用户名: 密码: 验证码:
水稻C2H2型锌指蛋白ZFP182和ZFP36在ABA诱导的抗氧化防护中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物特别是作物对非生物逆境(干旱、冷害、高盐环境等)的适应性对于作物的产量和品质有着非常重要的影响,干旱是植物逆境最普遍的形式,在许多地区是农业发展的瓶颈。植物响应干旱胁迫的一种重要反应是积累植物激素脱落酸(abscisic acid,ABA)。水分胁迫下所积累的ABA能增加植物体内ROS的产生和上调抗氧化防护系统的活性,增强植物对水分胁迫的耐性。而在这一信号网络中,一些转录因子如MYB、WRKY、热激因子和多种类型锌指蛋白的含量增加,它们共同参与维持ROS的稳定含量。因而认为这些转录因子家族在植物对逆境的应答过程中起着非常重要的调控作用。但锌指蛋白在ABA诱导的抗氧化防护中的作用机理,尤其与H2O2、MAPK、 NADPH氧化酶等ABA信号途径中的主要组分的关系并不清楚。
     本研究从水稻中分离参与ABA、H2O2应答反应的锌指蛋白转录因子着手,通过原生质体瞬时表达和转基因技术,使目标转录因子基因过表达或者沉默,通过对比转基因与野生型植株抗氧化防护酶、NADPH氧化酶以及MAPK的基因表达及酶活,深入探讨其在水稻耐逆性中的作用机理,对提高水稻抗逆性的遗传育种改良有重要的理论指导意义。主要研究结果如下:
     利用生物信息学和RT-PCR的方法从水稻幼苗的叶片中分离出两个锌指蛋白基因ZFP182和ZFP36,分别与拟南芥ZAT12和ZAT10有较高的同源性。其编码产物都含有两个典型的C2H2型锌指结构,ZFP182编码产物为170个氨基酸残基,分子量为18.215kDa,而ZFP36编码产物为220个氨基酸,分子量为22.804kDa。通过亚细胞定位实验发现,这两个锌指蛋白基因均定位于细胞核中。荧光定量RT-PCR分析表明:ABA和H2O2处理后,水稻叶片中ZFP182和ZFP36基因转录水平与对照组相比,出现双阶段快速、瞬时的上调。H2O2清除剂(DMTU)的预处理能有效抑制ABA诱导的ZFP182和ZFP36基因的转录。NO也能上调ZFP182和ZFP36基因的表达;这些结果提示,ABA、H2O2和NO均能诱导ZFP182和ZFP36基因的转录,而且ABA诱导水稻锌指蛋白基因表达增强是通过ABA诱导产生的内源H2O2来起作用的。
     为了进一步研究ZFP182和ZFP36的功能,本研究分别构建了ZFP182和ZFP36基因的过量表达(sense)、反义抑制(antisense)和RNA干涉(sense/antisense, dsRNA)的植物表达载体,通过农杆菌介导法转化水稻愈伤组织,成功获得ZFP182的RNA干扰植株;ZFP36的过量表达和反义抑制以及RNA干扰的植株。分别以转基因水稻F1代和野生型水稻为材料,外源ABA处理可以提高细胞内SOD和APX的活性,与野生型相比,RNA干扰及反义抑制的转基因植株的SOD和APX的活性显著降低。通过原生质体瞬时表达体系,我们也发现过表达ZFP182和ZFP36基因可以明显提高SOD和APX酶的活性,而干扰这两个锌指蛋白基因,SOD和APX的活性显著下降。经ABA处理后,SOD和APX的活性均略有上升,实验结果与以转基因植株为材料的结果完全吻合,充分说明了ZFP182和ZFP36基因确实参与了ABA诱导的抗氧化防护反应,而且在其中扮演了重要的角色,对植物增强抗氧化防护,提高胁迫耐性具有重要意义。
     真核生物中的MAPK级联系统在外源刺激信号转入胞内应答受体/感应器的下游过程中起枢纽作用。植物ABA信号途径中也有MAPK级联系统的参与。本研究以水稻幼苗叶片为材料,采用药理学方法和荧光定量RT-PCR技术研究了MAPK和ZFPl82和ZFP36基因转录在ABA信号途径之间的关系。MAPKK抑制剂(PD98059和U0126)的预处理能有效抑制ABA诱导的ZFP182和ZFP36基因的转录。在水稻原生质体中,ABA处理能够上调ZFP182和ZFP36的表达。利用dsRNA技术,分别将OsMPK1和OsMPK5基因(分别与AtMPK6和AtMPK3同源)沉默,ABA对ZFP182和ZFP36基因转录的诱导被阻断。而利用dsRNA技术或者RNAi突变体分别使ZFP182和ZFP36基因沉默,OsMPK1和OsMPK5基因的表达不受影响;说明在ABA信号途径中,OsMPK1/OsMPK5和ZFP36/ZFP182呈现出一种直线关系,即OsMPK1和OsMPK5作为ZFP182和ZFP36的上游因子发挥作用。
     本实验室已有的研究结果显示ABA及H202均可以诱导OsDM3基因表达,提示这一激酶可能参与干旱与氧化胁迫的信号转导。然而,这一激酶在植物对胁迫反应中涉及的下游元件还不清楚。OsDM3与锌指蛋白转录因子的关系更是未见报道。本研究发现,钙通道阻断剂EGTA、LaCl3, CaM拮抗剂TFP、W7和CCaMK抑制剂KN-93的预处理能有效抑制ABA诱导的OsZF182和OsZF36基因的转录。通过原生质体瞬时表达及dsRNA技术,干扰OsDMI3基因的表达,能有效的阻断ABA对锌指蛋白基因ZFP182和ZFP36的诱导,暗示在ABA信号途径中,OsDMI3位于ZFP182和ZFP36的上游,调控这两个锌指蛋白基因的表达。有意思的是,利用原生质体瞬时沉默技术和转基因技术,分别干扰ZFP182和ZFP36基因的表达,可以显著降低ABA诱导的OsDMI3基因的转录和活性,暗示ZFP182和ZFP36基因又可以调控OsDM3基因的表达。上述研究结果表明,在ABA信号通路中,OsDM3和ZFP182/ZFP36之间可能存在一个交叉对话的机制:OsDMI3作为上游因子调控ZFP182和ZFP36基因的表达,而锌指蛋白ZFP182和ZFP36作为转录因子,可能通过直接作用于OsDMI3的启动子区域或者通过作用于其他的一些激酶或者因子间接的对OsDMI3起调控作用。具体机制还有待于进一步深入的研究。
     本实验室以往以玉米叶片作为材料的实验阐明,在ABA信号途经中,NADPH、H202和MAPK之间存在一个正反馈调节机制:即ABA诱导ZmrbohA-D基因的转录,增加RBOH的活性,诱导质外体H202产生,活化MAPK,继而通过激活相关转录因子从而再次激活Rboh基因的表达,增加RBOH的活性,导至H202的进一步产生,形成一个RBOH介导的ROS放大过程。但是,对于ZFP182和ZFP36是否参与这个正反馈调节过程并不清楚。本研究用NADPH的抑制剂(DPI)预处理能有效抑制ABA诱导的ZFP182和ZFP36基因的转录,说明在ABA信号系统中,Osrbohs基因位于ZFP182和ZFP36基因的上游。利用水稻原生质体瞬时表达和dsRNA技术干扰ZFP182或ZFP36基因,对ABA信号相关的OsrbohB和Osrbohl基因转录并无影响。DAB染色结果显示,ABA诱导4h之内,野生型和RNAi的转基因植株中,H202的积累并无明显差异。上述几点暗示,ZFP182和ZFP36基因可能并不参与ABA信号途径中H202信号放大的正反馈调节机制,但并不能排除有其它的C2H2型锌指蛋白参与ABA信号途径中H202信号放大的正反馈调节机制。
The adaptability of plants especially crops to abiotic stress such as drought, cold and high salinity has a very significant impact for the production and quality of crops. Drought is the most common form of plant stresses and is critical bottleneck to the development of agriculture in many countries. The accumulation of the plant hormone abscisic acid (ABA) plays important roles in the responses to water stress. ABA induced by water stress can cause an enhancement in the generation of ROS and antioxidant defences to enhance plant tolerance to water stress. In this signal network, a number of transcription factors such as MYB, WRKY, heat shock factor and multiple types of zinc finger protein content increased, they participate in maintaining stable levels of ROS. So that, these transcription factors play important regulation in plant responses to abiotic stresses. However, it is not clear whether these members of C2H2-type ZFPs are involved in the ABA-induced antioxidant defense and if so, what the relationship between the C2H2-type ZFPs, H2O2, MAPK and NADPH oxidase in the ABA signaling is.
     In this study, two ABA-and H2O2-responsive C2H2-type ZFP genes, ZFP36and ZFP182were identified in rice. By protoplast transient expression system and transgenic technology, we made the targen gene over-expression or silence. The enzyme activity and gene expression of antioxidant enzymes, NADPH oxidase and MAPK were investigated in transgenic rice and wild type rice to explore the mechanism of ZFP36and ZFP182in rice stress tolerance. It has an important theoretical significance to improve rice resistance. The results as follows:
     In this study, two zinc finger protein genes ZFP182and ZFP36was identified from rice (Oryza sativa Japonica) by bioinformatics method and RT-PCR approach which are clustered with Zat12and Zat10respectively. Sequence analysis showed that ZFP182and ZFP36both contained two typical C2H2zinc finger domains. ZFP182encodes a18.215kDa polypeptide with170amino acids and ZFP36encodes a22.804kDa polypeptide with 220amino acids. It was found by subcellular localization, the two zinc finger protein genes are located in the nucleus. Real-time quantitative RT-PCR analysis showed that:Treatments with ABA and H2O2, a biphasic response in the expression of ZFP182and ZFP36was observed. Pretreatment with reactive oxygen species scavengers (DMTU) substantially arrested ABA-induced gene expression. NO can also up-regulate the expression of ZFP182and ZFP36. These results suggest that ABA, H2O2and NO can increase ZFP182and ZFP36gene expression and H2O2is required for the ABA-induced up-regulation expressions of ZFP182and ZFP36in rice.
     For further study of the function of ZFP182and ZFP36, overexpression (sense) vector, antisense inhibition (anti sense) expression vector, and RNA interference (sense/antisense, dsRNA) expression vector of ZFP182and ZFP36gene were constructed, and successfully transferred to rice callus, using agrobacterium-mediated transformation approach. We have get the RNA interference plants of ZFP182; overexpression and antisense suppression and RNA interference plants of ZFP36. We used F1generation of transgenic rice and the wild type rice. Respectively as materials, exogenous ABA could increase intracellular SOD and APX activity. Compare with the wild type, SOD and APX activity of the transgenic plants which were RNA interfered or antisense inhibited decreased significantly. By protoplast transient expression system, we found that overexpression of ZFP182and ZFP36gene could increase the SOD and APX activity, while interfering the two zinc finger protein, SOD and APX activity decrease significantly. After ABA treatment, SOD and APX activity were increased slightly. These results suggest that ZFP182and ZFP36not only participate but also play an important role in ABA-induced antioxidant protection. It is significant to enhance plant antioxidant protection and increase stress tolerance.
     MAPK cascade in the eukaryotic system play a pivotal role in the downstream processes that exogenous stimuli into intracellular responses receptors/sensors. MAPK cascade also involve ABA signaling pathway in plants. In this study, we use pharmacological approaches and quantitative RT-PCR technique to discuss the relationship of MAPK and ZFP182/ZFP36gene transcription between the ABA signaling pathway in leaves of rice seedlings. MAPKK inhibitor (PD98059and U0126) pretreatment can effectively inhibit the ABA-induced gene transcription of ZFP182and ZFP36. In rice protoplasts, ABA treatment induced the expression of ZFP36and ZFP182, and the ABA-induced up-regulation in the expression of ZFP36and ZFP182was almost fully blocked in the protoplasts transfected with dsRNAs against OsMPK1and OsMPK5, which show the highest similarity with AtMPK6and AtMPK3respectively. By contrast, the reduction in the expression of ZFP36and ZFP182in the protoplasts silencing transiently ZFP36and ZFP182and in the RNAi mutants of ZFP36and ZFP182did not affect the ABA-induced up-regulation in the expression OsMPK1and OsMPK5. These data indicate that there are a linear relationship between OsMPK1/OsMPK5and ZFP36/ZFP182in ABA signaling, and OsMPKl and OsMPK5function upstream of ZFP182and ZFP36in the ABA signaling.
     Previous studies showed that ABA and H2O2induced the expression of OsDMI3, which suggested that OsDIM3may be involved in drought and oxidative stress signal transduction. However, the downstream components involved in the responses of this kinase to stress are unclear. The relationship between OsDIM3and ZFPs is not reported. Our studies showed pretreatment with Calcium channel blockers (EGTA and LaC13), CaM inhibitor (W7and TFP) or CaMK inhibitor KN-93substantially arrested ABA-induced OsZF182and OsZF36gene expression. Using rice protoplast transient expression and dsRNA technology to have OsDMI3gene silencing, ABA-induced ZFP182and ZFP36gene expression was significantly decreased, it indicates that OsDMI3gene locate upstream of the two zinc finger proteins gene ZFP182and ZFP36and control the expression of transcription factors in the ABA signaling system. Interestingly, while interference ZFP182and ZFP36genes respectively, ABA-induced OsDMI3gene expression and enzyme activity were significantly decreased, it indicate that ZFP182and ZFP36genes regulate OsDMI3gene expression. These results clearly suggest that there is a cross talk between OsDMJ3and OsZF182IOsZF36in the ABA signaling:OsDMJ3as a upstream factor regulates the expression of ZFP182and ZFP36, while ZFP182and ZFP36as transcription factors maybe act directly on the promoter of OsDM3, or regulate OsDIM3indirectly through acting on other kinases or factors. Specific mechanism needs further study.
     Previous studies showed that there is a positive feedback loop involving NADPH oxidase, H2O2, and MAPK in ABA signaling in maize leaves. ABA-induced H2O2production activates MAPKs, which can amplify H2O2signal by regulating the activity of NADPH oxidase in ABA signaling. However, it is unknown whether ZFP36and ZFP182are involved in the positive feedback loop in the ABA signaling. Our studies showed pretreatment with NADPH inhibitor DPI can effectively inhibit the ABA-induced gene transcription of ZFP182and ZFP36. it indicates that Osrbohs locate upstream of the two zinc finger proteins gene ZFP182and ZFP36in the ABA signaling system. The RNAi silencing of ZFP36and ZFP182in rice protoplasts did not affect the ABA-induced up-regulation in the expression of the NADPH oxidase genes, OsrbohB and Osrbohl. The results of DAB staining showed ABA treatment caused the similar increases in the production of H2O2in the leaves of the wild-type plants and the RNAi mutants of ZFP36and ZFP182during the4h of treatment. The above points suggest that ZFP36and ZFP182maybe not mediate the feedback regulation of H2O2production in the ABA signaling. However, we cannot exclude the possible involvement of other C2H2-type ZFPs in the positive feedback loop in ABA signaling.
引文
[1]黄骥,张红生,曹雅君,王东,王建飞,杨金水.一个新的水稻C2H2型锌指蛋白cDNA的克隆与序列分析.南京农业大学学报,2002,25(2):110-112
    [2]王惠中,黄大年等.转mtlD/gutD双价基因水稻的耐盐性.科学通报.2000,45(7):724-729
    [3]王鹏程,杜艳艳,宋纯鹏.植物细胞一氧化氮信号转导研究进展.植物学报,2009,44,517-525.
    [4]王文杰.苜蓿HD-Zip转录因子Mfhb-1基因的表达及生物学功能研究. 河南新乡:河南科技学院,2008.
    [5]杨霞.两个水稻金属离子转运体基因和两个水稻锌指蛋白基因的克隆与功能研究.2007,南京农业大学博士学术论文
    [6]Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S.2004. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55:541-552
    [7]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15 (1):63-78
    [8]Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K.1997. Role of Arabidosis MYC and MYB homologous in drought and abscisic acid-regulated gene expression. Plant Cell 9:1859-1868
    [9]Abebe T, Guenzi AC, Martin B, Cushman JC.2003. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748-1755
    [10]AGALOU A, PURWANTOMO S, OVERNAS E, et al.2008.A genomewide survey of HD-Zip genes in rice and analysis of droughtresponsive family members. Plant Mol Biol,66 (1-2):87-103.
    [11]Agrawal GK, Rakwal R, Iwahashib H.2002. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Bioph Res Co,294:1009-1016.
    [12]Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, and Rakwal R. Agrawal GK, Tamogami S, Iwahashi H, Agrawal VP, Rakwal R.2003b. Novel rice MAPK kinase OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Bioph Res Co, 300:775-783.
    [13]Agrawal GK, Iwahashi H, Rakwal R. (2003a). Rice MAPKs. Biochem Bioph Res Co,300:775-783
    [14]Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK.2007. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol,65:467-485.
    [15]Alexander D, Goodman R M, Gutrella M.1999. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein Ia. Proc Natl Acad Sci USA 90:7327-7331.
    [16]Ali M. B, Hahn E-J, Paek K-Y.2005. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol and Bioc 43:213-223.
    [17]Alia, Hayashi H, Sakamoto A, Murata N.1998. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J, 16:155-161
    [18]An CI, Sawada A, Kawaguchi Y, Fukusaki E, Kobayashi A.2005. Transient RNAi induction against endogenous genes in Arabidopsis protoplasts using in vitro-prepared double-stranded RNA. Biosci, Biotech, Bioch,69:415-418.
    [19]Apel K, Hirt H.2004. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,55:373-399.
    [20]Ariel F.D, Manavella P.A, Dezar C.A, et al. The true story of the HD-Zip family.Trends Plant Sci,2007,12:419-426.
    [21]Asai S, Ohta K, Yoshioka H.2008. MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana. Plant Cell 20:1390-1406
    [22]Bart R, Chern M, Park CJ, Bartley L, Ronald PC.2006. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts, Plant Methods,2:13.
    [23]Beligni M V, Lamattina L.2001.Nitric oxide in plants:the history is just beginning.Plant Cell Environ,24(3):267-278
    [24]Bethke P C, Libourel I G, Jones R L.2006.Nitric oxide reduces seed dormancy in Arabidopsis JExp Bot,57(3):517-526
    [25]Botella M A, Xu Y, Prabha T N, Zhao Y, Narasimhan M L, Wilson K A, Nielsen S S, Bressan R A, Hasegawa P M.1996. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol 112:1201-1210
    [26]Boulikas T.1994. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem 55:32-58
    [27]Bray EA.1997. Plant responses to water deficit. Trends Plant Sci,2:48-54.
    [28]Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ.2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J,45:113-122.
    [29]Burnett EC, Desikan R, Moser RC, Neill S J.2000.ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. JExp Bot,51:197-205.
    [30]Byrne M E.2006.Shoot meristem function and leaf polarity:The role of class Ⅲ HD-ZIP genes.PLoS Genet,2 (6):785-790.
    [31]Calkhoven CF, Ab G.1996. Multiple steps in the regulation of transcription-factor level and acticity. Biochem J,317 (Pt2):329-342
    [32]Chai MF, Wei PC, Chen OJ, An R, Chen J, Yang S, Wang XC.2006. NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J,47:665-674
    [33]Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL.2006. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol,7:417-427.
    [34]Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J.2003. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961-1972
    [35]Chiou C.Y., and Yeh K.W.,2008.Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of oncidium gower ramsey. Plant Mol. Biol,66 (4):379-388
    [36]Cho D, Shin D, Jeon BW, Kwak JM.2009. ROS-mediated ABA signaling. J Plant Biol,52: 102-113.
    [37]Choi H, Park HJ, et al.2005. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750-1761
    [38]Ciarbelli A R, Ciolfi A, Salvucci S, et al.2008.The Arabidopsis homeodomain-leucine zipper Ⅱ gene family:diversity and redundancy.Plant Mol Biol,68(4-5):465-478.
    [39]Colcombet J, Hirt H.2008. Arabidopsis MAPKs:a complex signaling network involved in multiple biological processes. Biochemical J,413:217-226.
    [40]Ciftci-Yilmaz S, Mittler R.2008. The zinc finger network of plants. Cell Mol Life Sci,65: 1150-1160.
    [41]Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL,Mittler R.2007.The ear-motif of the C2H2 zine-finger Protein ZAT7 plays a key role in the defense response of Arabidopsis to salinity stress. JBiol.Chem,282:9260-9268
    [42]Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR.2010. Abscisic acid:Emergence of a core signaling network. Annu Rev Plant Biol,61:651-679.
    [43]Davenport R J, Munoz-Mayor A, Jha D, Essah P A, Rus A, Tester M.2007. The Na+ transporter AtHKT1; 1 controls retrieval of Na+from the xylem in Arabidopsis. Plant Cell Environ 30:497-507
    [44]Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R.2005a. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268-281.
    [45]Davletova S, Schlauch K, Coutu J, Mittler R.2005b. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol,139: 847-856.
    [46]Delledonne M, Xia Y, Dixon R A, et al.1998. Nitric oxide functions as a signal in plant disease resistance.Nature,394:585-588
    [47]Desikan R, Cheung M-K, Bright J, Henson D, Hancock JT, Neill SJ.2004. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot,55:205-212.
    [48]Desikan R, Griffiths R, Hancock JT, Neill S.2002. A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure inArabidopsis thaliana. Proc Nati Acad Sci USA,99:16314-16318.
    [49]Dong B, Valencia C A, Liu R.2007. Ca2+/calmodulin directly interacts with the pleckstrin homology domain of AKT1. J Biol Chem 282:25131-25140
    [50]Durner J, Wendehenne D, Klessig D F.1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Nati Acad Sci USA,95(17):10328-10333
    [51]Elhiti M, Stasolla C.2009. Structure and function of homeodomain-leucine zipper (HD-Zip) proteins.Plant Signal Behav,2:86-88.
    [52]Epple P, Mack AA, Morris VR, et al. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins.2003. Proc Nati Acad Sci USA 100:6831-6836.
    [53]Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez M E.2004. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343-350
    [54]Fields S, Song O.1989. A novel genetic system to detect protein-protein interactions. Nature 340:245-246
    [55]Finkelstein RR, Gampala SSL, Rock CD.2002. Abscisic acid signaling in seeds and seedlings. Plant Cell (Suppl) 14:S15-S45.
    [56]Frattini M, Morello L, Breviario D.1999. Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development. Plant Mol Biol 41:753-764
    [57]Fu SF, Chou WC, Huang DD, Huang HJ.2002. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol 43:958-963
    [58]Fukao T, Yeung E, Bailey-Serres J.2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell Advance Online Publication,23(1):412-27.
    [59]Fujii H, Chinnusamy V, Rodrigues A, et al,2009. In vitro reconstitution of an abscisic acid signalling pathway. Nature,462(7273):660-4
    [60]Gal T Z, Glazer I, Koltai H.2004. An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21-26
    [61]Gao JJ, Zhang Z, Peng RH, ed.2010. Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol publishers, Springer
    [62]Gould K S, Klinguer A, Pugin A, et al.2003. Nitric oxide production in tobacco leaf cells:a genera lized stress response. Plant Cell Environ,26(11):1851-1862
    [63]Goyal K, Walton LJ, Tunnacliffe A.2005. LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151-157
    [64]Grill E, Himmedlbach A.1998. ABA signal transduction. Curr Opi Plant Bio 1:412-418.
    [65]Guan LM, Scandalios JG. 1998. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes. Physiol Plant 104: 413-422.
    [66]Guo F Q, Crawford N M.2005.Arabidopsis nitric oxide synthasel is targeted to mitochondria and protects against oxidative damage and dark-induced senescence.Plant Cell,17(12): 3436-3450
    [67]Guan LM, Zhao J, Scandalios JG 2000. Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress:H2O2is the likely intermediary signaling molecule for the response. Plant J,22:87-95.
    [68]Gudesblat GE, Lusem ND, Morris PC.2007. Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol.173:713-721
    [69]GuoY, Halfter U, Ishitani M, Zhu J K.2001. Molecular characterization of functional domains in the protein ltinase SOS2 that is required for plant salt tolerance. Plant Cell 13: 1383-1400
    [70]Guo YF, Gan SS.2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J,46:601-612
    [71]Gupta AS, Holaday AS, et al.1993. Increase resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natc Acad Sci USA 90:1629-1633
    [72]Halfter U, Ishitani M, Zhu J K.2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735-3740
    [73]Hamilton A J, Baulcombe DC.1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950-952
    [74]Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ.2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463-499
    [75]Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N.1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J,12:133-142
    [76]He Y K, Tang R H, Yi H, et al.2004. Nitric oxide represses the Arabidopsis floral transition. Science,305:1968-1971
    [77]He Z, He C, Zhang Z, Zou Z, Wang H.2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128-133
    [78]Hiei Y, Ohta S, Komari T, Kumashiro T.1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,6:271-282.
    [79]Himmelbach A, Yang Y.2003. Grill E. Relay and control of abscisic acid signaling. Curr Opi Plant Bio 6:470-479.
    [80]Hincha DK, Hagemann M.2004. Stabilization of model membrances during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277-283
    [81]Hirayama T, Shinozaki K.2007. Perception and transduction of abscisic acid signals:keys to the function of the versatile plant hormone ABA. Trends Plant Sci.12:343-351.
    [82]Hirschi KD, KorenkovV, Wiganowski N, et al.2000. Expression of Arabidopsis CAX2 in tobacco:altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125-134
    [83]Hirsch R E, Ixwis B D, Spalding E P, Sussman M R.1998. A role for the AKT1 potassium channel in plant nutrition. Science 280:918-921
    [84]Hodges DM, DeLong JM, Forney CF, Prange PK.1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-611.
    [85]Holmstrom K, Mantyla E, Welin B, Mandal A, Palva E.1996. Drought tolerance in tobacco. Nature 379:683-684
    [86]Hsieh T H, Lee J T, Charng Y Y, Chan M T.2002. Tomato Plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618-626
    [87]Hu X, Jiang M, Zhang A, Lu J.2005. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta 223:57-68.
    [88]Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M.2007. Calcium/calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize plants. New Phytol,173:27-38.
    [89]Hu X, Zhang A, Zhang J, Jiang M.2006. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress. Plant Cell Physiol,47:1484-1495.
    [90]Hua, W., Li, R.J., Wang, L., and Lu, Y.T.2004. A tobacco calmodulin-binding protein kinase (NtCBK2) induced by high-salt/GA treatment and its expression during floral development and embryogenesis. Plant Sci 166:1253-1259.
    [91]Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX.2009a. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development 23:1805-1817.
    [92]Huang J., and Zhang H.S.,2007, The plant TFⅢA-type zinc finger proteins and their roles in abiotic stress tolerance, Yichuan (Hereditas),29(8):915-922
    [93]Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang HS.2009b. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Bioph Res Co,389:556-561.
    [94]Huang J, Wang JF, Wang QH, Zhang HS.2005. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Seq.16 (2):130-136
    [95]Huang J, Yang X, Wang MM, Tang HJ, Ding LY, Shen Y, Zhang HS.2007. A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochimica et Biophysica Acta 1769:220-227.
    [96]Huang S, Spielmeyer W, L.agudah E S, Munns R.2008. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927-937
    [97]Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI.2010. Early abscisic acid signal transduction mechanisms:newly discovered components and newly emerging questions. Genes and Development 24:1695-1708.
    [98]Hueros G, Varotto S., Salamini F. and Thompson R. D.1995. Molecular Characterization of BETI, a Gene Expressed in the Endosperm Transfer Cells of Maize. Plant Cell 7:747-757.
    [99]Ingram J and Bartel D.1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377-403.
    [100]Ito M.2000. Factors controlling cyclin B expression. Plant Mol Biol 43 (5-6):677-690
    [101]Ito Y, Katsura K, Maruyama K, et al.2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol,47(1):141-153.
    [102]Iuchi S.2001. Three classes of C2H2 zine finger proteins. Cell Mol Life Sci 58:625-635
    [103]Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Glordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM.2009. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Nati Acad Sci, USA 106:20520-20525.
    [104]Jiang M, Zhang J.2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42: 1265-1273.
    [105]Jiang M, Zhang J.2002a. Involvement of plasma membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215: 1022-1030.
    [106]Jiang M, Zhang J.2002b. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot,53:2401-2410.
    [107]Jiang M.Y. and Zhang J.H..2002c. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic Res 36:1001-1015.
    [108]Jiang M, Zhang J.2003. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant, Cell& Environ,26:929-939.
    [109]Jiang M, Zhang J.2004. Abscisic acid and antioxidant defense in plant cells. Acta Botanica Sinica 46:1-9.
    [110]Jorgensen R.1990. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 8:340-344
    [111]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287-291
    [112]Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C.1998. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255-266.
    [113]Khan M M, Jan A, Karibe H. KomatsuS.2005. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. Plant Mol Biol 58:27-40
    [114]Kim JC, Lee SH, Cheong YH.2001. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J,25:247-259.
    [115]Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S.2003. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411-423
    [116]Kim SG, Lee AK, Yoon HK, Park CM.2008. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acidmediated salt signaling in Arabidopsis seed germination. Plant J, 55:77-88
    [117]Kim Y K, Kawano T, Li D, Kolattukudy P E.2000. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. Plant Cell 12:1331-1343
    [118]Kim Y K. Son O, Kim M R, et al.2007. ATHB23, an Arabidopsis class Ⅰ homeodomain-leucine zipper gene, is expressed in the adaxial region of young leaves Plant Cell Rep, 26(8):1179-1185.
    [119]Kishor PBK, Hong ZL, Miao GH, et al.1995. Overexpression of △ 1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387-1394
    [120]Klaus S M, Huang. F C, Golds T J, Koop H U.2004. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Bioteclmol 22:225-229
    [121]Knetsch M, Wang M, Snear-Jagalska B, Helmovaara-Dijkstra S.1996.Abscisic acid induces mitogen-activated protein kinase activation in Barley Aleurone protoplasts. Plant cell,8: 1061-1067.
    [122]Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H.2007. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065-1080.
    [123]Kolukisaoglu U,Weinl S, Blazevic D, Batistic O, Kudla J.2004. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43-58
    [124]Kong J,Cao W H, Zhang J S, Chen S Y.2004. Transgenic analysis of a salt-inhibited OsZFP1 gene from rice. Acta Botanica Sinica 46 (5):573-577
    [125]Koo SC, Yoon HW, Kim CY, Moon BC, Cheong YH, Han HJ, Lee SM, Kang KY, Kim MC, Lee SY, Chung WS, Cho MJ.2007. Alternative splicing of the OsBWMK1 gene generates three transcript variants showing differential subcellular localizations. Biochem Bioph Res Co, 360:188-193
    [126]Koornneef M, Leon-Kloosterziel KM, Schwartz SH and Zeevaart JAD.1998. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Bioch36:83-89.
    [127]Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J.2007. Multiple signals from damaged chloroplasts converge on a common pathway to regulate nuclear gene expression. Science 316:715-719.
    [128]Kovtun Y, Chiu W-L, Tena G, Sheen J.2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Nati Acad Sci, USA 97: 2940-2945.
    [129]Krishnan N, Dickman M B, Becker D F. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med
    [130]Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG Schroeder JI. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J,22:2623-2633.
    [131]Laloi C, Apel K, Danon A.2004. Reactive oxygen signalling:the latest news. Curr Opin Plant Biol 7:323-328.
    [132]Lamb C, Dixon RA.1997. The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48:251-275
    [133]Leon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JA, Koornneef M.1996. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J,10:655-661
    [134]Leung J and Giraudat J.1998. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199-222.
    [135]LiQJ, Xu B, Chen X Y, et al.2007. The effects of increased expression of an Arabidopsis HD-ZIP gene on leaf morphogenesis and anther dehiscence.Plant Sci,173:567-576.
    [136]Li ZY, Chen SY.2001. Theoretical and Applied Genetics 102:363-368.
    [137]Liao Y, Zou HF, ed.2008. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res,18:1047-1060
    [138]Liao Y, Zou H F, Wei W, et al.2008. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes functionas negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta,228:225-240.
    [139]Lida A, Kazuoka T, Torikai S, Kikuchi H, Oeda K.2000. A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J,24:191-203.
    [140]Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K.2005. A sphingolipid elicitor-inducible mitogen-activated protein in rice. Plant Physiol 138:1644-1652
    [141]Lilius G, Holmberg N, Bulow L.1996. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:177-180
    [142]Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M.2009. Positive feedback regulation of maize NADPH oxidase by mitogen- activated protein kinase cascade in abscisic acid signaling. JExpl Bot,60:3221-3238.
    [143]Lin CC and Kao CH.2001. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci 160:323-329.
    [144]Liotenberg S, North H and Marion-Poll A.1999. Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiol Bioch,37:341-350.
    [145]Lippuner V, Martha S, Charles S.1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem,271:12859-12866.
    [146]Liu, P.F., Chang, W.C., Wang, Y.K., Chang, H.Y., and Pan, R.L.2008. Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid. Biochim Biophys Acta 1779:164-174.
    [147]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcription factors, DREB1 and DRBB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406
    [148]Liu Q, Zhang GY, Chen SY.2001. The structure and regulatory role of plant transcription factors. Science Bulletin,46:271-278
    [149]Lopez CML, Takahashi H, Yamazaki S.2002. Plant-water relations of kidney bean plants treated with nacl and folliarly applied glycine betaine. JAgron Crop Sci 188:73-80
    [150]Lu C, Han MH, Guevara-Garcia A, Fedoroff NV.2002. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Nati Acad Sci, USA 99:15812-15817.
    [151]Luan S.2002. Tyrosine phosphorylation in plant cell signaling. Proc Natl Acad Sci USA 99:11567-11569
    [152]Ludwig AA, Romeis T, et al.2004. CDPK-mediated signaling pathways:specificity and cross-talk. JExpl Bot,55:181-188
    [153]Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC.2007. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of sressresponsive genes in Arabidopsis. Plant Mol Biol,63:289-305
    [154]Lu, Y.T., Hidaka, H., and Feldman, L.J.1996. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta 199:18-24.
    [155]Ma, L., Liang, S.P., Jones, R.L., and Lu, Y.T.2004. Characterization of a novel calcium/calmodulin-dependent protein kinase from tobacco. Plant Physiol,135:1280-1293.
    [156]Maeo K, Tokuda T, Ayame A,et al.2009. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J,60 (3):476-487.
    [157]Manavella PA, Arce A L, Dezar C A, et al.2006. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J,48 (1): 125-137.
    [158]Martin C. Paz-Ares J.1997. MYB transcription factors in plants. Genet 13:67-73
    [159]Maser P, Eckilman B, Vaidyanathan R, et al.2002. Altered shoot/root Na+ distribution and bifuncating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKTI. FEBS Lett 531:157-161
    [160]Maser P, Thomines S, Schroeder JI, et al.2001. Phylogenetic relationships within cation transporter families of Arabibopsis. Plant Physiol 126:1646-1667
    [161]Masumi Y., ed.2010. Two R2R3- MYB Genes, Homologs of Petunia AN2, Regulate Anthocyanin Biosyntheses in Flower Tepals, Tepal Spots and Leaves of Asiatic Hybrid Lily.Plant Cell Physiol,51 (3):463-474
    [162]Matzke M, Matzke A J, Kooter J M.2001. RNA:guiding gene silencing. Science,293: 1080-1083
    [163]Melcher K, Ng LM, Zhou XE, et al.2009. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature,462(7273):602-8
    [164]Meissner R C, Jin H, Cominelli E, Denekamp M, Fuertes A, Greco 凡 Kranz H D, Penfield S, Petroni K, Urzainqui A, Martin C, Paz-Ares J, Smeekens S, Tonelli C, Weisshaar B, Baumann E, Klimyuk V, Jones J J.1999. Function search in a large transcription factor gene family in Arabidopsis:assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell,11:1827-1840
    [165]Mcainsh MR, Clayton H, Mansfield TA, Hetherington AM.1996. Changes in Stomatal Behavior and Guard Cell Cytosolic Free Calcium in Response to Oxidative Stress. Plant Physiol 111:1031-1042.
    [166]Mckersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D'Halluin K, Botterman J.1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.).Plant Physiol 103:1155-1163
    [167]Miao Y, Lu D, Wang P, Wang X, Chen J, Miao C, Song CP.2006. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749-2766.
    [168]Miller G, Mittler R.2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot (Lond) 98:279-288
    [169]Miller G, shulaev V, Mittler R.2008. Reactive oxygen signaling and abiotic stress. Physiol Plantarum 133:481-489.
    [170]Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R.2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environ,33:453-467.
    [171]Miller J, McLachlan A D, Klug A.1985. Repetitive zinc—binding domains in the protein transcription factor ⅢA from Xenopus oocytes. EMBO J.4:1609-1614.
    [172]Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, A.,Oldroyd, G.E.D. and Long, S.R.2004. A Ca2+ /calmodulin-dependent protein kinase required for symbiotic nodule development:Gene identification by transcript-based cloning. Proc Nati Acad Sci USA.101:4701-4705
    [173]Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,7: 405-410.
    [174]Mittler R, Kim Y, Song L, Coutn J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK.2006. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters 580:6537-6542.
    [175]Mittler R, Vanderauwera S, Gollery M, Van Breusegem R 2004. Reactive oxygen gene network of plants. Trends Plant Sci,9:490-498.
    [176]Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F.2011. ROS signaling:the new wave? Trends Plant Sci,l16: 300-309.
    [177]Moons A, De Keyser A, Van Montagu M.1997. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197-204
    [178]Mukhopadhyay A, Vij S, Tyagi A K.2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Nati Acad Sci USA 101:6309-6314.
    [179]Murata Y, Pei ZM, Mori IC, Schroeder J.2001. Abscisic acid activation of plasma 2+ membrane Ca channels in guard cells requires cytosolic NAD (P) H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513-2523.
    [180]Mustilli, A.C., and Bowler, C.1997. Tuning in to the signals controlling photoregulated gene expression in plants. Embo J 16:5801-5806.
    [181]Nakagami H, Pitzschke A, Hirt H.2005. Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10:339-346.
    [182]Nakashima K, Ito Y, Yamaguchi-Shinozaki K.2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol,149:88-95.
    [183]Nakayama A, Morita K, et al.1997. Process for preparing a polymer using lithium initiator prepared by in situ preparation. EP:0768323 A1
    [184]Napoli C, Lemieux C, Jorgensen R.1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289
    [185]Natel A, Quatrano R S.1996. Characterization of three basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA-binding activity. JBiol Chem 271:31296-31305.
    [186]Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES.1990. Chitinase, beta-1,3-glucanase, osmotin, and extension are expressed in tobacco explants during flower formation. Plant Cell 2:673-684
    [187]Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I.2008. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot,59:165-176.
    [188]Neill SJ, Desikan R, Hancock JT.2003. Nitric oxide signalling in plants. New Phytol.159:11-35.
    [189]Neill SJ, Desikan R, Hancock JT.2002. Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388-395.
    [190]Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT.2002a. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot,53:1237-1247.
    [191]Neill SJ, Desikan R, Clarke A, Hancock JT.2002b. Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiol,128:13-16.
    [192]Ochandol, Gonzalez-Reig S, Ripoll J J, et al.2008. Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain—of—function allele of the class Ⅲ HD—ip gene INCURVATA4.Int JDev Biol,52(7):953-961.
    [193]Orozco-Cardenas ML, Ryan C.1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Nati Acad Sci, USA 96: 6553-6557.
    [194]Pan LJ, Huang J, Wang ZF, Zhang HS.2007. Molecular cloning and expression of OsCMO encoding a putative choline monooxygenase in rice (Oryza sativa L.). Mol Plant Breeding 5:8-14
    [195]Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, Hung W, D'Angelo C, Weinl S, Kudla J, Luan S.2004. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912-1924
    [196]Pandey S, Nelson DC, Assmann SM.2009. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell,136:136-48
    [197]Pandey, S., and Sopory, S.K.2001. Zea mays CCaMK:autophosphorylation-dependent substrate phosphorylation and down-regulation by red light. J Exp Bot 52:691-700.
    [198]Pandey, S., Tiwari, S.B., Tyagi, W., Reddy, M.K., Upadhyaya, K.C., and Sopory, S.K. 2002. A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem 269:3193-3204.
    [199]Park SY, Fung P, Nishimura N, et al.2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science,324(5930):1068-71
    [200]Pei Zm, Murata, Y, Benning G, Thomine S, Klusener, B, Allen, GJ, Grill E, and Schroeder JI.2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731-734.
    [201]Pilon-Smits E, Ebskamp M, Paul M J, Jeuken M, Weisbeek P J, Smeekens S.1995. Improved performance of transgenic rructan-accumulating tobacco under drought stress. Plant Physiol 107:125-130
    [202]Porcel R, Azcon R, Ruiz-Lozano JM.2005. Evaluation of the role of genes encoding for dehydrin proteins (LEAD-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot,56:1933-1942
    [203]Prasad TK, Anderson MD, Stewart CR.1999. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol, 105:619-627.
    [204]Qin F, Kakimoto M, Sakuma Y, et al.2007. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J,50(1):54-69.
    [205]Qin X, Zeevaart J A D.2002. Overexpression a of 9-cis-epoxycarotenoid dioxygenase gene in nicotiana plumbaginifolia, ncreases abscisic acid and phaseic acid levels and enhances brought tolerance. Plant Physiol 128:544-551.
    [206]Qu LJ, Zhu YX.2006. Transcription factor families in Arabidopsis:major progress and outstanding issues for future research. Curr Opin Plant Biol 9:544-549
    [207]Quan RD, Hu SJ, ed.2010. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J,8:476-488
    [208]Rebecca Bart, Mawsheng Chern, Chang-Jin Park, Laura Bartley and Pamela C Ronald. 2006. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13
    [209]Reyna NS, Yang Y.2006. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe In,19:530-540.
    [210]Rieehmann J L, Meyerowitz E M.1997. MADA domain Proteins in Plant development. Biol Chem 378:1079-1101.
    [211]Rizhsky L, Davletova S, Liang H, Mittler R.2004. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736-11743.
    [212]Rock CD.2000. Pathways to abscisic acid-regulated gene expression. New Phytol 148:357-396.
    [213]Ronde JA de, Cress WA, Kruger GHJ, Strasser RJ, Staden JV.2004. Photosynthetic response of transgenic soybean plants, contain an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211-1224
    [214]Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ.2007. Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant Cell 19:4091-4110.
    [215]Rounsley S D, Ditta G S.Yanofsky M F.1995. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259-1269.
    [216]Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD.2000. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41 (11):1229-1234
    [217]RusA, YokoiS, SharklluuA, ReddyM, LeeBH, MatsumotoTK, KoiwaH, ZhuJK, BressanRA, Hasegawa P M.2001. AtHKTl is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150-14155
    [218]Sagi M, Fluhr R.2001. Superoxide production by plant homologues of the gp91 (phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281-1290.
    [219]SAHU B B, SHAW B P.2009. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR -based suppression subtractive hybridization. BMC Plant Biol,5(9):69-94.
    [220]Sakamoto A, Alia, Murata N.1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011-1019
    [221]Sakamoto H., Araki T., Meshi T., and Iwabuchi M.2000. Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress, Gene, 248(1-2):23-3
    [222]Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K.2004. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol,136:2734-2746.
    [223]Sanders, D., Brownlee, C., and Harper, J.F.1999. Communicating with calcium. Plant Cell 11:691-706.
    [224]Sang J, Zhang A, Lin F, Tan M, Jiang M.2008. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Res.18:577-588.
    [225]Santiago J, Dupeux F, Round A, et al.2009. The abscisic acid receptor PYR1 in complex with abscisic acid.'Nature,462(7273):665-8
    [226]Schroeder J I, Kwak J M, Allen G J.2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327-330
    [227]Seki M, Umezawa T, Urano K, Shinozaki K.2007. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol,10:296-302.
    [228]Shen Y G, Zhang W K, Yan D Q, Du B X, Zhang J S, Liu Q, Chen S Y.2003. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. TheorAppl Genet 107:155-161
    [229]Shi H, Ishitani M, Kim C, Zhu J K.2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896-6901
    [230]Shi J, Kim K N, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J.1999. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11:2393-2405
    [231]Shinozaki K et al.1997. Gene expression signal transduction in water-stress response. Plant Physiol 115:327-334
    [232]Shinozaki K, Yamaguchi-Shinozaki K.2000. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217-223
    [233]Simon-Plas F., Elmayan T. and Blein J-P.2002. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J,31:137-147.
    [234]Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA.1987. Characterization of Osmotin:A Thaumatin-Like Protein Associated with Osmotic Adaptation in Plant Cells. Plant Physiol 85:529-536
    [235]Skopelitis D S, Paranychianakis N V, Paschalidis K A, Pliakonis E D, Delis I D, Yakoumakis D I, Kouvarakis A, Papadakis A K, Stephanou E G, Roubelakis-Angelakis K A.2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767-2781
    [236]Snedden, W.A., and Fromm, H.2001. Calmodulin as a versatile calcium signal transducer in plants. New Phytol,151,35-66.
    [237]Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ.2006. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222-1232.
    [238]Strizhov N, Abraham E, et al.1997. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J,12:557-569
    [239]Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H.2003. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J,36:830-841.
    [240]Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS.2010. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. JExp Bot,61:2807-2818.
    [241]Sun F H, Zhou Q X.2008. Oxidative stress biomarkers of the polychaete Nereis diversicolor exposed to cadmium and petroleum hydrocarbons. Ecotoxicol Environ Saf,70:106-114.
    [242]Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W Y, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder J I, Uozumi N.2005. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J,44:928-938
    [243]Sung C L, Hyong W C, In S H, et al.2006. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP 1, in enhanced resistance to pathogen infection and environmental stresses. Planta,224:1209-1225.
    [244]Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L.2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J, 53:11-28
    [245]Tabara H, Grishok A, Mello C C. RNAi in C.1998. elegans:soaking in the genome sequence. Science 282:430-431
    [246]Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K.2000. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol 41:898-903
    [247]Takahashi S, Seki M, Ishida J, Satou M, Sakurai T, Narusaka M, Kamiya A, Nakajima M, Enju A, Akiyama K, Yamaguchi-Shinozaki K, Shinozaki K.2004. Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray. Plant Mol Biol.56(1):29-55.
    [248]Takatsuji, H.1998. Zinc-finger transcription factors in plants. Cell Mol. Life Sci 54:582-596
    [249]Tang W, Newton RJ, Li C,et al.2007. Enhanced stress tolerance in transgenic pine expressing the pepper CaPFl gene is associated with the polyamine biosynthesis. Plant Cell Rep, 26(1):115-124.
    [250]Tarczynski MC, Jensen RG, Bohnert HJ, et al.1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508-510
    [251]Thomas JC, Sepahi M, Arendall B, Bohnert HJ.1995. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801-806
    [252]Thomashow MF.1999. PLANT COLD ACCLIMATION:Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599
    [253]Tian Y, Zhang HW, Pan XY, et al.2010. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Research.
    [254]Tirichine, L. et al.,2006. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature.441:1153-1156.
    [255]Torres MA, Dangl JL.2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397-403.
    [256]Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci.163:515-523.
    [257]Vendruscolo E C, Schuster I, Pileggi M, Scapim C A, Molinari H B, Marur C J, Vieira L G. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367-1376
    [258]Vernoud V, Laigle G, Rozier F, et al.2009. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J,59(6):883-894.
    [259]Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu JK.2007. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771-7780
    [260]Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S.2008b. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. Plant Cell 20:602-613.
    [261]Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M.2010. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol,52:442-452.
    [262]Wang P, Song CP.2008. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol,178:703-718.
    [263]Wang Q, Guan Y, Wu Y, et al.2008. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol,67 (6):589-602.
    [264]Washburn K B, Davis E A, Ackerman S.1997. Coactivators and TAFs of transcription activation in wheat. Plant Mol Biol 35:1037-1043.
    [265]Wijeratne A J, Zhang W, Sun Y, et al. 2007. Differential gene expression in Arabidopsis wild-type and mutant anthers:Insights into anther cell differentiation and regulatory networks. Plant J,52:14-29.
    [266]Wilson I D, Neill S J, Hancock J T.2008. Nitric oxide synthesis and signaling in plants. Plant Cell Environ,31(5):622-631
    [267]Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K.2007. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022-4034.
    [268]Xiao B, Huang Y, Tang N, Xiong L.2007. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35-46
    [269]Xing Y, Jia W, Zhang J.2007. AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. JExp Bot,58:2969-2981.
    [270]Xing Y, Jia W, Zhang J.2008. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J,54:440-451.
    [271]Xiong L, Ishitani M, Lee H and Zhu JK.2001. The Arabidopsis LOSS1ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. Plant Cell 13:2063-2083.
    [272]Xiong L, Sehumaker KS, Zhu JK.2002. Cell signaling during cold, drought and salt stress. Plant Cell (supp):S165-S183
    [273]Xiong L, Yang Y.2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15: 745-759.
    [274]Xu D, Duan X, Wang B, Hong B, Ho T, Wu R.1996. Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol 110:249-257
    [275]Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS.2008. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letters 582:1037-1043.
    [276]Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y.2005. Effects of free proline accumulation in petunias under drought stress. J Exp Bot,56:1975-1981
    [277]Yamaguchi-Shinozaki K, Shinozaki K.2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol,57:781-803.
    [278]Yamamizo C, Doke N, Yoshioka H, Kawakita K.2007. Involvement of mitogen-activated protein kinase in the induction of StrbohC and StrbohD genes in response to pathogen signals in potato. J Gen Plant Pathol.73:304-313
    [279]Yang G Komatsu S.2000. Involvement of calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol 41:1243-1250
    [280]Yang, T.B., Chaudhuri, S., Yang, L.H., Chen, Y.P., and Poovaiah, B.W.2004. Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem 279: 42552-42559.
    [281]Yang X.Y., Li J.G., Pei M., Gu H., Chen Z.L.J., and Qu L.2007. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development.Plant Cell,26 (2):219-228
    [282]Yang, T.B., Du, L.Q., and Poovaiah, B.W.2007a. Concept of redesigning proteins by manipulating calcium/calmodulin-binding domains to engineer plants with altered traits. Funct Plant Biol 34:343-352.
    [283]Ye N, Zhu G, Liu Y, Li Y, Zhang J.2011. ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol,52:689-698.
    [284]Yoo SD, Cho YH, Sheen J.2007. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat Protoc,2:1565-1572.
    [285]Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones J. D. G and Doke N.2003. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 Accumulation and resistance to Phytophthora infestans. Plant Cell 15: 706-718.
    [286]Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng 又 Dai L, Zhou 丫 Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li q Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, ZhengW, Chen S, GuoW, Li G Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H.2002. A draft sequence of the rice genome (Oryza sativa L. ssp, indican).Science 296:79-92.
    [287]Yuan X, Deng KQ, et al.2007. A calcium-dependent protein kinase is involved in plant hormone signal transduction in Arabidopsis. Plant Physio Mol Biol 33:227-234
    [288]Zhai Z, Sooksa-nguan T, Vatamaniuk OK.2009. Establishing RNA interference as a reverse-genetic approach for functional analysis in protoplasts. Plant Physiol,149:642-652.
    [289]Zhang A, Jiang M, Zhang J, Tan M, Hu X.2006. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol,141:475-487.
    [290]Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M.2007. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol,175:36-50.
    [291]Zhang S and Klessig DF.2001. MAPK cascades in plant defense signaling. Trends Plant Sci 6:520-527.
    [292]Zhang M, Liang S et al.2005. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Bioch Biophy Acta 1729:174-185
    [293]Zhao CS, Avci U, Grant EH, Haigler CH, Beers EP.2008. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xyle. Plant J,53:425-436
    [294]Zhao L, H e J, Wang X, et al. 2008.Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol,165(2):182-191
    [295]Zhao MC, Tian QY, Zhang WH.2007. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144(1):206-217
    [296]Zhong RQ, Lee CH, Ye ZH.2010. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol,152:1044-1055
    [297]Zhong Ruiqin, Richardson E A, Ye Zhenghua.2007. The MYB46 transcription factor is a direct target of SND1 andregulates secondary wall biosynthesis in Arabidopsis. Plant Cell,19 (9):2776-27921
    [298]Zhou B, Guo Z, Xing J, Huang B.2005. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot,56:3223-3228.
    [299]Zhu B, Chen TH, Li PH.1995. Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato. Plant Mol Biol 28:17-26
    [300]Zhu B, Su J, Chang MC, Verma DPS, Fan YL, Wu R.1998. Overexpression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci 139:41-48
    [301]Zhu J K.2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Bio 53:247-273.
    [302]Zhu SY, Yu XC, et al.2007. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019-3036
    [303]Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL.2009. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta,229:485-495.
    [304]Zou M, Guan Y, Ren H, et al.2008. A bZIP transcription factor, OsABI5, is involved in rice fertility and st ress tolerance. Plant Mol Biol,66:675-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700