重要意义。本文以秀水11(水稻)和巴西陆稻(旱稻)为试验材料,利用聚乙二醇(PEG-6000)模拟水分胁迫以及土壤干旱处理,采用生理生化指标测定、显微观测和基因表达分析等技术手段,研究施硅对水分胁迫下水稻苗期和拔节期植株生理生化特性、亚显微结构和相关基因表达的影响以及调控机制。所取得的结果如下:
     1.研究了在PEG诱导的水分胁迫下施硅对苗期水稻生理生化特性的影响。PEG胁迫抑制了苗期水稻对硅的吸收。施硅明显减轻了PEG胁迫下水稻叶片萎蔫程度,减缓了叶片和根系干物重、自由水含量、总含水量和相对含水量的下降。施硅对提高水分胁迫下巴西陆稻叶片含水量的效果优于秀水11。施硅提高了PEG胁迫下水稻植株的渗透调节能力,维持了较高的细胞膨压,改善了组织的水分状况。在PEG胁迫下,可溶性糖对水稻叶片渗透调节的贡献率最大,其次为K+;对水稻根系渗透调节能力的贡献率以K+最大,其次是可溶性糖;而脯氨酸和可溶性蛋白质在水稻渗透调节过程中的贡献较小。施硅明显降低了PEG胁迫下苗期秀水11和巴西陆稻的根和叶的相对电渗透率、丙二醛(MDA)含量、超氧阴离子自由基(O2-)产生速率和过氧化氢(H202)含量。施硅降低了PEG胁迫下水稻超氧物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性峰值,但在胁迫后期有利于水稻维持较高的抗氧化酶活性。此外,施硅能明显延缓PEG胁迫下苗期水稻还原型谷胱甘肽(GHS)、抗环血酸(AsA)和类胡萝卜素(Car)含量的下降。施硅也减缓了PEG胁迫下水稻叶片叶绿素含量、光合速率(Pn)、气孔导度(Gs)和蒸腾速率(E)的下降,提高了水分利用率(WuE)。对水稻叶片叶绿素荧光动力学参数分析显示,施硅明显延缓了PEG胁迫下叶绿素最大荧光产量(Fm)、PSⅡ的最大量子产量(Fv/Fm)、稳态荧光产量(Fs)、光下最大荧光产量(Fm)、PS Ⅱ的有效光化学量子产量(Fv'/Fm')、实际光化学量子产量(ΦPSⅡ)、光合电子的相对传递速率(ETR)和光化学淬灭系数(qP)的下降。施硅能明显延缓PEG胁迫后期水稻呼吸速率的下降,尤其对叶片的效果更为显著。在PEG胁迫下,施硅在一定程度上能够提高水稻植株的根系活力并增大根系的活跃吸收面积。施硅还能延缓水分胁迫下苗期水稻根叶中总蛋白质、RNA、DNA以及脱落酸(ABA)的降解。
     2.分析了在土壤干旱胁迫下施硅对拔节期水稻生理生化特性的影响。秀水11的渗透调节能力要稍强于巴西陆稻,因而比巴西陆稻对土壤干旱胁迫的耐受表现更为良好。土壤水分亏缺明显抑制了水稻植株对硅元素的吸收。土壤干旱胁迫下,施硅能够提高水稻植株的渗透调节能力,增加植株干物重和含水量,改善水分状况,减缓细胞膨压的下降。土壤干旱胁迫下,在水稻渗透调节作用中主要的渗透调节物质为K+、可溶性糖以及NO3等,而脯氨酸和可溶性蛋白质等物质的贡献很小。硅的施用可明显降低干旱胁迫下MDA的产生、质膜破裂、O2-的生成速率和H2O2含量,延缓水稻叶片的抗氧化酶活性下降,提高水稻非酶促抗氧化剂的含量。施硅还能抑制干旱胁迫下叶绿素的降解,减缓水稻净光合速率和蒸腾速率的下降,提高植株的水分利用率。土壤干旱胁迫下,施硅提高了水稻根系活力和伤流速率。土壤干旱胁迫下,水稻植株的生理生化特性表现与PEG胁迫处理基本一致。
     3.探讨了在PEG胁迫下施硅对苗期水稻根系和叶片超微结构的影响。单纯PEG处理下,水稻叶绿体明显变形解体且数量下降,大多数叶肉细胞因失水而变形严重;而在硅与PEG共同处理下,叶绿体的形状则较为规则,叶肉细胞变形较轻,部分细胞仍能维持较为正常的形状。在单纯PEG处理下,发生细胞核解体的水稻根系细胞明显多于硅与PEG共同处理。施硅处理下的根系细胞壁均有所加厚,可能是施硅促进了根系木质化。
     4.研究了在PEG胁迫下施硅对苗期水稻涉及硅的转运与积累的蛋白、水孔蛋白以及胚胎发育晚期丰富蛋白(LEA)的基因表达水平的影响。施硅能增强硅结合蛋白和硅转运蛋白(含硅转入和转出两种蛋白)基因的表达,但其表达效果受到PEG的明显抑制。硅结合蛋白和硅转运蛋白基因在施硅初期能够大量表达,而随着处理进行其表达量呈逐渐下降趋势。秀水11植株中硅结合蛋白和硅转运蛋白的mRNA表达相对丰度与相对应器官的总硅含量呈显著正相关。施硅强化了PEG胁迫对水稻根系质膜上水孔蛋白的表达抑制。与对照相比,在PEG胁迫下,水稻LEA基因表达丰度显著增加,但施硅明显降低了胁迫下LEA基因的表达量。秀水11叶片中LEA蛋白基因表达量与叶片中ABA含量呈极显著正相关,与丙二醛含量、相对含水量和细胞膨压皆呈显著负相关。
     总之,在水分胁迫下,施硅能够增加植株含水量、改善组织水分状况,从而增强了植株抗干旱胁迫的能力,表现为光合作用等生理特性的改善。而抗干旱胁迫的能力的增强则主要基于施硅提高了水稻植株的渗透调节能力、质膜稳定性和根系活力等因素。
During the vegetative growth phase of rice, it is not beneficial to the formation of strong seedlings and the subsequent reproductive growth, if rice is subjected to water deficit. Silicon, which is actively absorbed and accumulated by rice, plays a unique role in the growth and development, stress tolerance, and formation of high yield and good quality of rice. Under water stress condition, the study on the effect of silicon application on rice seedlings at vegetative growth stage (seedling and jointing stage) could contribute to the understanding of regulatory mechanism of rice growth and development, and provide theoretical support for rice cultivation under drought stress and the promotion of silicon application. However, the relevant research is very lacking. Therefore, it is very important to study the regulatory mechanism of silicon on the rice growth under water stress.
     In this paper, Xiushui11(lowland rice) and Brazil upland rice (upland rice) were used as experimental materials. Water stress environment was induced by polyethylene glycol (PEG-6000) or soil drought by withholding irrigation. The purpose of this study was to study the influence of silicon on the physiological and biochemical characteristics by means of determination of physiological and biochemical indexes, microscopic observation and gene expression analysis techniques. The main results are as follows:
     1. Effects of silicon on the physiological and biochemical characteristics of rice at seedling stage under PEG-induced water stress
     PEG stress inhibited the absorption of silicon of rice seedlings. Application of silicon significantly alleviated leaf wilting, and improved the dry weight, free water content, total moisture content and relative water content in the roots and leaves of rice under PEG stress. The effect of improving water content in Brazilian upland rice was better than that in Xiushui11. Silicon application enhanced the osmotic adjustment ability, maintained higher cell turgor pressure, and improved the water status of rice. Under PEG stress, the contribution of soluble sugar to the osmotic adjustment in the leaves was the largest among the osmolytes in the cells, followed by K+. In the roots, K+was the largest contributor to the osmotic adjustment, followed by soluble sugar; while proline and soluble protein played a minor role to the osmotic adjustment. Application of silicon significantly reduced the relative electrolyte permeability, malondialdehyde (MDA) content, superoxide radical anion (O2-) generation rate and hydrogen peroxide (H2O2) content of rice under PEG stress. Silicon decreased the activity peaks of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX); however, it was also advantageous to maintaining higher antioxidant enzyme activities at late stage of PEG treatment. In addition, silicon could significantly retard the decline of reduced glutathione (GHS), ascorbic acid (AsA) and carotenoid (Car) contents of rice seedlings under PEG stress. Application of silicon could alleviate the decline in leaf chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate, improve water use efficiency in PEG-stressed rice. Analysis of the chlorophyll fluorescence kinetics parameters in the leaves showed that silicon application significantly retarded dark-adapted maximum fluorescence yield (Fm), dark-adapted PS Ⅱ maximum quantum yield (Fv/Fm), steady-state fluorescence yield (Fs), light-adapted maximum fluorescence yield (Fm'), light-adapted PS Ⅱ maximum quantum yield (Fv'/Fm'), PS Ⅱ actual photochemical efficiency (ΦPS Ⅱ), photosynthetic electron transport rate (ETR) and photochemical quenching coefficient (qP) under PEG stress. Silicon could slow down the decline of respiration rate under PEG stress, and the retarding effect was more obvious in leaves than that in roots. Under PEG stress, silicon could enhance the vigor and the active absorbing area of roots. The application of silicon could retard the degradation of total protein, RNA, DNA and abscisic acid (ABA) in rice seedlings.
     2. Effects of silicon on the physiological and biochemical characteristics of rice at jointing stage under soil drought stress
     The osmotic adjustment capacity of Xiushui11was slightly stronger than Brazilian upland rice, and therefore the tolerance performance to drought stress of Xiushui11was better than Brazilian upland rice. Soil water deficit significantly inhibited the absorption of silicon by rice seedlings. Under drought stress, silicon could enhance the osmotic adjustment ability, increase dry weight and water content, slow down the drop of cell turgor pressure of rice seedlings. Under drought stress, K+, NO3-and soluble sugar were the main osmolytes in osmotic adjustment; however, proline and soluble proteins contributed little to osmotic adjustment. The application of silicon could obviously decrease the formation of MDA and rupture of plasma membrane under drought stress, reduce the production rate of O2-and H2O2, slow down the decline of antioxidant enzymes activities in rice leaves, and improve non-enzymatic antioxidant contents under drought stress. Silicon could inhibit the degradation of chlorophyll, slow down the drop of the net photosynthetic rate and transpiration rate, increase water use efficiency in rice leaves under water deficit stress. Under drought stress, silicon application enhanced the vigor and the water flow rate of rice root systems. The physiological and biochemical characteristics of rice under soil drought stress were consistent with PEG stress treatment.
     3. Effects of silicon on the ultrastructure of rice seedlings at seedling stage under PEG stress
     Under PEG stress, rice chloroplasts were obvious deformed and disintegrated, and most of mesophyll cells were deformed seriously because of dehydration. However, under PEG treatment supplied with silicon, the shape of many chloroplasts was more regular, and the deformation of most mesophyll cells was less serious than the treatment which was treated with PEG only, In-Si/+PEG treatment, nuclear disintegration occurred more frequently in root cells than that in+Si/+PEG treatment. The root cell wall was thickened after the application of silicon, and perhaps this thickening effect was related with enhanced root lignification by silicon application.
     4. Effects of silicon on the differential gene expression of the silicon-binding proteins, silicon transporter proteins, aquaporins and late embryogenesis-abundant proteins of rice seedlings at seedling stage under PEG stress
     The gene expression level of the silicon-binding proteins and silicon transporter proteins could be enhanced by the application of silicon, but their expression levels were significantly inhibited by PEG. The expression levels were higher at the initial stage after silicon application, however, with stress progressing, the expression decreased gradually. The mRNA expression relative abundance of the silicon-binding proteins and silicon transporter proteins of Xiushui11were significantly positively correlated with the total silicon content in corresponding organs (leaves and roots). Application of silicon further strengthened the inhibition of gene expression of rice aquaporins under PEG treatment. Under PEG stress, compared with the control, the gene expression relative abundance of late embryogenesis-abundant proteins (LEA) was significantly increased, but it was significantly reduced by silicon application. The gene expression level of LEA protein was extremely significantly positively correlated with the ABA content, significantly negatively correlated with the MDA content, relative water content and cell turgor pressure in leaves of Xiushui11.
     In conclusion, under water-deficit stress, silicon application could increase water content and improve organizational water status, thereby enhancing the drought-resistance ability of plant, and manifested as improvement of photosynthesis and other physiological characters. The enhanced drought-resistance ability might be mainly based on the improved osmotic adjustment ability, plasma membrane stability and root activity in the stressed rice after treated with silicon.
引文
柏彦超,倪梅娟,王娟娟,等.2007.水分胁迫对旱作水稻产量与养分吸收的影响.农业工程学报,23(6):101-104.
    蔡昆争,吴学祝,骆世明.2008a.抽穗期不同程度水分胁迫对水稻产量和根叶渗透调节物质的影响.生态学报,28(12):6148-6158.
    蔡昆争,吴学祝,骆世明.2008b.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响.植物生态学报,32(2):491-500.
    陈贵,周毅,郭世伟,等.2007.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究.中国农业科学,40(10):2162-2168.
    陈静,万佳,高晓玲,等.2006.水稻抗旱生理及抗旱相关基因的研究进展.中国农学通报,22(2):56-60.
    陈军,戴俊英.1994.水分胁迫下叶片光合作用、膜脂过氧化作用及超微结构变化的关系.玉米科学,2(4):36-40.
    陈晓远,凌木生,高志红.2006.水分胁迫对水稻叶片可溶性糖和游离脯氨酸含量的影响.河南农业科学,12:26-31.
    程旺大,赵国平,张国平,等.2002.水稻和陆稻籽粒灌浆特性的比较.中国水稻科学,16(4):335-340.
    戴伟民,张克勤,段彬伍,等.2005.测定水稻硅含量的一种简易方法.中国水稻科学,19(5):460-426.
    邓文星,张映.2007.实时荧光定量PCR技术综述.生物技术通报,(5):92-95,103.
    高臣,刘俊渤,常海波,等.2011.硅对水稻叶片光合特性和超微结构的影响.吉林农业大学学报,33(1):1-4.
    高玉凤,焦峰,沈巧梅.2009.水稻硅营养与硅肥应用效果研究进展.中国农学通报,25(16):156-160.
    郭华军.2010.水分胁迫过程中的渗透调节物质及其研究进展.安徽农业科学,38(15):7750-7753,7760.
    韩光,冯海艳,张喜林,等.1998.硅对水稻茎叶解剖结构的影响.黑龙江农业科学,(4):47.
    韩瑞宏,张亚光,田华,等.2008.干旱胁迫下紫花苜蓿叶片几种内源激素的变化.华北农学报,23(3):81-84.
    侯福林.2004.植物生理学实验教程.北京:科学出版社.
    胡瑞芝,方水娇,陈桂秋.2001.硅对杂交水稻生理指标及产量的影响.湖南农业大学学报(自然科学版),27(5):335-338.
    黄秋婵,韦友欢,韦良兴.2008.硅对水稻生长的影响及其增产机理研究进展.安徽农业科学,36(3):90-91.
    黄文江,王纪华,赵春江,等.2002.水稻旱作条件下渗透调节物质和激素含量的研究.干旱地区农业研究,20(1):61-64,80.
    黄益宗,张文强,招礼军,等.2009.Si对盐胁迫下水稻根系活力、丙二醛和营养元素含量的影响.生态毒理学报,4(6):860-866.
    季飞,付强,王克全,等.2007.不同水分条件对水稻需水量及产量影响.灌溉排水学报,26(5):82-85.
    景蕊莲,昌小平.2003.用渗透胁迫鉴定小麦种子萌发期抗旱性的方法分析.植物遗传资源学报,4(4):292-296.
    匡勇,夏石头.2007.干旱对水稻生长发育的影响及提高水稻抗旱性的途径.北京农业,(36):8-14.
    李春平,2003,水、陆稻主要形态、生理性状抗旱分析及其根系性状的QTL定位.乌鲁木齐:新疆农业大学硕士学位论文.
    李春香,王玮,李德全.2001.长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响.西北植物学报,21(5):924-930.
    李德福,李金才,魏风珍.2005.拔节长穗期水分胁迫对旱作水稻若干生理特性和经济产量的影响.安徽农业科学,33(7):1166-1167,116.
    李德全,邹琦,程炳嵩.1991.抗旱性不同的冬小麦品种渗透调节能力的研究.山东农业大学学报,22(4):376-338.
    李发林.1997.硅肥的功效及施用技术.云南农业,(9):16.
    李莉,徐慧妮,李昆志.2010.水稻硅转运蛋白研究进展.生物技术通报,(2):11-13.
    李玉影,刘颖,刘双全.2009.黑龙江省水稻硅肥效果研究.黑龙江农业科学,2009(3):60-63.
    李忠光,龚明.2005.植物中超氧阴离子自由基测定方法的改进.云南植物研究,27(2):211-216.
    李自超,刘文欣,赵笃乐.2001.PEG胁迫下水、陆稻幼苗生长势比较研究.中国农业大学学报,6(3):16-20.
    黎裕.1994.植物的渗透调节与其它生理过程的关系及其在作物改良中的应用.植物生理学通讯,30(5):377-385.
    连红莉.2006.响应水分胁迫的稻水孔蛋白.北京:中国科学院研究生院博士学位论文.
    梁永超,张永春.1993.植物的硅素营养.土壤学进展,21(3):7-14.
    梁永超,丁瑞兴,刘谦.1999.硅肥对大麦耐盐性的影响及其机制.中国农业科学,32(6):75-83.
    刘丹,陈国祥,魏晓东.等.2011.干旱对银杏生理生化特性及叶绿体超微结构的影响.南京师大学报(自然科学版),32(2):64-69.
    刘慧霞,郭正刚,郭兴华,等.2009.不同土壤水分条件下硅对紫花苜蓿水分利用效率及产量构成要素的影响.生态学报,29(6):3075-3080.
    刘向莉,高丽红,刘明池.2005.植物组织中自由水和束缚水含量测定方法的改进.中国蔬菜,(4):9-11.
    刘永霞,徐锡增.2007.硅对盐胁迫下金丝小枣叶片超微结构的影响.林业科技开发,21(4):39-42.
    马延臣,陈荣军,余蓉蓉,等.2010a.在PEG模拟干旱下水稻根系几个疑似PEG毒害响应转录本研究.分子植物育种,8(6):1090-1094.
    马廷臣,余蓉蓉,陈荣军,等.2010b.PEG-6000模拟干旱对水稻苗期根系形态和部分生理指标影响的研究.中国农学通报,26(8):149-156.
    潘雅姣,傅彬英,王迪,等.2009.水稻干旱胁迫诱导DNA甲基化时空变化特征分析.中国农业科学,42(9):3009-3018.
    裴曾飞.2010.硅对干旱胁迫下小麦幼苗的生理生化作用机理研究.杭州:浙江大学硕士学位论文.
    钱琼秋,宰文姗,何勇,等.2006.外源硅和辅酶Q10对盐胁迫下黄瓜根系线粒体的保护作用.中国农业科学,39(6):1208-1214.
    钱晓晴,沈其荣,徐勇,等.2003.不同水分管理方式下水稻的水分利用效率与产量.应用生态学报,14(3):399-404.
    钱晓晴,顾竹英,周明耀,等.2007.水分供应和氮素形态对水稻一些水分生理特征的影响.作物学报,33(12):2016-2020.
    瞿华香,张玉烛,屠乃美,等.2008.旱作水稻研究现状与展望.中国农业科技导报.10(2):34-42.
    曲涛,南志标.2000.作物和牧草对干旱胁迫的响应及机理研究进展.草业学报,17(2):126-135.
    瞿廷广,施正连,丁江妹.2003.硅肥对直播水稻的抗逆性和产量的影响.土壤肥料,(5):26-28.
    商奇.2009.PEG6000模拟干旱胁迫对水稻蛋白质组的影响及差异蛋白功能分析.扬州:扬州大学硕士学位论文.
    史兰波,李云荫,郝美璞.1988.水分胁迫对不同抗旱性冬小麦幼苗叶绿体超显微结构及其生理的影响.电子显微学报,(3):4.
    史新慧.2005.水稻硅结合蛋白的鉴定及功能研究.北京:中国农业大学硕士学位论文
    邵玺文,张瑞珍,齐春艳,等.2004.拔节孕穗期水分协迫对水稻生长发育及产量的影响.吉林农业大学学报,26(3):237-241.
    邵艳军,山仑,李广敏.2006.干旱胁迫与复水条件下高梁、玉米苗期渗透调节及抗氧化比较研究.中国生态农业学报,14(1):68-70.
    孙骏威,杨勇,蒋德安.2004.水分亏缺下水稻的光化学和抗氧化应答.浙江大学学报,30;278-284.
    孙娜,封雷,王涛,等.2009.干旱胁迫对水稻形态及光合特性的影响.安徽农业科学,37(16):7370-7371,7374.
    孙毅,高玉山,任军,等.2002.硅肥的抗旱增产作用.国土与自然资源研究,(1):48-49.
    唐连顺,李广敏.1994.水分胁迫下玉米叶肉细胞超微结构的变化及其膜脂过氧化伤害的关系.植物学报,36(增刊):43-49.
    解文孝,张文忠,史鸿儒,等.2007.不同时期土壤水分胁迫对水稻产量及食味品质影响的研究.辽宁农业科学,(2):30-33.
    王宝山.2003.植物生理学.北京:科学出版社.
    王贺正,马均,李旭毅,等.2007.水分胁迫对水稻结实期活性氧产生和保护系统的影响.中国农业科学,40(7):1379-1387.
    王洪春.1990.干旱诱导蛋白的研究进展.华北农业学报,(5):8-12.
    王平荣,邓晓建,高晓玲,等.2004.干旱对稻米品质的影响研究.中国农学通报,20(6):.281-284,324.
    王生银,李泽西,白贺兰,等.2008.硅肥提高草地早熟禾抗旱性的效应及机制.草业科学,25(2):116-120.
    王玮,李德全,李春香,等.2000.水分胁迫对抗旱性不同的玉米品种根、叶渗透调节能力及渗透调节物质的影响.华北农学报,15(S1):8-15.
    王赞,李源,高洪文,等.2008.干旱对鸭茅光合特性及叶绿体超微结构的影响.华北农学报,23(3):100-105.
    王泽杰,陈永军,谢崇华,杨国涛.2008.不同生育期水分胁迫对杂交水稻光合及产量性状的影响.干旱地区农业研究,26(6):138.142,158.
    王志伟,孙涌栋,李涵,等.2010.硅酸钠对黄瓜幼苗叶片干旱胁迫的缓解效应.中国瓜菜,23(6):8-10.
    魏爱丽,王志敏,翟志席,等.2003.土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响.中国 农业科学,36(5):508-512.
    韦存虚,王建波.2006.Na2CO3对星星草叶肉细胞超微结构的的影响.生态学报,26(1):900-907.
    吴季荣,戴伟民,张克勤,等.2007.应用重组自交系群体检测水稻茎秆和剑叶硅含量QTL.中国农业科学,40(1):13-18.
    吴季荣,龚俊义.2010.水稻硅营养的研究进展.中国稻米,6(3):5-8.
    吴青松.2006.水稻幼苗硅素吸收能力的遗传分析.南京:南京农业大学博士学位论文.
    吴学祝,蔡昆争,骆世明.2008.抽穗期土壤干旱对水稻根系和叶片生理特性的影响.中国农学通报,24(7):202-207
    武玉叶,李德全.2001.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响.华北农学报,6(2):87-93.
    徐呈祥,刘友良,马艳萍.2007.硅对盐胁迫下库拉索芦荟叶绿素荧光参数和叶绿体超微结构的影响.园艺学报,34(4):979-984.
    徐凯,郭延平,张上隆.2005.不同光质对草莓叶片光合作用和叶绿素荧光的影响.中国农业科学,38(2):369-375.
    许琰,丛枯,魏强.2007.实时荧光定量PCR的研究进展及应用.中国实验动物学报,15(2):155-158.
    杨春杰,张学昆,邹崇顺,等.2007.PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响.中国油料作物学报,29(4):425-430.
    杨建昌,刘凯,张慎凤,等.2008.水稻减数分裂期颖花中激素对水分胁迫的响应.作物学报,34(1):111-118.
    杨婕,杨晓光.2003.旱稻耗水特征及水分利用效率研究进展.中国生态农业学报,11(4):95-98.
    虞国平,朱鸿英,2009.我国水稻生产现状及发展对策研究.现代农业科技,(6):122-126,130.
    俞嘉宁,张林生,高俊凤.2002.水分胁迫对小麦幼苗及悬浮培养细胞中诱导蛋白表达的影响.西北植物学报,22(4):865-870.
    余舜武.刘鸿艳.罗利军.2007.利用不同实时定量PCR方法分析相对基因表达差异.作物学报,33(7):1214-1218.
    曾凡荣.2010.水稻铬毒害和耐性的生理与分子机理研究.杭州:浙江大学博士学位论文.
    张宏一,朱志华.2004.植物干旱诱导蛋白研究进展.植物遗传资源学报,5(3):268-270.
    张生武,陈新国,任丽.2010.水稻需水规律研究.吉林水利,336(5):4-10.
    张荣萍,马均,王贺正,等.2008.不同灌水方式对水稻结实期一些生理性状和产量的影响.作物学报,34(3):486-495.
    张卫星,朱德峰.2007.水分亏缺对水稻生长发育、产量和稻米品质影响的相关研究.中国稻米(5):1-4.
    张宪政.1992.作物生理研究法.北京:农业出版社.
    张玉屏,朱德峰,林贤青,等.2005.不同时期水分胁迫对水稻生长特性和产量形成的影响.干旱地区农业研究,23(2):48-53.
    张志良.1990.植物生理学实验指导.北京:高等教育出版社.
    张志良,瞿伟菁,李小方.2009.植物生理学实验指导(第4版).北京:高等教育出版社.
    赵九洲,刘绍洪.2005.渗透调节机制与植物的抗旱性研究.江西林业科技,(3):28-30.
    郑秋玲.2004.不同生育阶段干旱胁迫下的水稻产量效应.河北农业科学,8(3):83-85.
    朱德峰,程式华,张玉屏,等.2010.全球水稻生产现状与制约因素分析.中国农业科学,43(3):474-479.
    朱杭申,黄丕生.1994.土壤水分胁迫与水稻活性氧代谢.南京农业大学学报,17(2):7-11.
    朱小平,王义炳,李家全.1995.水稻硅素营养特性的研究.土壤通报,26:232-233.
    朱维琴,吴良欢,陶勤南.2006.干旱逆境对不同品种水稻生长、渗透调节物质含量及保护酶活性的影响.科技通报,22(2):176-181.
    邹琦.2001.植物生理学实验指导.北京:中国农业出版社.
    Agarie S, Uchida H, Agata W, et al.1998a. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod. Sci.,1:89-95.
    Agarie S, Hanaoka N, Ueno O, et al.1998b. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oiyza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci., 1:96-103.
    Ahmed M, Fayyaz-ul-Hassen, Khurshid Y.2011. Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agr. Water Manage.,98:1808-1812.
    Apel K, Hirt H.2004. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.,55:373-399.
    Asada K.2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol.,141:391-396.
    Bates LS, Waldren RP, Teare IC.1973. Rapid determination of proline for water stress studies. Plant Soil,39:205-207.
    Boo YC, Jung J.1999. Water deficit-induced oxidative stress and antioxidative defenses in rice plants. J. Plant Physiol.,155:255-261.
    Boonjung H, Fukai S.2000. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions.2. Phenology, biomass production and yield. Field Crops Res., 43:47-55.
    Bouman BAM, Tuong TP.2001. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manage.,49:11-30.
    Bouman BAM, Humphreys E, Tuong TP, et al.2007. Rice and water. Adv. Argon.,92:187-237.
    Bradford, MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem.,72:248-254.
    Bray EA.1993. Molecular responses to water deficit. Plant Physiol.,103:1035-1040.
    Bray EA.1997. Plant responses to water deficit. Trends Plant Sci.,2:48-54.
    Cabuslay G, Ito O, Alejar A.2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci.,163:815-827.
    Chen W, Yao Z, Cai K, et al.2010. Silicon alleviates drought stress of rice plants by improving plant water status. Photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res., 142(1):67-76.
    Chen W, Yao Z, Cai K, et al.2010. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res., 142(1):67-76.
    Crusciol CAC, Pulz AL, Lemos LB, et al.2009. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci.49:949-954.
    Dai WM, Zhang KQ, Wu JR, et al.2008. Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Euphytica, 160:317-324.
    Dalton DA.1995. Antioxidant defenses of plant and fungi, In:Ahmad S. (ed.), Oxidative Stress and Antioxidant Defenses in Biology. Chapman and Hall, New York, USA:298-335.
    Dat J, Vandenabeele S, Vranova E, et al.2000. Dual action for the active oxygen species during plant stress responses. Cell. Mol. Life Sci.,57:779-795.
    Dhindsa RS, Plumb-Dhindsa P, Thorpe TA.1981. Leaf senescence:Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot,32:93-101.
    Epstein E..1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol.,50:641-664.
    Farooq M, Wahid A, Kobayashi N, et al.2009. Plant drought stress:effects, mechanisms and management. Agron. Sustain. Dev.,1:153-188.
    Fan XL, Zhang JP, Wu P.2002. Water and nitrogen use efficiency of lowland rice in ground covering rice production system in south China. J. Plant Nutr.,25(9):1855-1862.
    Fauteux F, Remus-Borel W, Menzies JG, et al.2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett.,249:1-6.
    Fleck AT, Nye T, Repenning C, et al..2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J. Exp. Bot.,62:2001-2011.
    Gong HJ, Chen KM, Chen GC, et al.2003. Effects of silicon on growth of wheat under drought. J. Plant Nutr.,26:1055-1063.
    Gong HJ, Randall DP, Flowers TJ.2006. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ.,29:1970-1979.
    Gong H, Zhu X, Chen K, et al.2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci.,169:313-321.
    Gong HJ, Chen KM, Zhao ZG, et al.2008. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plant.,52:592-596.
    Gunes A, Pilbeam DJ, Inal A, et al.2008. Influence of silicon on sunflower cultivars under drought stress, I:Growth, antioxidant mechanisms, and lipid peroxidation. Commun. Soil Sci. Plant Anal.39:1885-1903.
    Hattori T, Inanaga S, Araki H, et al.2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant,4:459-466.
    Hoekstra AY, Chapagain AK.2007. Water footprints of nations:Water use by people as a function of their consumption pattern. Water Resour. Manag.,21:35-48.
    Huang DQ, Wu WR,Abrams SR, et al.2008. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J. Exp. Bot.,59:2991-3007.
    Idris M, Hossain MM, Choudhury FA.1975. The effect of silicon on lodging of rice in presence of added nitrogen. Plant Soil,43:691-695.
    Ingram J. Bartels D.1996. The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol.,47:377-403.
    Jang JY, Kim DG, Kim YO, et al.2004. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol. Biol., 54:713-725.
    Kosova K, Vitamvas P, Prasil IT et al.2011. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J. Proteomics., 74:1301-1322.
    Krause GH, Weis E.1991. Chlorophyll fluorescence and photosynthesis:The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol.,42:313-349.
    Kim SG, Kim KW, Park EW, et al.2002. Silicon-induced cell wall fortification of rice leaves:a possible cellular mechanism of enhanced host resistance to blast. Phytopathology,92, 1095-1103.
    Lee SK, Sohn EY, Hamayun M, et al.2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest Systems,80:333-340.
    Li YH, Cui YL.1996. Real-time forecasting of irrigation water requirements of paddy fields. Agric. Water Manage.,31(3):185-193.
    Liang, YC, Hua HX, Zhu YG, et al.2006. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol.,172:63-72.
    Liang YC, Sun WC, Zhu YG, et al.2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:A review. Environ. Pollut,147:422-428.
    Lichtenthaler HK, Rinderle U.1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem.,19:29-85.
    Liu D, Pei ZF, Naeem MS, et al.2011.5-aminolevulinic acid activates antioxidative defence system and seedling growth in Brassica napus L. under water-deficit stress. J. Agron. Crop Sci., 197:284-295.
    Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods,25:402-408.
    Lux A, Luxova M, Hattori T, et al.2002. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol. Plant,115:87-92.
    Ma C, Li Q, Gao Y, et al.2004. Effects of silicon application on drought resistance of cucumber plants. Soil Sci. Plant Nutr.,50:623-632.
    Ma JF, Nishimura K, Takahashi E.1989. Effect of silicon on the growth of rice plant at different growth stages. Soil Sci. Plant Nutr.,35:347-356.
    Ma JF, Goto S, Tamai K, et al.2001. Role of root hairs and lateral roots in silicon uptake by rice. Plant PhysioL,127:1773-1780.
    Ma JF, Takahashi E.2002. Soil, fertilizer and plant silicon research in Japan. Amsterdam:Elsevier Science.73-106.
    Ma JF, Mitani N, Nagao S, et al.2004. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant PhysioL,136:3284-3289.
    Ma JF.2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr.,50:11-18.
    Ma JF, Yamaji N.2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci.,11: 392-397.
    Ma JF, Yamaji N, Mitani N, et al.2007. An efflux transporter of silicon in rice. Nature,448: 209-212.
    Ma JF, Yamaji N.2008. Functions and transport of silicon in plants. Cell Mol. Life Sci.,65(19): 3049-3057.
    Matoh T, Kairusmee P, Takahashi E.1986. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr.,32:295-304.
    Maxwell K, Johnson GN.2000. Chlorophyll fluorescence:a practical guide. J. Exp. Bot., 51:659-668.
    Meloni DA, Oliva MA, Ruiz HA, et al.2001. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr.24:599-612.
    Miller G, Suzuki N, Ciftci-Yilmaz S, et al.2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ.,33:453-467.
    Ming DF, Pei ZF, Naeem MS, et al.2012. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J. Agron. Crop Sci.,198(1):14-26.
    Mitani N, Ma JF, Iwashita T.2005. Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell PhysioL,46:279-283.
    Moore S, Stein W H.1948. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem.,176:367-388.
    Morgan JM.1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant PhysioL,35: 299-319.
    Munns R.1988. Why measure osmotic adjustment? Aust. J. Plam PhysioL,15:717-726.
    Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell Physiol.,22:867-880.
    Nooden LD, Guiamet J, John I.1997. Senescence mechanisms. Physiol. Plant,101:746-753.
    O'Toole JC, Baldia EP.1982. Water deficits and mineral uptake in rice. Crop Sci.,22:1144-1150.
    Parry DW, Hodson MJ, Sangster AG.1984. Some recent advances in studies of silicon in higher plants. Philosophical Transactions of the Royal Society of London Series B,304:537-549.
    Patterson BD, MacRae EA, Ferguson IB.1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal. Biochem.,139:487-492.
    Pei ZF, Ming DF, Liu D, et al.2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J. Plant Growth Regul., 29:106-115.
    Pfaffl MW.2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res.,29:2002-2007.
    Pierce M, Raschke K.1980. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta,148:174-182.
    Raven, JA.1983. The transport and function of silicon in plants. Biol. Rev.,58:179-207.
    Richmond KE, Sussman M.2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol.,6:268-272.
    Rodrigues FA, Datnoff LE, Korndorfer GH, et al.2001. Effect of silicon and host resistance on sheath blight development in rice. Plant Dis.,85:827-832.
    Rodrigues FA, Vale FXR, Korndorfer GH, et al.2003. Influence of silicon on sheath blight of rice in Brazil. Crop Prot.,22:23-29.
    Rodrigues FA, McNally DJ, Datnoff LE, et al.2004. Silicon enhances the accumulation of diterpenoid phytoalexins in rice:a potential mechanism for blast resistance. Phytopathology,94: 177-183.
    Schreiber U, Bilger W, Neubauer C.1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis (eds EP Schulze & MM Caldwell), Springer, Berlin,49-70.
    Seebold KW, Kucharek TA, Datnoff LE, et al.2001. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology,91:63-69.
    Shen X, Zhou Y, Duan L, et al.2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol.,167:1248-1252.
    Shinozaki K, Yamaguchi-Shinozaki K.1997. Gene expression and signal transduction in water-stress response. Plant Physiol.,115:327-334.
    Sonobe K, Hattori T, An P, et al.2011. Effect of silicon application on sorghum root responses to water stress. J. Plant Nutr.,34:71-82
    Tanguilig VC, Yambao EB, O'Toole JC et al.1987. Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean. Plant Soil, 103:155-168.
    Tezara W, Mitchell VJ, Driscoll SD, et al.1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature,401:914-917.
    Turner NC, Begg JE.1981. Plant water relationships and adaptation to stress. Plant Soil,58:97-131.
    Tuteja N.2007. Abscisic acid and abiotic stress signaling. Plant Signaling Behav.,2:135-138.
    Van Kooten O, Snel JFH.1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res.,25:147-150.
    Vanella A, Di Giacomo C, Sorrenti V, et al.1993. Free radical scavenger depletion in post-ischemic reperfusion brain damage. Neurochem. Res.,18:1337-1340.
    Verslues PE, Ober ES, Sharp RE.1998. Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol.,116:1403-1412.
    Vicari M, Bazely DR.1993. Do grasses fight back? The case for antiherbivore defenses. Trends Ecol. Evol.,8:137-141.
    White AJ, Critchley C.1999. Rapid light curves:A new fluorescence method to assess the state of photosynthetic apparatus. Photosynth. Res.,59:63-72.
    Yamaji N. Ma JF.2007. Spatial distribution and temporal variation of the rice silicon transporter Lsil. Plant Physiol.,143:1306-1313.
    Yamaji N, Mitani N, Ma JF.2008. A transporter regulating silicon distribution in rice shoots. Plant Cell,20:1381-1389.
    Yang JC, Zhang JH, Wang ZQ, et al.2001. Water deficit-induced senescence and its relationship to remobilization of pre-stored carbon in wheat during grain filling. Agron. J.,93:196-206.
    Yang JC, Zhang JH, Wang ZQ, et al.2002. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta,215:645-652.
    Yeo AR, Flowers SA, Rao G, et al.1999. Silicon reduces sodium uptake in rice (Oiyza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ.,22:559-565.
    Yoshida S, Forno D, Cock JH, et al.1976. Laboratory Manual for Physiological Studies of Rice (3rd edition). Manila Philippines:The International Rice Research Institute,62-63.
    Yu JT, Bouwer EJ, Coelhan M.2006. Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agric. Water Manage. 86:72-80.
    Zhang J, Davies WJ.1989. Abscisic acid produced in dehydration root may enable the plant to measure the water status of soil. Plant Cell Environ.,12:73-81.
    Zhang WF, Zhang F, Raziuddin R, et al.2008. Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J. Plant Growth Regul.,27:159-169.
    Zhou WJ, Leul M.1998. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul., 26:41-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700