用户名: 密码: 验证码:
甘蓝型油菜硼高效基因的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物高产养分高效是当今新形势下的重要育种目标。油菜是世界上继大豆之后第二大油料作物,而甘蓝型油菜占油菜种植面积的约80%。硼是植物生长发育所必需的微量元素营养之一,而世界上耕作土壤缺硼问题已成为许多作物产量提高的重要限制因子。甘蓝型油菜是需硼较多的作物,对缺硼非常敏感,缺硼容易导致“花而不实”,减少籽粒产量,严重时甚至不能形成产量。施用硼肥可以缓解作物缺硼问题,但是硼矿资源有限,而且过多施用硼肥可能会引起一些生态环境问题。有研究表明,不同甘蓝型油菜品种间硼效率性状存在着丰富的基因型差异。利用遗传学和分子生物学手段来改良甘蓝型油菜的硼效率性状,培育硼高效高产的品种是解决甘蓝型油菜缺硼问题的一条重要途径。本研究利用实验室已构建的甘蓝型油菜硼高效BQ DH群体为材料构建遗传连锁图,并通过三年的田间试验调查硼缺乏和硼正常条件下群体成熟期的籽粒产量及产量相关性状的表型变异。结合BQ DH遗传连锁图谱和群体表型进行了全基因组硼高效相关QTL定位与分析。取得的主要研究结果如下:
     1.甘蓝型油菜硼高效BQ DH遗传连锁图谱的构建
     收集并合成了文献中报道的以"BnGMS"和‘'BoGMS"命名的SSR标记引物1413对,本实验室根据白菜基因组A2、A3、A9的BAC序列设计了403对SSR标记引物,以及本研究根据白菜A2基因组序列自主开发设计的50对SSR引物,并在BQ DH群体中进行基因型分析。利用作图软件Joinmap4.0构建了一张含有486个分子标记的BQ DH遗传连锁图谱。图谱含有SSR标记468个,SRAP标记7个,GBM标记9个以及2个特异标记。图谱总长为1873.9cM,标记间的平均遗传图谱为3.86cM。
     2. BQ DH群体及其亲本在不同硼水平下的表型变异
     以BQ DH群体和亲本为材料进行了三年的田间试验调查了盛花-结荚果时期硼缺乏条件下的缺硼症状表型和成熟期不同硼水平条件下籽粒产量及产量相关性状的表型变异。对于盛花-结荚果期:硼高效亲本QY10在缺硼条件下仍能较正常的开花结果,没有表现出明显缺硼症状,受缺硼影响很小;硼低效亲本Bakow则开花结实受到明显的影响,叶片有明显的缺硼症状,对缺硼表现很敏感。表明QY10相对于Bakow具有更强的适应硼缺乏的能力。BQ DH群体之间则表现出了缺硼症状的表型分离,出现了从Ⅰ到V级的不同程度的应答表现。对于成熟期而言,缺硼条件下,硼高效亲本QY10相比于硼低效亲本Bakow在籽粒产量、株高、分枝数、每株荚果数、每荚果粒数和千粒重上均有显著差异。硼正常条件下,硼高效亲本QY10相比于硼低效亲本Bakow在籽粒产量、每株荚果数和千粒重上有明显差异。研究表明,两个硼水平下BQ DH群体的所有产量及产量相关性状均表现连续变异,并有超亲分离现象,说明了这些性状为数量性状,并同时受多基因控制。性状间的遗传相关性在同一硼水平下差异较大,方差分析发现,基因型、硼水平、环境以及他们之间的互作对6个调查性状均有显著影响。
     3. BQ DH群体成熟期籽粒产量及产量相关性状和缺硼指数性状的QTL检测与分析
     对BQ DH群体在三年田间试验中两个硼水平条件下的籽粒产量、株高、分枝数、每株荚果数、每荚粒数、千粒重和硼效率系数性状进行QTL定位分析,利用WinQTLCartographer2.5软件共检测到70个显著性QTL,分布于15条连锁群(A5, A8, C1, C2除外),其中,硼缺乏条件下30个,硼正常条件35个,硼效率系数性状检测到5个。单个QTL解释了4.15-23.16%的表型变异。7和16个QTL分别在三年和两年试验中被重复检测到。通过BioMercator2.1软件,将其他研究报道的29个籽粒产量及产量相关性状的QTL映射到BQ DH遗传连锁图上,并分别与本研究报道的16个相应性状的QTL相互重叠。对于缺硼指数性状,检测到了3个QTL,位于A7和C8连锁群上。
     4. BQ DH群体成熟期籽粒产量及产量相关性状的上位性互作的检测与分析
     利用QTLNetwork2.0软件对BQ DH群体中两个硼水平下6个性状及硼效率系数总共检测到32个上位性互作对,分布于全基因组(A8除外)上。单个互作对的表型贡献率范围为0.53-14.26%。这32个互作对当中大部分是两个没有单位点效应的位点之间的互作,表明除了单位点QTL外还存在着许多没有单位点加性效应位点之间的上位性互作参与了性状的调控。
     5. BQ DH遗传连锁图谱与拟南芥基因组的比较作图及in silico定位
     利用BQ DH遗传连锁图谱上已知序列信息的分子标记作为锚定标记,将该遗传图谱与拟南芥基因组比较作图,在BQ DH遗传连锁图谱上定位了20个共线性区段和123个保守岛。通过in silico定位最终将拟南芥中153个与籽粒产量及产量相关性状和硼吸收代谢相关的基因定位到BQ DH群体中的70个QTL的区间内,并发现有硼代谢相关的基因定位在低硼条件下的籽粒产量QTL区间内。这些QTL信息和候选基因为深入研究提供了丰富的信息。
     6.甘蓝型油菜硼高效主效位点BnBE1的定位及其候选基因的预测分析
     通过比较分析BQ F2群体、TN DH群体以及本研究的BQ DH群体等三个群体的A2染色体上检测到的硼高效QTL,结果表明,这三个群体中定位到的硼高效QTL相互重叠,正是BQ F2报道的BE1。因此将此位点定为甘蓝型油菜成熟期硼高效主效QTL BnBE1。并利用与甘蓝型油菜A基因组高度同源的白菜基因组信息对主效位点BnBE1预测出6个候选基因,它们是关于小分子转运基因以及拟南芥中硼通道转运蛋白AtNP5;1和AtNIP7;1在白菜基因组中的同源基因。
Nutrient efficient crops which produce higher yields per unit of nutrient applied or absorbed is a latest important breeding target. Rapeseed is the second important oil crop after soybean. Brassica napus was the most important member of rapeseed which occupies about80%of rapeseed area. Boron (B) is one of essential micro-nutrient for high plant growth. B deficiency becomes a various limiting factor of increasing crop yield in the world. B. napus which is in great demand of B shows very sensitive to B deficiency. B deficiency could lead to flowering without seed set and yield decrease even no seed setting. Application of borax fertilizers can alleviate the problem in some degree, but can also lead to environmental problem, and B ore resources are limited. It was reported that considerable genotypic variation exists among different cultivars in response to B deficiency in B. napus. So, developing B efficiency cultivars by genetics and biotechnology is a essential approach for improving B. napus in response to B deficiency. In this study, a genetic linkage map was constructed based on the B. napus BQ DH population which was developed by other members in our group. Three-year field trials with low and normal B treatments were conducted using the BQ DH population for investigating seed yield and yield-related traits. Quantitative trait locus (QTL) analysis for seed yield and yield-related traits under low B and normal B conditions using the BQ DH population was conducted. Main results are as follows:
     1. Construction of B efficiency BQ DH genetic linkage map in B. napus
     A total of1413SSR primers named "BnGMS" and "BoGMS" from other study reports,403SSR primers developed by our group according to sequenced BAC of A2, A3and A9and50SSR primers developed according to sequence of A2chromosome in Brassica rapa in this study were used for genotyping in the BQ DH population. A genetic linkage map named as BQ DH map was constructed based on the BQ DH population by software Joinmam4.0. BQ DH genetic map comprise a total of486molecular markers, including468SSR markers,7SRAP markers,9GBM markers and2other markers, which covers a total length of1873.9cM with an average interval of3.86cM between adjacent markers.
     2. Phenotype variations of the BQ DH population and their parents under different B conditions
     Trait associated with B deficiency symptom at the full-bloom stage and filling stage under low B condition, seed yield and yield-related traits under both B conditions were investigated by three-year field trials using the BQ DH population and its parents. For the trait associated with B deficiency symptom, B-efficient cultivar QY10showed almost normal flowering and seed setting and almost no B deficiency symptom, B-inefficient cultivar Bakow was seriously influenced by B deficiency in flowering and seed setting and leaves. It indicated that QY10has a stronger adaptability to B deficiency than Bakow. Abundant variation among the BQ DH population ranged from grade I to grade V was observed. At the mature stage, significant differences were observed between the two parents by seed yield, plant height, branch number, pod number per plant, seed number per pod and seed weight under low B condition. And significant differences were observed between the two parents by seed yield, pod number per plant and seed weight under normal B condition. All the traits investigated under both B conditions showed continuous phenotypic variation and significant transgressive segregation in both directions, indicating these traits are all quantitative traits and controlled by multiple genes. Correlations among all the traits under single B condition were different. ANOVA results suggested that genotype, B level, environment and the interactions among these variable had significant effect on the six measured traits.
     3. QTL detection for seed yield and yield-related traits and index of boron deficiency (GBD) in the BQ DH population
     Seed yield, plant height, branch number, pod number per plant, seed number per pod and seed weight under both B conditions and B efficiency coefficient (BEC) were use for QTL mapping in the BQ DH population. A total of70putative QTLs distributing on15linkage groups (except for A5, A8, C1and C2) singly explaining4.15-23.16%of phenotypic variation were detected by software WinQTLCartographer2.5, including30QTLs under low B condition,35QTLs under normal B condition and5QTLs for BEC. Among these QTLs,7and16QTLs were identified across three and two trials, respectively. By BioMercator2.1,29QTLs for seed yield and yield-related traits from other populations were projected onto the BQ DH population, co-locating with16QTLs for the same trait. Three QTLs for GBD were detected distributing on A7and C8linkage groups.
     4. Detection of epistatic interactions for seed yield and yield-related traits in the BQ DH population
     Six measured traits under both B conditions and BEC were used to detect epistatic interactions in the BQ DH population by software QTLNetwork2.0. A total of32epistatic interactions distributing on the whole genome (except for A8) were detected, singly explaining0.53-14.26%of phenotypic variation. Most of them were the interactions between two loci without main-effect. It indicated that many epistatic interactions between two without main-effect loci are involved in regulating seed yield and yield-related traits under low and normal B conditions.
     5. Comparative mapping between the BQ DH genetic linkage map and Arabidopsis genome and in silico mapping
     The comparative mapping between B. napus and Arabidopsis was carried employing SSR and GBM markers with known sequence information as anchored markers based on identified24conserved chromosomal blocks on Arabidopsis genome. A total of20synteny blocks and123insertions fragment islands were identified. By in silico mapping,153genes associated with seed yield, yield-related traits and B metabolism were mapped to the confidence intervals of70putative QTLs in the BQ DH population. The information and candidate genes were benefit for further study.
     6. Identification of B efficiency major locus BnBEl and prediction of candidate genes of BnBEl
     Comparative analyzing the QTLs for B efficiency on A2linkage group in the BQ F2, TN DH and BQ DH populations, the QTLs for B efficiency of the three populations co-localize in the same genomic region, just was the reported BE1. And the major locus for B efficiency at the mature stage was designed as BnBEl. Six candidate genes of BnBE1were predicted using known B. rapa genome information, including small molecule transporter genes, and B. rapa homologous genes of AtNIP5;1and AtNIP7;1in Arabidopsis.
引文
1.丁广大,杨美,李兴美.甘蓝型油菜分子标记在重组自交系群体中的偏分离分析,中国农业科技导报,2012,14(2):56-61
    2.丁广大.甘蓝型油菜磷高效分子整合图谱的构建及磷高效QTL的定位与分析.[博士学位论文].武汉:华中农业大学图书馆,2011
    3.段小丽.甘蓝型油菜硼高效连锁标记的筛选与基因定位.[硕士学位论文].武汉:华中农业大学图书馆,2009
    4.耿明建.不同硼效率棉花品种对缺硼反应差异及其机理研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    5.孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2006
    6.刘佳.甘蓝型油菜硼营养及离子组遗传学研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    7.梁和,马国瑞,石伟勇,杨玉爱.硼钙营养对胡柚果实激素及相关酶代谢的影响,2005,36(1):80-84
    8.陆景陵.植物营养学(上册).北京:中国农业大学出版社,2003
    9.莫惠栋.数量性状遗传基础研究的回顾与思考--后基因组时代数量遗传领域的挑战,2003,24(2):24-31
    10.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    11.沈康,沈振国,徐汉卿,黄清渊.油菜(B.napus L.)硼素营养与结实性的研究.作物学报,1993,19:539-545
    12.沈振国,张秀省,王震宇,沈康.硼素营养对油菜花粉萌发的影响.中国农业科学,1994,27:51-56
    13.师家勤.甘蓝型油菜产量性状及其杂种优势遗传基础的全基因解析.[博士学位论文].武汉:华中农业大学图书馆,2009
    14.石磊,杨玉华,徐芳森,王运华.硼对作物细胞膜功能影响的研究进展.华中农业大学学报,2002,21:395-400
    15.石磊,年夫照,赵华,徐芳森,孟金陵,王运华.7个甘蓝型油菜品种对硼胁迫反应的差异.中国油料作物学报,2004,26(1):47-50
    16.王运华,兰莲芳.甘蓝型油菜品种对缺硼敏感性差异的研究(Ⅰ,Ⅱ,Ⅲ).华中农业大学学报,1995,21:71-84
    17.王运华,周晓峰.硼对棉花叶柄中无机营养、酚、酶活性和激素影响的研究.植物营养与肥料学报,1994,1:61-66
    18.魏文学,王运华,孙香芝,瞿波.缺硼条件下向日葵叶片叶绿体及线粒体解剖结构的观 察.华中农业大学学报,1989,8(4):361-363
    19.伍丽昆.甘蓝型油菜硼高效DH群体及遗传连锁图的构建.[硕士学位论文].武汉:华中农业大学图书馆,2008
    20.吴礼树,刘武定,皮美美.硼钾营养及其相互关系对棉花光合作用的影响.华中农业大学学报,1995,增刊21:24-27
    21.徐芳森,王运华.甘蓝型油菜2个不同硼效率品种杂交一代对缺硼的反应.华中农业大学学报,1998 17(4):345-349
    22.严建兵,汤华,黄益勤,郑用链,李建生.玉米F2群体分子标记偏分离的遗传分析,2003,30(10):913-918
    23.杨锦鹏.利用TN群体定位甘蓝型油菜硼高效QTLs的研究[D].[硕士学位论文].武汉:华中农业大学图书馆,2007
    24.杨晓冬,孙素琴,李一勤.硼缺乏导致花粉管细胞壁多糖分布的改变.植物学报,1999,41:1169-1176
    25.杨玉华,王运华,吴礼树,杜昌文.植物硼效率差异的研究进展.华中农业大学学报,2002,21:95-100
    26.喻敏,褚海燕,吴礼树,王运华.甘蓝型油菜不同硼利用效率基因型对硼的吸收、分配的影响.中国油料作物报,1999,21:49-52
    27.张秀省,沈振国,沈康.硼对油菜花器官发育和结实性的影响.土壤学报,1994,31:146-152
    28.张玉山.水稻重要农艺性状的QTL分析和主效QTL近等基因系的构建.[博士学位论文].武汉:华中农业大学图书馆,2006
    29.赵华.甘蓝型油菜硼高效近等基因系构建及硼高效基因BnBE2的定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    30.赵竹青,王运华.矿质元素对生长素代谢影响的研究现状与展望.植物学通报,1998a,15(1):37-42
    31.赵竹青,王运华,吴礼树.缺硼对棉花、黄瓜和油菜乙烯释放的影响.植物学通报,1998b,15(2):63-66
    32.赵竹青,王运华,吴礼树.缺硼对黄瓜生长素代谢的影响.华中农业大学学报,1998c,17(3):232-236
    33. Albert LS, Wilson CM (1961) Effect of boron on elongation of tomato root tips. Plant Physiol 36:244-251
    34. Almeida GD, Makumbi D, Magorokosho C, et al. (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583-600
    35. Arcade A, Labourdette A, Falque M, et al. (2004) BioMercator:integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324-2326
    36. Bancroft I, Morgan C, Fraser F, et al. (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762-766
    37. Barendse W, Harrison BE, Hawken RJ et al. (2007) Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics 176:2601-2610
    38. Barr R, Bottger M, Crane FL (1993) The effect of boron on plasma membrane electron transport and associated proton secretion by cultured carrot cells. Biochem Mol Biol Int 31:31-39
    39. Basunanda P, Radoev M, Ecke W, et al. (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271-281
    40. Bennett A, Rowe RI, Soch N, Eckhert CD (1999) Boron stimulates yeast (Saccharomyces cerevisiae) growth. JNutr 129:2236-2238
    41. Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. JExp Bot 61:3519-3528
    42. Bernardo R (2008) Molecular markers and selection for complex traits in plants:learning from the last 20 years. Crop Sci 48:1649-1664
    43. Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481-500
    44. Bohnsack CW, Albert LS (1977) Early Effects of Boron Deficiency on Indoleacetic Acid Oxidase Levels of Squash Root Tips. Plant Physiol 59:1047-1050
    45. Brown PH, Bellaloui N, Wimmer MA, et al. (2002) Boron in Plant Biology. Plant Biology 4:205-223
    46. Brown PH, Hu H (1996) Phloem Mobility of Boron is Species Dependent:Evidence for Phloem Mobility in Sorbitol-rich Species. Ann Bot 77:497-506
    47. Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85-101
    48. Cakmak I, Romheld V (1997) Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 193:71-83
    49. Camacho-Cristobal JJ, Gonzalez-Fontes A (2007) Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta 226:443-451
    50. Camacho-Cristobal JJ, Herrera-Rodriguez MB, Beato VM, et al. (2008) The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environ Exp Bot 63:351-358
    51. Carlborg O, Haley CS (2004) Epistasis:too often neglected in complex trait studies? Nat Rev Genet 5:618-625
    52. Cavell AC, Lydiate DJ, Parkin IA, et al. (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62-69
    53. Chen W, Zhang Y, Liu X, et al. (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Theor Appl Genet 115:849-858
    54. Chen X, Schauder S, Potier N, et al. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545-549
    55. Cheng X, Xu J, Xia S, et al. (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121-1131
    56. Cheung F, Trick M, Drou N, et al. (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912-1928
    57. Chin JH, Gamuyao R, Dalid C, et al. (2011) Developing rice with high yield under phosphorus deficiency:Pup1 sequence to application. Plant Physiol 156:1202-1216
    58. Churchill GA, Doerge RW (1994) Empirical Threshold Values for Quantitative Trait Mapping. Genetics 138:963-971
    59. Cistue L, Echavarri B, Batlle F, et al. (2005) Segregation distortion for agronomic traits in doubled haploid lines of barley. Plant Breeding 124:546-550
    60. Cobb JN, Declerck G, Greenberg A, et al. (2013) Next-generation phenotyping:requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867-887
    61. Dannel F, Pfeffer H, Romheld V (2002) Update on Boron in Higher Plants-Uptake, Primary Translocation and Compartmentation. Plant Biology 4:193-204
    62. Dear B S and Lipsett J (1987) The effect of boron supply on thegrowth and seed production of subterranean clover (Trifolium subterraneum L.). Aust J Agric Res 38:537-546
    63. Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193:103-120
    64. Ding G, Liao Y, Yang M, et al. (2011) Development of gene-based markers from functional Arabidopsis thaliana genes involved in phosphorus homeostasis and mapping in Brassica napus. Euphytica 181:305-322
    65. Ding G, Zhao Z, Liao Y, et al. (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109: 747-759
    66. Doyle JI (1990) Isolation of plant DNA from fresh tissue. Focus 12:13-15
    67. Dugger W M (1983) Boron in plant metabolism. In Encyclopedia of Plant Physiology, New Series, vol.15B. Eds. A L"auchli and R L Bieleski. Springer-Verlag, Berlin, pp 626-650
    68. Edwards MD, Stuber CW, Wendel JF (1987) Molecular-Marker-Facilitated Investigations of Quantitative-Trait Loci in Maize. I. Numbers, Genomic Distribution and Types of Gene Action. Genetics 116:113-125
    69. Elshire RJ, Glaubitz JC, Sun Q, et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379
    70. Fageria NK, Baligar VC, Li YC (2008) The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century. JPlant Nutr 31:1121-1157
    71. Fan C, Cai G, Qin J, et al. (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289-1301
    72. Fan C, Xing Y, Mao H, et al. (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164-1171
    73. Farkhari M, Krivanek A, Xu Y, et al. (2013) Root-lodging resistance in maize as an example for high-throughput genetic mapping via single nucleotide polymorphism-based selective genotyping. Plant Breeding 132:90-98
    74. Ferrol N, Belver A, Roldan M, et al. (1993) Effects of Boron on Proton Transport and Membrane Properties of Sunflower (Helianthus annuus L.) Cell Microsomes. Plant Physiol 103:763-769
    75. Frary A, Nesbitt TC, Grandillo S, et al. (2000) fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85-88
    76. Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635-644
    77. Gamuyao R, Chin JH, Pariasca-Tanaka J, et al. (2012) The protein kinase Pstoll from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535-539
    78. Gautami B, Pandey MK, Vadez V, et al. (2012) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breeding 30: 757-772
    79. Gjuvsland AB, Hayes BJ, Omholt SW et al. (2007) Statistical epistasis is a generic feature of gene regulatory networks. Genetics 175:411-420
    80. Goldbach HE, Wimmer MA (2007) Boron in plants and animals:Is there a role beyond cell-wall structure? JPlant Nutr Soil Sc 170:39-48
    81. HirschAMand Torrey JG (1980) Ultrastructural changes in sunflower root cells in relation to boron deficiency and added auxin. Can. J. Bot.58:856-866
    82. Hou J, Long Y, Raman H, et al. (2012) A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.). BMC Plant Biol 12:238
    83. Hu H, Brown PH (1994) Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin (Evidence for a Structural Role of Boron in the Cell Wall). Plant Physiol 105:681-689
    84. Hu H, Brown PH, Labavitch JM (1996) Species variability in boron requirement is correlated with cell wall pectin. JExp Bot 47:227-232
    85. Hu T, Chen Y, Kiralis JW, et al. (2013) An information-gain approach to detecting three-way epistatic interactions in genetic association studies. J Am Med Inform Assn doi: 10.1136/amiajnl-2012-001525
    86. Huang L, Ye Z and Bell R (1996) The importance of sampling immature leaves for the diagnosis of boron deficiency in oilseed rape(Brassica napus cv. Eureka). Plant Soil 183, 187-198
    87. Huang X, Effgen S, Meyer RC, et al. (2012) Epistatic natural allelic variation reveals a function of AGAMOUS-LIKE6 in axillary bud formation in Arabidopsis. Plant Cell 24:2364-2379
    88. Hudak J, Herich J (1976) Effect of boron on the ultrastructure of sunflower chloroplasts. Photosynthetica 10:463-465
    89. Inaba R, Nishio T (2002) Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet 105:1159-1165
    90. Iniguez-Luy FL, Voort AV, Osborn TC (2008) Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977-985
    91. Ishii T, Matsunaga T (1996) Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohyd Res 284:1-9
    92. Ishimaru K, Hirotsu N, Madoka Y et al. (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet doi:10.1038/ng.2612
    93. Isobe S, Nakaya A, Tabata S (2007) Genotype Matrix Mapping:Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits. DNA Res 14:217-225
    94. Iwai H, Hokura A, Oishi M, et al. (2006) The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proc Natl Acad Sci USA 103:16592-16597
    95. Iwai H, Masaoka N, Ishii T, Satoh S (2002) A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc Natl Acad Sci USA 99:16319-16324
    96. Jamjod S, Niruntrayagul S, Rerkasem B (2004) Genetic control of boron efficiency in wheat (Triticum aestivum L.). Euphytica 135:21-27
    97. Jansen R C, Stam P. (1994) High resolution of quant it ative traits into multiple loci via interval mapping. Genetics 136:1447-1455
    98. Jefferies SP, Barr AR, Karakousis A et al. (1999) Mapping of chromosome regions conferring boron tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 98:1293-1303
    99. Jefferies S, Pallotta M, Paull JG et al. (2000) Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor Appl Genet 101: 767-777
    100. Jia L, Yan W, Zhu C, et al. (2012) Allelic analysis of sheath blight resistance with association mapping in rice. PLoS ONE 7:e32703
    101. Jiang C, Ramchiary N, Ma Y, et al. (2011) Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa. Theor Appl Genet 123:927-941
    102. Johnston JS, Pepper AE, Hall AE, et al. (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229-235
    103. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203-1216
    104. Kasajima I, Ide Y, Yokota Hirai M, Fujiwara T (2010) WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol Plant 139:80-92
    105. Kaur S, Cogan NOI, Ye G, et al. (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola(Brassica napus L.) cultivars. TheorAppl Genet 120:71-83
    106. Kobayashi M, Matoh T, Azuma J (1996) Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiol 110: 1017-1020
    107. Kobayashi M, Mutoh T, Matoh T (2004) Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply. JExp Bot 55:1441-1443
    108. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483-1498
    109. Kouchi H, Kumazawa K (1976) Anatomical responses of root tips to boron deficiency. Soil Sci Plant Nutr 22:53-71
    110. Kumar S, Gill BS, Faris JD (2007) Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278:187-196
    111. Lander ES, Botstein D (1989) Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics 121:185-199
    112. Lark KG, Chase K, Adler F, et al. (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656-4660
    113. Lauchli A (2002) Functions of Boron in Higher Plants:Recent Advances and Open Questions. Plant Biology 4:190-192
    114. Lee SG, Aronoff S (1966) Investigations on the Role of Boron in Plants III. Anatomical Observations. Plant Physiol 41:1570-1577
    115. Li C, Pfeffer H, Dannel F, et al. (2001a) Effects of boron starvation on boron compartmentation, and possibly hormone-mediated elongation growth and apical dominance of pea (Pisum sativum) plants. Physiol Plantarum 111:212-219
    116. Li H, Chen X, Yang Y, et al. (2010a) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breeding 28: 585-596
    117. Li H, Kilian A, Zhou M, et al. (2010b) Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 284: 319-331
    118. Li H, Ye G, Wang J (2007) A Modified Algorithm for the Improvement of Composite Interval Mapping. Genetics 175:361-374
    119. Li T, Choi WG, Wallace IS, et al. (2011a) Arabidopsis thaliana NIP7;1:an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry 50:6633-6641
    120. Li Y, Fan C, Xing Y, et al. (2011b) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266-1269.
    121. Li ZK, Luo LJ, Mei HW, et al. (2001b) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737-1753
    122. Long Y, Shi J, Qiu D, et al. (2007) Flowering Time Quantitative Trait Loci Analysis of Oilseed Brassica in Multiple Environments and Genomewide Alignment with Arabidopsis. Genetics 177:2433-2444
    123. Lou P, Zhao J, Kim JS, et al. (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. JExp Bot 58:4005-4016
    124. Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103-1112
    125. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622-628
    126. Lu YH, Arnaud D, Belcram H, et al. (2012) A dominant point mutation in a RINGv E3 ubiquitin ligase homoeologous gene leads to cleistogamy in Brassica napus. Plant Cell 24:4875-4891
    127. Ma XQ, Tang JH, Teng WT, et al. (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breeding 20:41-51
    128. Mangelsdorf PC, Jones DF (1926) The Expression of Mendelian Factors in the Gametophyte of Maize. Genetics 11:423-455
    129. Marschner P (1995) Marschner's Mineral Nutrition of Higher Plants, Second Edition,2nd ed. Academic Press
    130. Matoh T, Ishigaki K, Ohno K, Azuma J (1993). Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant Cell Physiol 34,639-642
    131. Miwa K, Fujiwara T (2010) Boron transport in plants:co-ordinated regulation of transporters. Ann Bot 105:1103-1108
    132. Miwa K, Takano J, Fujiwara T (2006) Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J 46:1084-1091
    133. Miwa K, Takano J, Omori H, et al. (2007) Plants tolerant of high boron levels. Science 318:1417
    134. Miwa K, Tanaka M, Kamiya T, Fujiwara T (2010) Molecular mechanisms of boron transport in plants:involvement of Arabidopsis NIP5;1 and NIP6;1. Adv Exp Med Biol 679:83-96.
    135. Mondy NI, Munshi CB (1993) Effect of boron on enzymic discoloration and phenolic and ascorbic acid contents of potatoes. J Agr Food Chem 41:554-556
    136. Mun JH, Kwon SJ, Seol YJ, et al. (2010) Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11:R94
    137. Mun JH, Kwon SJ, Yang TJ, et al. (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111
    138. Nachiangmai D, Dell B, Bell R, et al. (2004) Enhanced boron transport into the ear of wheat as a mechanism for boron efficiency. Plant Soil 264:141-147
    139. Noguchi K, Dannel F, Pfeffer H, et al. (1997) Defect in root-shoot translocation of boron in Arabidopsis thaliana mutant bor1-1.J. plant physiol 156:751-755
    140. Noguchi K, Yasumori M, Imai T et al. (1997) bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol 115:901-906
    141.Ochiai K, Uemura S, Shimizu A et al. (2008) Boron toxicity in rice (Oryza sativa L.). Ⅰ. Quantitative trait locus (QTL) analysis of tolerance to boron toxicity. Theor Appl Genet 117:125-133
    142. O'Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan Ⅱ for Arabidopsis growth. Science 294:846-849
    143. O'Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan Ⅱ:structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109-139
    144. Pagny G, Paulstephenraj PS, Poque S, et al. (2012) Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana. New Phytol 196:873-886
    145. Pan Y, Wang Z, Yang L, et al. (2012) Differences in cell wall components and allocation of boron to cell walls confer variations in sensitivities of Brassica napus cultivars to boron deficiency. Plant Soil 354:383-394
    146. Panjabil P, Jagannath A, Bisht NC et al. (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113
    147. Parkin IAP, Gulden SM, Sharpe AG, et al. (2005) Segmental Structure of the Brassica napus Genome Based on Comparative Analysis With Arabidopsis thaliana. Genetics 171:765-781
    148. Paull JG, Rathjen AJ, Cartwright B (1991) Major genes controlling tolerance of bread wheat to high concentrations of soil boron. Euphytica 55:217-228
    149. Peng J, Korol AB, Fahima T, et al. (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides:genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509-1531
    150. Pereira MG, Lee M, Bramel-Cox P, et al. (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236-243
    151. Piquemal J, Cinquin E, Couton F, et al. (2005) Construction of an oilseed rape(Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514-1523
    152. Punchana S, Cakir M, Rerkasem B, Jamjod S (2012) Mapping the Bod2 gene associated with boron efficiency in wheat. ScienceAsia 38:235-243
    153. Qin L, Zhao J, Tian J, et al. (2012) The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159:1634-1643
    154. Qiu D, Morgan C, Shi J, Long Y et al. (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. TheorAppl Genet 114:67-80
    155. Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547-1558
    156. Raman R, Taylor B, Marcroft S, et al. (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125:405-418
    157. Rana D, van den Boogaart T, O'Neill CM, et al. (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725-733
    158. Rerkasem B, Netsangtip R, Lordkaew S, Cheng C (1993) Grain set failure in boron deficient wheat. Plant and Soil 155-156:309-312
    159. Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20:1199-1216
    160. Ruiz JM, Bretones G, Baghour M, et al. (1998) Relationship between boron and phenolic metabolism in tobacco leaves. Phytochemistry 48:269-272
    161. Ruuhola T, Keinanen M, Keski-Saari S, Lehto T (2011) Boron nutrition affects the carbon metabolism of silver birch seedlings. Tree Physiol 31:1251-1261
    162. Sakamoto T, Inui YT, Uraguchi S, et al. (2011) Condensin Ⅱ alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23:3533-3546
    163. Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17:914-921
    164. Sax K (1923) The Association of Size Differences with Seed-Coat Pattern and Pigmentation in Phaseolus vulgaris. Genetics 8:552-560
    165. Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem 39:253-262
    166. Schnurbusch T, Collins NC, Eastwood RF et al. (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bol boron toxicity tolerance locus of bread wheat. TheorAppl Genet 115:451-461
    167. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci 11:535-542
    168. Shi J, Li R, Qiu D, et al. (2009a) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851-861
    169. Shi J, Li R, Zou J, et al. (2011) A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS ONE 6:e21645
    170. Shi L, Wang Y, Nian F, et al. (2009b) Inheritance of Boron Efficiency in Oilseed Rape. Pedosphere 19:403-408
    171. Shi T, Li R, Zhao Z, et al. (2013) QTL for Yield Traits and Their Association with Functional Genes in Response to Phosphorus Deficiency in Brassica napus. PLoS ONE 8:e54559
    172. Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant soil 193:121-148.
    173. Sommer AL, Lipman CB (1926) Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiol 1:231-249
    174. Song X, Huang W, Shi M, Zhu M et al. (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623-630
    175. Spickett SG, Thoday JM (1966) Regular responses to selection.3. Interaction between located polygenes. Genet Res 7:96-121.
    176. Sun J, Shi L, Zhang C, Xu F (2011) Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep 39:1963-1973
    177. Sutton T, Baumann U, Hayes J, et al. (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446-1449
    178. Suwabe K, Iketani H, Nunome T, et al. (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092-1098
    179. Symonds VV, Godoy AV, Alconada T, et al. (2005) Mapping Quantitative Trait Loci in Multiple Populations of Arabidopsis thaliana Identifies Natural Allelic Variation for Trichome Density. Genetics 169:1649-1658
    180. Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5-S10
    181.Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms:collaboration of channels and transporters. Trends Plant Sci 13:451-457
    182. Takano J, Noguchi K, Yasumori M, et al. (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337-340
    183. Takano J, Wada M, Ludewig U, et al. (2006) The Arabidopsis Major Intrinsic Protein NIP5;1 Is Essential for Efficient Boron Uptake and Plant Development under Boron Limitation. Plant Cell 18:1498-1509
    184. Tanada T (1978) Phytochrome-induced Increase of Fluorescein Translocation in Mung Bean Hypocotyls. Plant Physiol 62:105-106
    185.Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. PflugArch EurJPhy 456:671-677
    186. Tanaka M, Wallace IS, Takano J, et al. (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860-2875
    187.Teng F, Zhai L, Liu R, et al. (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73:405-416
    188. Thomsberry JM, Goodman MM, Doebley J, et al. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286-289
    189. Town CD, Cheung F, Maiti R, et al. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348-1359
    190. Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed(Brassica napus L.):2. Identification of alleles from unadapted germplasm. TheorAppl Genet 113:597-609
    191. Van Driessche N, Demsar J, Booth EO et al. (2005) Epistasis analysis with global transcriptional phenotypes. Nat Genet 37:471-477
    192. Van Ooijen JW (2006) JoinMap(?)4.0:software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands
    193. Wang DL, Zhu J, Li ZK, Paterson AH (1999a) Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255-1264
    194. Wang G, Romheld V, Li C, Bangerth F (2006) Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants(Pisum sativum L.). J Plant Physiol 163:591-600
    195. Wang J, Long Y, Wu B, et al. (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271
    196. Wang J, Lydiate DJ, Parkin IAP, et al. (2011a) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101
    197. Wang LX, Zhao JW, Xu FS, et al. (2002) Integration of DNA clones related to important economic traits of Brassica napus onto Arabidopsis genetic map. Yi Chuan Xue Bao 29:741-746
    198. Wang X, Wang H, Wang J, et al. (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035-1039
    199. Wang Z, Wang Z, Chen S, et al. (2011c) Proteomics reveals the adaptability mechanism of Brassica napus to short-term boron deprivation. Plant Soil 347:195-210
    200. Wang Z, Wang Z, Shi L, et al. (2010) Proteomic alterations of Brassica napus root in response to boron deficiency. Plant Mol Biol 74:265-278
    201. Wang ZY, Tang YL, Zhang FS, Wang H (1999b) Effect of boron and low temperature on membrane integrity of cucumber leaves. J Plant Nutr 22:543-550
    202. Warington K (1923) The Effect of Boric Acid and Borax on the Broad Bean and certain other Plants. Ann Bot 37:629-672
    203. Wimmer MA, Lochnit G, Bassil E, et al. (2009) Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography. Plant Cell Physiol 50:1292-1304
    204. Woods WG (1996) Review of possible boron speciation relating to its essentiality. J Tra Ele Exp Med 9:153-163
    205. Wu J, Yuan YX, Zhang XW, et al. (2008) Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310:25-40
    206. Wurschum T, Maurer HP, Schulz B, et al. (2011) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123:109-118
    207. Xing G, Zhou B, Wang Y, et al. (2012) Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theor Appl Genet 125:859-875
    208. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61: 421-442
    209. Xing Z, Tan F, Hua P, et al. (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248-257
    210. Xu F, Wang Y (2007) Physiological and genetic base of boron efficiency in Brassica napus
    211. Xu FS, Wang YH, Meng J (2001) Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding 120:319-324
    212. Xu S (2008) Quantitative Trait Locus Mapping Can Benefit From Segregation Distortion. Genetics 180:2201-2208
    213. Xue W, Xing Y, Weng X, et al. (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761-767
    214. Yamagishi M, Takeuchi Y, Tanaka I, et al. (2010) Segregation distortion in F2 and doubled haploid populations of temperate japonica rice. J Genet 89:237-241
    215. Yan J, Kandianis CB, Harjes CE, et al. (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322-327
    216. Yan X, Liao H, Beebe SE, et al. (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17-29
    217. Yang J, Hu C, Hu H, et al. (2008) QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721-723
    218. Yang J, Zhao X, Cheng K, et al. (2012a) A Killer-Protector System Regulates Both Hybrid Sterility and Segregation Distortion in Rice. Science 337:1336-1340
    219. Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:152-1536
    220. Yang L, Zhang Q, Dou J, et al. (2013a) Characteristics of root boron nutrition confer high boron efficiency in Brassica napus cultivars. Plant Soil doi:10.1007/s11104-013-1669-1
    221. Yang P, Shu C, Chen L, et al. (2012b) Identification of a major QTL for silique length and seed weight in oilseed rape(Brassica napus L.). Theor Appl Genet 125:285-296
    222. Yang W, Duan L, Chen G, et al. (2013b) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol. doi:10.1016/j.pbi.2013.03.005
    223. Yang W, Xu X, Duan L, et al. (2011) High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography. Rev Sci Instrum 82:025102
    224. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. JMol Evol 48:597-604
    225. Yi K, Wu Z, Zhou J, et al. (2005) OsPTFl, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087-2096
    226. Yu SB, Li JX, Xu CG, et al. (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 94:9226-9231
    227. Zeng C, Han Y, Shi L, et al. (2008) Genetic analysis of the physiological responses to low boron stress in Arabidopsis thaliana. Plant Cell Environ 31:112-122
    228. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457-1468
    229. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972-10976
    230. Zhang L, Wang S, Li H, et al. (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071-1082
    231. Zhang QF. (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104: 16402-16409
    232. Zhao H, Shi L, Duan X, et al. (2008) Mapping and validation of chromosome regions conferring a new boron-efficient locus in Brassica napus. Mol Breeding 22:495-506
    233. Zhao J, Becker HC, Zhang D, et al. (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33-38
    234. Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). TheorAppl Genet 106:759-764
    235. Zhou G, Chen Y, Yao W et al. (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 109:15847-15852
    236. Zou X, Suppanz I, Raman H, et al. (2012) Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS ONE 7:e45751

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700