用户名: 密码: 验证码:
水分对切花百合生长和外观品质影响的预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是影响观赏植物生长和外观品质形成的重要因子之一。为定量研究水分对切花百合生长和外观品质的影响,本研究以切花百合‘索邦’(Lilium'Sorbonne')为试验材料,于2009年3月~2010年1月在南京市农科所花卉温室内进行了不同定植期(2009.3.26、2009.4.26、2009.9.27)和不同水分处理(-4~-10kPa、-10~-15kPa、-15~-25kPa、-25~-40kPa)的栽培试验,以基于光温(Plant based photo-thermal index, PTI)的温室花卉生长和外观品质预测模型为基础,利用水分处理试验数据资料,定量分析了基质水势对切花百合各生长指标(叶面积指数、叶片最大总光合效率、干物质生产和分配)和各外观品质指标(株高、展叶数、花苞长和花苞直径)以及出花率动态的影响,建立了基质水势对切花百合生长和外观品质及出花率影响的预测模型,并用与建立模型相独立的试验数据对模型进行检验。结果表明,本研究建立的模型对切花百合各生长指标、外观品质指标以及出花率的预测效果均较好,模型可以为切花百合生产中水分的精确与优化管理提供理论依据和决策支持。具体研究结果如下:
     (1)通过水分对切花百合生长和外观品质指标影响的研究,切花百合生长指标和外观品质指标随着基质水势的升高而增加,达到-15kPa时,切花百合各生长和外观品质指标趋于稳定,所以本试验确定-15kPa为切花百合生产的临界水势。
     (2)水分对叶面积指数影响的模拟预测。水分处理试验结果表明,最大叶长(Lmax)、叶面积指数增加速率(rLAI)、叶面积指数(LAI)随着基质水势的升高而增加,当基质水势达到-15kPa时,趋于稳定;当基质水势低于-15kPa时,Lmax、rLAI和LAImax则随着基质水势的降低而呈线性递减趋势。用与建立模型相独立的试验数据对展叶数、单叶叶长和LAI预测,模型对切花百合展叶数(N)、单叶叶长(L)和LAI预测值与实测值基于1:1线的决定系数(r2)值为0.96、0.82和0.97;相对回归估计标准误(rRMSE)值为6.32%、8.78%和7.12%。
     (3)水分对叶片最大总光合速率和干物质生产影响的模拟预测。利用水分处理试验数据资料,定量分析了水分对单叶最大总光合速率(P g,max)和初始光能利用率(ε)的影响。结果表明,当基质水势在-15kPa以上时,百合植株的P g,max和ε趋于稳定;当基质水势低于-15kPa时,则随着基质水势的降低而呈线性递减趋势。用与建立模型相独立的试验数据对模型进行检验。结果表明,模型对切花百合植株的叶片最大总光合速率(Pg,max/和植株总干重(BIOMASS)的预测值与实测值之间基于1:1线的决定系数(r2)分别为0.96,0.81,相对回归估计标准误(rRMSE)分别为4.37%,10.54%
     (4)水分对干物质分配影响的模拟预测。利用水分处理试验数据资料,定量分析了水分对切花百合地上部(花、茎、叶)和地下部各器官干物质分配指数(鳞茎、茎生根)动态的影响。结果表明,百合植株花、茎、叶、茎生根的分配指数(PIF、PIST、PIL、PIR)随着基质水势的升高而增加,到达-15kPa时不再升高,鳞茎的分配指数(PIB)随着基质水势的升高而下降,在-15kPa是不再下降。各器官花、茎、叶、鳞茎和茎生根的分配指数增加速率(rPIF、rPIST、rPIL、rPIB、rPIR、随着基质水势的升高而上升,达到-15kPa时不再变化。用与建立模型相独立的试验数据对模型进行检验,结果表明,模型对切花百合各器官(花、茎、叶、鳞茎、茎生根)干重(DMF、 DMST、DML、DMB、DMR)预测值与实测值之间基于1:1线的决定系数(r2)分别为0.96、0.95、0.86、0.95、0.85,相对回归估计标准误(rRMSE)分别为19.18%、12.35%、19.42%、12.23%、31.73%。该模型对在不同水分处理下温室切花百合干物质分配动态的预测具有较好的解释性和预测性。
     (5)水分对外观品质指标(株高、展叶数、花苞长、花苞直径)的动态影响的模拟预测。利用水分处理试验数据资料,定量分析了水分对切花百合外观品质各指标和出花率的影响。结果表明,基质水势对切花百合展叶数(N)的影响,各处理变化不显著,值为37leaves·pl-1.当基质水势在-15kPa以上时,各外观品质指标均无明显差异;当基质水势在-15kPa以下时,株高、花苞长和花苞直径外观指标的增长速率(rH、rFL、rFD)随着基质水势的下降而呈线性下降趋势,使得采收时株高(HH)、花苞长(FL)和花苞直径(FD)降低,影响了切花品质。用与建立模型相独立的试验数据对模型进行检验,结果表明,模型对切花百合NH、N、FL和FD预测值与实测值基于1:1线的决定系数(r2)值分别为0.97、0.96、0.97、0.89;相对回归估计标准误(rRMSE)值分别为7.54%、6.32%、9.56%、1.15%。
     (6)水分对出花率影响的模拟预测。不同水分处理采收时统计的各级(A级、B级、C级、D级)出花率的结果表明,A级和B级花的出花率(RA、RB)随着基质水势的升高而增加,当基质水势达到-15kPa时,不再增加;C级、D级花的出花率(RC、RD)随之基质水势的升高而降低,达到-15kPa是不再降低。基质水势在-15kPa以下时,RA、RB占的比例小,而RC、RD占的比例大,导致了切花品质的下降;在-15kPa以上,RA、RB占的比例大,而RC、RD占的比例小,提高了切花的品质。用与建立模型的相独立的试验数据对模型进行检验,结果表明,模型对切花百合的RA、RB、RC、RD预测值与实测值基于1:1线的决定系数(产)值为0.87;相对回归估计标准误(rRMSE)分别为6.41%。
     本研究建立的模型可以根据定植日期、基质水势和温室光和有效辐射和温度信息动态预测切花百合‘索邦’的生长和外观品质指标及出花率。模型综合考虑了温度、光照和水分对切花百合的综合影响,采用基质水势而不是土壤含水量为水分指标,针对不同类型的土壤或基质建立含水量——水势关系特征曲线,可以为不同类型土壤或基质栽培百合‘索邦’的水分管理提供理论依据和决策支持。
Water is an essential factor which affects the crop growth and the formation of the growth and external quality. The aim of this study is to quantitatively investigate the effects of water on crop growth and external quality of cut Lilium. Experiments of Lilium 'Sorbonne'with different planting dates (2009.3.26,2009.4.26,2009.9.27) and different levels of water treatment (-4~-10kPa,-10~-15kPa,-15~25kPa,-25~40kPa) were conducted in a flower greenhouse in Naijing from March2009to January2010. Based on the model describing the effect of photo-thermal index (PTI) on greenhouse flower growth and external quality, we analyzed the effect of substrate water potential on the leaf area index (LAI), the maximal photosynthesis rate, dry matter production and partitioning of cut Lilium, meantime, collected the data of external quality including plant height, the number of leaf unfolding, flower length and flower diameter under different treatments, then developed a model to predict the growth, external quality, relative yield and validated the model with independent experimental data. The results showed a well predicted conclusion of LAI, dry weight and various external quality indices. This study provided the theoretical basis and decision making to water management during cut Lilium production. The main research results are follows:
     (1) Determination of the critical value for substrate potential. According to our experiment and result analysis, all the growth and external quality indices linearly decrease along with the decreasing substrate water potential when its value is below-15kPa, but remain constant above-15kPa. Thus we deem-15kPa as the threshold value for cut Lilium growth.
     (2) Predicting the effects of water on LAI of cut Lilium.The study quantitatively analyzed the maximum leaf length (Lmax), increasing rate of LAI (rLAI) and LAI under different water treatments. The results showed that Imax,rLAI and LAImax increased along with the increasing of substrate water potential, the two indexes were stable when the water potential attended-15kPa, but linearly decreased accompanied the decrease of water potential below-15kPa. Independent data acquired to validate the model, the result showed that the coefficient of determination (r2) and the relative root mean square error (rRMSE) between the measured and predicted number of leaf unfolding, leaf length and LAI were0.96,0.82,0.97and6.32%,8.78%,7.12%, respectively.
     (3) Predicting the effect of water on maximal photosynthesis rate and dry matter production of cut Lilium. The study quantitatively analyzed the maximum leaf gross photosynthesis rate (Pg,max) and initial photo-energy utilization ratio (ε) under different water treatments. The results showed that Pg,max and ε were almost the same when the water potential was above-15kPa, but linearly decreased accompanied the decrease of water potential below-15kPa. Independent data acquired to validate the model, the result showed that the coefficient of determination (r2) and the relative root mean square error (rRMSE) between the measured and predicted for Pg,max and biomass were0.96,0.81and4.37%,10.54%, respectively.
     (4) Predicting the effect of water on dry matter partitioning of cut Lilium. The study quantitatively analyzed the indexes of organs aboveground and underground under different water treatments. The results showed that the indexes for flower, stem, leaf, root (PIF, PIST, PIL, PIR) increased but bulb(PIB) decreased along with the increasing when the water potential was above-15kPa, respectively. And all the increasing rate of these indexes (rPIF, rPIST. rPIL.rPIR,rPIB) linearly increased accompanied the increase of water potential below-15kPa. Independent data acquired to validate the model, the result showed that the coefficient of determination (r2) and the relative root mean square error (rRMSE) between the measured and predicted for the dry weight of organs (DMF, DMST, DML, DMB, DMR) were0.96,0.95,0.86,0.95,0.85and19.18%,12.35%,19.42%,12.23%,31.73%, respectively.
     (5) Predicting the effect of water on external quality (plant height, leaf number, flower length, flower diameter) of cut Lilium. The study quantitatively analyzed the external quality under different water treatments. The results showed that the effect of water on cut Lilium total leaf number was not significant. The external quality showed no difference when the substrate water potential was above-15kPa, but the increasing rate of plant height, flower length and flower diameter (rH, rFL,rFD) linearly decreased along with the decrease of water potential below-15kPa, which resulted in the decrease of harvesting plant height (HH), flower length (FL) and flower diameter (FD). Independent data acquired to validate the model, the result showed that the coefficient of determination (r2) and the relative root mean square error (rRMSE) between the measured and predicted for the HH, N, FL and FD were0.97,0.96,0.97,0.89and7.54%,6.32%,9.56%,1.15%, respectively.
     (6) Predicting the effect of water on relative yield of cut Lilium. The study quantitatively added up the different ranks (rank A, B, C and D) of relative yield under different water treatments. The results showed that the rank A and B increased along with the increasing substrate water potential above-15kPa, but opposite to the rank C and D. when the substrate water potential was below-15kPa, the ratio of (RA+RB)/(RC-RD) decreased, which led to bad external quality. Independent data acquired to validate the model, the result showed that the coefficient of determination (r2) and the relative root mean square error (rRMSE) between the measured and predicted for the relative yield were0.87and6.41%, respectively.
     This model is capacity for dynamicly predicting the cut Lilium growth, external quality and relative yield according to the date of planting, substrate water potential, PAR and temperature in greenhouse. In the model, we used substrate water potential to replace the subatrate water content and comprehensively considered the effect of temperature, light and water on cut Lilum which could be used in various types of soil or substrate, and provided the theoretical basis and decision making to water management during cut Lilium production.
引文
[1]丁雨恒,龙振华,赵良,等.我国发展节水灌溉技术的必要性和可行性研究[J].农村经济与科技,2009,20(8):102.
    [2]周浩,成自勇,王铁良.我国温室设施节水现状及未来发展趋势[J].安徽农业科学,2007,35(27):8621-8622.
    [3]王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.
    [4]Alt C., Kage H., Stutzel H.. Modelling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis) [J].Annals of Botany,2000,86:963-973.
    [5]Larsen R. U., Hiden C.. Predicting leaf unfolding in flower induced shoots of greenhouse grow chrysanthemum [J].Scientia Horticulturae,1995,63:225-239.
    [6]Lee J. H., Heuvelink E.. Simulation of Leaf Area Development Based on Dry matter Partitioning Specific Leaf Area for Cut Chrysanthemum [J].Annals of Botany,2003,91:319-327.
    [7]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867.
    [8]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [9]Xu R., Dai J., Luo W., et al. A photothermal model of leaf area index of greenhouse crops [J].Agricultural and Forest Meteorology,2010,150:541-552.
    [10]Ploeg A., van der Kularathne R. J. K. N., Carvalho S. M. P., Heuvelink E.. Variation between cut chrysanthemum cultivars in response to suboptimal temperature [J].American Society for Horticultural Science,2007,132 (1):52-59.
    [11]Michael Marcotrigiano. A role for leaf epidermis in the control of leaf size and the rate ang extent of mesophyll cell division [J].American Journal of Botany,2010,97 (2):224-233.
    [12]Hsiao T. C., Xu L. K.. Sensitivity of growth of roots versusleaves to water stress:biophysical analysis and relation to water transport [J].Experimental Botany.2000,51:1595-1616.
    [13]程智慧,孟焕文Stephen ARolfe,等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报,2002,30(6):93-96.
    [14]王军,王益奎,李鸿莉,等.水分胁迫对烟草生长发育的影响研究进展[J].广西农业科学,2004,35(6):440-442.
    [15]ALFREDO A. C. ALVES and TIM L. SETTER. Response of cassava leaf area expansion to water deficit:cell proliferation, cell expansion and delayed d evelopment [J].Annals of Botany,2004,94: 605-613.
    [16]Christine Granier and Francois Tardieu. Water deficit and spatial pattern of leaf development variability in responses can be simulated using a simple model of leaf development [J].Plant Physiology,1999,119:609-619.
    [17]Gustavo A. Pereyra-Irujo, Luciano Vela zquez, Leandra Lechner and Luis A. N. Aguirreza'bal.. Genetic variability for leaf growth rate and duration under water deficit in sunflower:analysis of responses at cell, organ, and plant level [J].Experimental Botany, Vol.59, No.8, pp.2221-2232, 2008.
    [18]陈立松,刘星辉.果树对水分胁迫的反应与适应性[J].干旱地区农业研究,1999,17(1):88-94.
    [19]刘晓英,罗远培,石元春.考虑水分胁迫滞后影响的作物生长模型[J].水利学报,2002,6:32-37.
    [20]Jensen C. R., Mogensen V. O., Mortensen G., Andersen M. N., Schjoerring J. K., Thage J. H., Koribidis J.. Leaf photosynthesis and drought adaptation in field-grown oilseed rape (Brassica napus L.) [J].Plant Physiology,1996,23:631-644.
    [21]吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报,2000,15(3):92-96.
    [22]梁银丽,康绍忠,张成娥,等.不同水分条件下小麦生长特性及氮磷营养的调节作用[J].干旱地区农业研究,1999,17(4):58-64.
    [23]Cohen S., Cohen Y.. Field studies of leaf conductance response to environmental variables in citrus [J].Applied Ecology,1983,20:561-570.
    [24]Spollen W. G., Sharp R. E.. Spatial distribution of turgor and root growth at low water potentials [J].Plant Physiology,1991,96:438-443.
    [25]Pierre Casadebaig, Philippe Debaeke, Jeremie Lecoeur. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes [J].European Journal of Agronomy,2008,28:646-654.
    [26]Jeremie Lecoeur, Lydie Guilioni. Rate of leaf production in response to soil water deficits in field pea [J].Field Crops Research,1998,3:219-328.
    [27]Yang Y, Timlin D. J., Fleisher D. H., Kim S H., Quebedeaux B., Reddy V. R.. Simulating leaf area of corn plants at contrasting water status [J].Agricultural and Forest Meteorology,2009,149: 1161-1167.
    [28]Wilson J. B.. A review of evidence on the control of shoot:root ratio, in relation to models [J].Annals of Botany,1988,61:433-449.
    [29]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊生长动态影响的模拟[J].农业工程学报,2008,24(11):176-182.
    [30]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003:64-69.
    [31]Stewar C. R.. Role of carbohydratesin in protine accumulation in willed barley leaves [J].Plant Physiology,1978,61:775-778.
    [32]Kramer P. J., Kozlowski T. T..汪振儒译.木本生理学[M].北京:中国林业出版社,1985.
    [33]汤章城.植物干旱生态生理研究[J].生态学报,1983,3(3):196-204.
    [34]Per P. L., Moot D. L., A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen and water regimes[J].Grass and Forage Science,2003,58 (4):416-430.
    [35]Ramanjulu S., Sreenivasulu N., Sudakra C.. Effects of water stress on photosynthesis in two mulberry genotypes with different drought tolerance [J].Photosynthetica 1998,35:279-283.
    [36]Steward J. D., Abidine A. Z., Bernier P. Y. Stomatal and mesopyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought [J].Tree Physiology,1995,15 (1):57-64.
    [37]Lawlor D. W.. Water stress induced changes in photosynthesis, photo respiration, respiration and CO2 compensation concentration of wheat [J]. Photosynthetic,1976,10:378-387.
    [38]谭雪红,郭小平,王亮.土壤水分胁迫对大叶黄杨和月季光合生理特性的影响[J].水土保持通报,2010,30(4):73-77.
    [39]付秋实,李红岭,崔健,等.水分胁迫对辣椒光合作用及相关生理特性的影响[J].中国农业科学,2009,42(5):1859-1866.
    [40]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究.Ⅰ干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320.
    [41]柏成寿,陆帼一.水分胁迫对番茄幼苗生长影响的研究[J].园艺学报,1991,18(4):340-344.
    [42]Ferreyra R. A., Dardanelli J. L., Pachepsky L. B., Collino D. J., Faustinelli P. C., Giambastiani G, Reddy V. R., Jones J. W.. Nonlinear effects of water stress on peanut photosynthesis at crop and leaf scales [J].Ecological Modelling,2003,169:57-76.
    [43]Gomes-Laranjo J., Coutinho J. P., Galhano V., Cordeiro V.. Responses of five almond cultivars to irrigation:Photosynthesis and leaf water potential [J].Agricultural Water Management,2006, 83:261-265.
    [44]Pilar Baeza, Patricia Sanchez-de-Miguel, Ana Centeno, Pedro Junquera, Ruben Linares, Jose Ramon Lissarrague. Water relations between leaf water potential, photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling [J].Scientia Horticulturae, 2007,114:151-158.
    [45]Lizaso J. I., Bathelor W. D., Westgate M. E.. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves [J].Field Crops Research,2003,80:1-17.
    [46]Erwin J. E., Heins R. D., and Karlsson K. G. Thermomorphogenesis in Lilium longiftorum [J].American Journal of Botany,1989,76 (1):42-52.
    [47]Fisher P. R., Lieth, J. H., Heins R. D.. Modeling flower bud elongation in Easter lily (Lilium longiftoum Thunb.) in response to temperature [J].HortScience,1996,31:349-352.
    [48]Fisher P. R., Heins R.D., Ehler N., Lieth J. H., Karlsen P. and Brogaard M., A decision-support system for real-time management of Easter lily (Lilium longiflorum Thunb.) scheduling and height-II. Validation [J].Agricultural Systems,1997,54:39-55.
    [49]Fisher P. R., Heins R. D., Ehier N. and Lieth J. H.. A decision-support system for realtime management of Easter lily (Lilium longiflorum Thunb.) scheduling and height-I.System description [J].Agricultural Systems,1997,54:23-37.
    [50]Paul R. Fisher, J. Heinrich Lieth.. Variability in flower development of Easter lily (Lilium longiflorum Thunb.) model and decision-support system [J].Computers and Electronics in Agriculture,1999,26 (200):53-64.
    [51]谭美,王四清.观赏植物生长模拟模型研究进展[J].园艺学报,2010,37(9):1523-1530.
    [52]邵孝侯.土壤水势对冬小麦干物质累积、矿质营养和产量的影响[J].河海大学学报,1996,24(4):44-48.
    [53]Clark G. A., Stanley C. D., Maynard D. N., et al. Water and fertilizer management of microirrigated fresh market tomato [J].Transactions of the ASAE,1991,34 (2):429-435.
    [54]Shock Clinton C., Erik B. G., Feibert Lamont D. Saunders.. Irrigation criteria for drip-irrigated onions [J].HortScience,2000,35 (11):63-66.
    [55]邹志荣.不同灌溉上限对温室黄瓜结瓜期生长动态、产量及品质的影响[J].农业工程学报,2005,21(增刊):77-82.
    [56]康跃虎.滴灌调控土壤水分对马铃薯生长的影响[J].农业工程学报,2004,20(2):66-72.
    [57]Plauta Z., Zieslinb N., Levav N.. Effect of different soil moisture regimes and canopy wetting on 'Baccara' roses [J].Scientia Horticulturae.1976,5 (3):277-285.
    [58]王峰伟,马延康,焦广斌,等.水分胁迫对桔梗生长发育的影响[J].西北师范大学学报,2010,46(5):82-85.
    [59]王学文,付秋实,王玉珏,等.水分胁迫对番茄生长及光合系统结构性能的影响[J].中国农业大学学报,2010,15(1):7-13.
    [60]Yin C. Y., Wang X., Duan B. L., Luo J. X., Li C. Y.. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress [J].Environmental and Experimental Botany,2005,53:315-322.
    [61]Marcelis L. F. M.. Sink strength as a determinant of dry matter partitioning in the whole plants [J].Experimental Botany,1996,47:1281-1291.
    [62]Marcelis L. F. M.. Simulation of biomass allocation in greenhouse crops:a review [J].Acta Horticulture,1993,328 (1):49-67.
    [63]Hunt H. W., Morgan J. A., Read J. J.. Simulating growth and root-shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress [J]Annals of Botany,1998,81:489-501.
    [64]Brouwer R., De Wit C. T.. A simulation model of plant growth with special attention to root growth and its consequences. In:Whittington, W. J. (Ed.), Root growth. Butterworth, London,1969, 224-244.
    [65]Minchin P. E. H., Thorpe M. R., Farrar J. F.. A simple mechanistic model of phloem transport which explains sink priority [J].Experimental Botany,1993,44:947-955.
    [66]盖江南,毕建杰,刘建栋.水分胁迫对冬小麦干物质分配的影响[J].华北农学报,2008,23(增刊):5-9.
    [67]许振柱,李长荣,陈平,等.土壤干旱对冬小麦生理特性和干物质积累的影响[J].干旱地区农业研究,2000,18(1):113-118.
    [68]韩占江,于振文,王东,等.测墒补灌对冬小麦干物质积累和分配及水分利用效率的影响[J].作物学报,2010,36(3):457-465.
    [69]Setter T. L.. Transport/harvest index:photosynthate partitioning in stressed planta. In:Cumming, J R (Ed.), Stress Response in Plants:Adaption and Acclimation Mechanisms. Wiley-Liss, Inc, New York, pp:17-36.
    [70]Wardlaw I. F.. The control of carbon partitioning in plants [J].New Phytology,1990,116:341-381.
    [71]王焱,毕建杰,刘建栋.水分胁迫对冬小麦干物质分配的影响[J].安徽农业科学,2009,37(15):7039-7042.
    [72]Kage H., Kochler M., Stutzel H.. Root growth and dry matter partitioning of cauliflower under drought stress conditions:measurement and simulation [J].European Journal of Agronomy,2004, 20:379-394.
    [73]王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响[J].莱阳农学院学报,2002,19(1):7-9.
    [74]高方胜,徐坤,徐立功,等.突然给水分对番茄生长发育及产量品质的影响[J].西北农业学报,2005,14(4):69-72.
    [75]盛爱武,黄晓丹,张晚风,等.采后离水时间及保鲜剂对金百合品质的影响[J].中国农学通报,2006,22(2):274-276.
    [76]白莉萍,隋方功,孙朝晖,等.土壤水分胁迫对玉米形态发育及产量的影响[J].生态学报,2004,24(7):1556-1560.
    [77]Pandey R. K., Maranville J. W., Chetima M. M.. Deficit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction [J].Agricultural Water Management,2000,46:15-27.
    [78]赵鸿,李凤民,熊友才,等.土壤干旱对作物生长过程和产量影响的研究进展[J].干旱气象,2008,26(3):67-71.
    [79]刘生荣,张俊杰,李葆来,等.灌水对棉花植株形态和产量性状的影响[J].中国棉花,2004,31(6):20-21.
    [80]袁小环,段留生,孙璐,等.4种宿根花卉北京地区水分蒸散规律与节水灌溉[J].中国农业大学学报,2007,12(6):1-5.
    [81]Borin M.. Irrigation management of processing tomato and cucumber in environments with different water table depths [J].Acta Horticulturae,1990,267:85-92.
    [82]Farias M. F. de., Saad J. C. C., Boas R. L. V. Commercial quality of pot chrysanthemum, cultivar Puritan, irrigated at different substrate water tension in a greenhouse [J].Irrigation,2003,8 (2): 160-167.
    [83]Farias M. F. de., Saad J. C. C., Boas R. L. V.. Irrigation schedule in pot chrysanthemum, cultivar Rage, grown in greenhouse [J].Engenharia-Agricola,2004,24 (1):51-56.
    [84]Pelter G. Q., Mittelstadt R., Leib B.G. Effect of water stress at specific growth stages on onion bulb yield and quality [J].Agricultural Water Management,2004,68:107-115.
    [85]Blom Zandstra M., Metselaar K.. Infrared thermometry for early detection of drought stress in Chrysanthemum [J].HortScience,2006,41 (1):136-142.
    [86]李锦馨.地被菊在不同水分胁迫下生长状况研究[J].宁夏农林科技,2007,2:20-21.
    [87]Arora V. K.. Application of a rice growth and water balance model in an irrigated semi-arid subtropical environment [J].Agricultural Water Management,2006,83:51-57.
    [88]Asseng S., Jamieson P. D., Kimball B., Pinter P., Sayre K., Bowden J.W., Howden S. M.. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2 [J].Field Crops Research,2004,85:85-102.
    [89]Sarr B., Lecoeur J., Clouvel P.. Irrigation scheduling of confectionery groundnut (Arachis hypogeaea L.) in Senegal using a simple water balance model [J].Agricultural Water Management, 2004,67:201-220.
    [90]Kage H., Stiitze H.. A simple empirical model for predicting development and dry matter partitioning in cauliflower (Brassica oleracea L. botrytis) [J].Scienia Horticulturae,1999,80:19-38.
    [91]Han D., Kiely P. O., Sun D. W.. Application of water-stress models to estimate the herbage dry matter yield of a permanent grassland pasture sward regrowth [J].Biosystems Engineering,2003,84: 101-111.
    [92]Gutierrez Colomer R. P., Gonzalez-Real M. M., Baille A.. Dry matter production and partitioning in rose (Rosa hybrida) flower shoots [J].Scientia Horticulturae,2006,107:284-291.
    [93]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊外观品质影响的模拟[J].农业工程学报,2009,25(6):204-209.
    [94]Lacape M. J., Wery J., Annerose D. J. M.. Relationships between plant and soil water status in five field-grown cotton (Gossypium hirsutum L.) cultivars [J].Field Crops Research,1998,57:29-43.
    [95]Han D., Kiely P. O., Sun D. W.. Application of water-stress models to estimate the herbage dry matter yield of a permanent grassland pasture sward regrowth [J].Biosystems Engineering,2003,84: 101-111.
    [96]韩利,戴剑锋,罗卫红,等.氮素对温室黄瓜开花后干物质分配和产量影响的模拟研究[J].农业工程学报,2008,24(6):206-213.
    [97]米晓洁,戴剑锋,罗卫红,等.氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟[J].植物生态学报,2009,33(1):108-117.
    [98]丁琪峰,戴剑锋,罗卫红,等.氮素对日光温室独本菊‘神马’外观品质影响的模拟[J].中国农业科学,2009,42(1):363-369.
    [1]鲍士旦,土壤农化分析[M].北京,科技出版社,2000,50-100.
    [2]Xu R., Dai J., Luo W., Yin X., Li Y, Tai X., Han L., Chen Y., Lin L., Li G., Zou C., Du W., Diao M. A photothermal model of leaf area index of greenhouse crops [J].Agricultural and Forest Meteorology,2010,150:541-552.
    [3]GB/T18247.1-2000,百合切花标准[s].国家技术监督局,2001-11-16.
    [4]董伟,殷小冬,李技林,等.百合商品切花生产技术规程[J].中南林学院学报,2003,23(5):107-111.
    [1]王希群,马履一,贾忠奎等,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541.
    [2]刘晓冰,S tephen H J.作物产量潜力的5p理论及其研究范畴[J].中国农学通报,2001,17(4):65-66.
    [3]Amir J., Sinclair I. R.. A model of the temperature and solar-radiation effects on spring wheat growth and yield [J].Field Crops Research,1991,28:47-58.
    [4]Hunt L. A., Pararajasingham S.. CROPSIM-WHEAT:A model describing the growth and development of wheat [J].Canadian Journal of Plant Science,1995,75:619-632.
    [5]Weir A. H., Bragg P. L., Porter J. R., et al. A winter wheat crop simulation without water or nutrient limitations [J].Agriculture Science,1984,102:371-382.
    [6]Goudriaan J, Van Laar H. H.. Modeling potential crop growth processes. Textbook and Exercises [M].Kluwer Academic Publishers,1994,197-199.
    [7]Cao W., Moss D. N.. Modeling phasic development in wheat:a conceptual integration of physiological components [J].Agricultural Science Cambridge,1997,129:163-172.
    [8]谭一波,赵仲辉.叶面积指数的主要测定方法[J].林业调查规划,2008,33(3):45-48.
    [9]白青海,徐寿军,董永义,等.大麦叶面积指数的模拟研究[J].生物数学学报,2009,24(2):321-328.
    [10]Xu R., Dai J., Luo W., Yin X., Li Y., Tai X., Han L., Chen Y., Lin L., Li G., Zou C., Du W., Diao M. A photothermal model of leaf area index of greenhouse crops [J].Agricultural and Forest Meteorology,2010,150:541-552.
    [11]Ploeg A., van der Kularathne R. J. K. N., Carvalho S. M. P., Heuvelink E.. Variation between cut chrysanthemum cultivars in response to suboptimal temperature [J].American Society for Horticultural Science,2007,132 (1):52-59.
    [12]Michael Marcotrigiano. A role for leaf epidermis in the control of leaf size and the rate ang extent of mesophyll cell division [J].American Journal of Botany,2010,97 (2):224-233.
    [13]Hsiao T. C., Xu L. K.. Sensitivity of growth of roots versusleaves to water stress:biophysical analysis and relation to water transport [J].Experimental Botany,2000,51:1595-1616.
    [14]程智慧,孟焕文Stephen ARolfe,等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报,2002,30(6):93-96.
    [15]王军,王益奎,李鸿莉,等.水分胁迫对烟草生长发育的影响研究进展[J].广西农业科学,2004,35(6):440-442.
    [16]ALFREDO A. C. ALVES and TIM L. SETTER. Response of cassava leaf area expansion to water deficit:cell proliferation, cell expansion and delayed d evelopment [J].Annals of Botany,2004,94: 605-613.
    [17]Christine Granier and Francois Tardieu. Water deficit and spatial pattern of leaf development variability in responses can be simulated using a simple model of leaf development [J].Plant Physiology, February 1999,119:609-619.
    [18]Gustavo A., Pereyra-Irujo, Luciano Vela zquez, Leandra Lechner and Luis A. N., Aguirreza bal.. Genetic variability for leaf growth rate and duration under water deficit in sunflower:analysis of responses at cell, organ, and plant level [J].Experimental Botany, Vol.59, No.8, pp.2221-2232, 2008.
    [19]陈立松,刘星辉.果树对水分胁迫的反应与适应性[J].干旱地区农业研究,1999,17(1):88-94.
    [20]刘晓英,罗远培,石元春.考虑水分胁迫滞后影响的作物生长模型[J],水利学报,2002,6:32-37.
    [21]Jensen C. R., Mogensen V. O., Mortensen G., Andersen M. N., Schjoerring J. K., Thage J. H., Koribidis J.. Leaf photosynthesis and drought adaptation in field-grown oilseed rape(Brassica napus L.)[J].Plant Physiology,1996,23:631-644.
    [22]吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报,2000,15(3):92-96.
    [23]梁银丽,康绍忠,张成娥,等.不同水分条件下小麦生长特性及氮磷营养的调节作用[J].干旱地区农业研究,1999,17(4):58-64.
    [24]Cohen S., Cohen Y.. Field studies of leaf conductance response to environmental variables in citrus [J].Applied Ecology,1983,20:561-570.
    [25]Spollen W. G., Sharp R. E.. Spatial distribution of turgor and root growth at low water potentials [J].Plant Physiology,1991,96:438-443.
    [26]Pierre Casadebaig, Philippe Debaeke, Jeremie Lecoeur. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes [J].European Journal of Agronomy,2008,28:646-654.
    [27]Jeremie Lecoeur, Lydie Guilioni. Rate of leaf production in response to soil water deficits in field pea [J].Field Crops Research,1998,3:219-328.
    [28]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊生长动态影响的模拟[J].农业工程学报,2008,24(11):176-182.
    [29]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学 报,2006,30(5):861-867.
    [30]张正伟,曹玲玲,李云飞,等.东方百合鲜切花种植技术[J].农业工程技术,2008,(5):57-58.
    [31]刘刚,杨雨翠,李学斌,等.日光温室切花百合栽培技术[J].陕西农业科学,2009,(6):254-255.
    [32]Erwin, J. E. and Heins, R. D.. Temperature effects on lilium development rate and morphology from the visible bud stage until anthesis [J].American Society of Horticultural Science,1990,115 (4): 644-646.
    [1]郭志刚,张志伟.球根类.北京:中国林业科技[M].2000,1-105.
    [2]龙雅宜,张金政,张兰年.百合-球根花卉之王[M].北京:金盾出版社,1999.
    [3]Raviv M., Blom J.. The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses [J].Scientia Horticulturae,2001,88 (4):257-276.
    [4]Stanhill G, Scholte A, J.. Solar radiation and water loss from glasshouse roses [J].American Society of Horticultural Science,1974,99:107-110.
    [5]N. Katsoulas, C. Kittas, G, Dimokas, Ch. Lykas.. Effect of Irrigation Frequency on Rose Flower Production and Quality [J].Biosystems Engineering,2006,93 (2):237-244.
    [6]RohMY Lee Y. B.. Control of amount and frequency of irrigation according to integrated solar radiation in cucumber substrate culture [J].Acta Horticulturae,1996,440:332-337.
    [7]Caballero M., Mansito P., Zieslin N., Rodrigo J., Melian J., Renz O.. Water use and crop productivity of roses growing on volcanic lapilli (picon) in Canary Islands [J].Acta Horticulturae, 1996,424:41-44.
    [8]Chimonidou-Pavlidou D.. Effect of water stress at different stages of rose development [J].Acta Horticulturae,1996,424:45-51.
    [9]Chimonidou-Pavlidou D.. Irrigation and sensitive stages of rose development [J].Acta Horticulturae, 1999,481:393-401.
    [10]Per P. L., Moot D. L.. A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen and water regimes[J].Grass and Forage Science,2003,58 (4):416-430.
    [11]Steward J. D,, Abidine A. Z,, Bernier P. Y.. Stomatal and mesopyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought [J].Tree Physiology,1995,15 (1):57-64.
    [12]Lawlor D. W.. Water stress induced changes in photosynthesis, photo respiration, respiration and CO2 compensation concentration of wheat [J]. Photosynthetic,1976,10:378-387.
    [13]谭雪红,郭小平,王亮.土壤水分胁迫对大叶黄杨和月季光合生理特性的影响[J].水土保持通报,2010,30(4):73-77.
    [14]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320.
    [15]柏成寿,陆帼一.水分胁迫对番茄幼苗生长影响的研究[J].园艺学报,1991,18(4):340-344.
    [16]Erwin J. E., Heins, R. D. and Karlsson K. G. Thermomorphogenesis in Lilium longiflorum [J].American Journal of Botany,1989,76 (1):42-52.
    [17]Fisher P. R., Lieth J. H., Heins R. D.. Modeling flower bud elongation in Easter lilium (Lilium longiflorum Thunb.) in response to temperature [J].HortScience,1996,31:349-352.
    [18]Fisher P. R., Heins R. D., Ehler N., Lieth J. H., Karlsen P. and Brogaard M.. A decision-support system for real-time management of Easter Lilium (Lilium longiflorum Thunb.) scheduling and height-Ⅱ. Validation [J].Agricultural Systems,1997,54:39-55.
    [19]Fisher P. R., Heins R. D., Ehier N. and Lieth J. H.. A decision-support system for realtime management of Easter Lilium (Lilium longiflorum Thunb.) scheduling and height-I.System description [J].Agricultural Systems,1997,54:23-37.
    [20]Paul R., Fisher J., Heinrich Lieth.. Variability in flower development of Easter lilium (Lilium longiflorum Thunb.) model and decision-support system [J].Computers and Electronics in Agriculture,1999,26 (200):53-64.
    [21]周艳宝,戴剑锋,林琭,等.水分对日光温室独本菊生长动态影响的模拟[J].农业工程学报,2008,24(11):176-181.
    [22]Dayan E., Van Keulen H., Jones J. W., et al. Development,calibration and validation of a greehouse tomato growth model:I. Description of the model [J].Agricultural Systems,1993,43 (2):145-161.
    [23]Goudriaan J., Van Laar H. H.. Modeling potential crop growth processes [M].The Netherlands: Kluwer Academic Publishers,1994.
    [24]李永秀,罗卫红,倪纪恒,等.用辐热积法模拟温室黄瓜叶面积指数、光合速率与干物质产量[J].农业工程学报,2005,21(12):131-136.
    [25]Gijzen H.. Simulation of photosynthesis and dry matter production of greenhouse crops [A].Simulation Report CABO-TT, nr:28 [R].Wageningen:Centre for Agrobiological Research. Wageningen Agricultural University,1992,17-21.
    [26]谭美,王四清.观赏植物生长模拟模型研究进展[J].园艺学报,2010,37(9):1523-1530.
    [27]Lee J. H., Heuvelink E., Challa H.. Effects of planting date and plant density on crop growth in cut chrysanthemum [J].Horticulture Science and Biotechnology,2002,77:238-247.
    [28]Lee J. H., Goudriaan J., Challa H.. Using the expolinear growth equation for modelling crop growth in year-round cut chrysanthemum [J].Annals of Botany,2003,92 (5):697-708.
    [29]Pronk A. A., Heuvelink E., Challa H.. Dry mass production and leaf area development of field-grown ornamental conifers:Measurements and simulation [J].Agricultural Systems,2003,78 (3):337-353.
    [30]杨再强,罗卫红,陈发棣,等.温室标准切花菊干物质生产与分配模型[J].中国农业科学,2007,40(9):2028-2035.
    [31]王峰伟,马延康,焦广斌,等.水分胁迫对桔梗生长发育的影响[J].西北师范大学学报,2010,46(5):82-85.
    [32]王学文,付秋实,王玉珏,等.水分胁迫对番茄生长及光合系统结构性能的影响[J].中国农业大学学报,2010,15(1):7-13.
    [33]Yin C. Y, Wang X., Duan B. L., Luo J. X., Li C. Y.. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress [J].Environmental and Experimental Botany,2005,53:315-322.
    [34]Gomes-Laranjo J., Coutinho J. P., Galhano V., Cordeiro V.. Responses of five almond cultivars to irrigation:Photosynthesis and leaf water potential [J].Agricultural Water Management,2006,83: 261-265.
    [33]Pilar Baeza, Patricia Sdnchez-de-Miguel, Ana Centeno, Pedro Junquera, Ruben Linares,Jose Ramon Lissarrague. Water relations between leaf water potential, photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling [J].Scientia Horticulturae, 2007,114:151-158.
    [36]Lizaso J. I., Bathelor W. D., Westgate M. E.. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves [JJ.Field Crops Research,2003,80:1-17.
    [37]Yang Y, Timlin D. J., Fleisher D. H., Kim S. H., Quebedeaux B., Reddy V. R.. Simulating leaf area of corn plants at contrasting water status [J].Agricultural and Forest Meteorology,2009,149: 1161-1167.
    [38]Wilson J. B.. A review of evidence on the control of shoot:root ratio, in relation to models [J].Annals of Botany,1988,61:433-449.
    [1]郭志刚,张志伟.球根类.北京:中国林业科技[M].2000,1-105.
    [2]Marcelis L. F. M.. Simulation of biomass all ocation in greenhouse crops-areview [J].Acta Horticulturae,1993,328 (1):49-67.
    [3]Minchin P. E. H., Thorpe M. R., Farrar J. R. Asimp lemechanistic model of phloem transport which explains sink priority [J].Experimental Botany,1993,44:947-955.
    [4]Hunt H. W., Morgan J. A., Read J. J.. Simulating growth and root-shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress [J].Annals of Botany,1998,81:489-501.
    [5]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003,64-69.
    [6]张立桢,曹卫星,张思平.棉花干物质分配和产量形成的动态模拟[J].中国农业科学,2004,37:1621-1627.
    [7]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381.
    [8]刘铁梅,曹卫星,罗卫红,等.小麦器官间干物质分配动态的定量模拟[J].麦类作物学报,2001,21(1):25-31.
    [9]汤亮,朱艳,鞠昌华,等.油菜地上部干物质分配与产量形成模拟模型[J].应用生态学报,2007,18(3):526-530.
    [10]徐寿军,杨恒山,郑根昌,等.大麦植株干物质分配模型[J].麦类作物学报,2010,30(4):735-740.
    [11]李永秀,罗卫红,倪纪恒等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,2006,22(2):116-121.
    [12]倪纪恒,罗卫红,李永秀,等.温室番茄干物质分配与产量的模拟分析[J].应用生态学报,2006,17(5):811-816.
    [13]Karlsson M. G, Heins R. D.. Chrysanthemum dry matter partitioning pattern along irradiance and temperature gradients [J].Canadian Journal of Plant Science,1992,72:307-316.
    [14]徐刚,郭世荣,张昌伟,等.温室小型西瓜的干物质分配模型[J].江苏农业学报,2005,21:346-353.
    [15]施泽平,郭世荣,康云艳,等.温室甜瓜干物质分配模型的研究[J].江苏农业科学,2005,4:61-65.
    [16]袁昌梅,罗卫红,邰翔,等.温室网纹甜瓜干物质分配/产量形成与采收期模拟研究[J].中国农业科学,2006,39(2):353-360.
    [17]杨再强,罗卫红,陈发棣,等.基于光温的温室多杆切花菊干物质生产与分配的预测模型[J].生态 学报,2009,29(3):1478-1485.
    [18]Heuvelink E.. Dry matter partitioning in tomato, validation of a dynamic simulation model [J].Annals of Botany,1996,77:71-80.
    [19]Kage H., Kochler M., Stutzel H.. Root growth and dry matter partitioning of cauliflower under drought stress conditions:measurement and simulation [J].European Journal of Agronomy,2004, 20:379-394.
    [20]Marcelis L. F. M.. Sink strength as a determinant of dry matter partitioning in the whole plants [J].Experimental Botany,1996,47:1281-1291.
    [21]Kleemola J., Teitinnen M., Karvonen T.. Modelling crop growth and biomass partitioning to shoots and roots in relation to nitrogen and water availability, using a maximization principle [J].Plant Soil, 1996,185:101-111.
    [22]Connor D. J., Fereres E.,1999. A dynamic model of crop growth and partitioning of biomass [J].Field Crops Research,1999,63:139-157.
    [1]郭志刚,张志伟.球根类.北京:中国林业科技[M].2000,1-105.
    [2]刘雅莉,张剑侠,潘学军.东方百合‘索邦’的花器官培养与快速繁殖[J].西北植物学报,2004,24(12):2350-2354.
    [3]颜俊.切花百合生产技术(上)[J].中国花卉园艺,2009,12:19-21.
    [4]颜俊.切花百合生产技术(中)[J].中国花卉园艺,2009,14:27-31.
    [5]颜俊.切花百合生产技术(下)[J].中国花卉园艺,2009,16:22-23.
    网龙雅宜,张金政,张兰年.百合-球根花卉之王[M].北京:金盾出版社,1999.
    [7]Arora V. K., Gajri P. R.. Assessment of a crop growth-water balance model for predicting maize growth and yield in a subtropical environment [J].Agricultural Water Management,2000,46: 157-166.
    [8]Arora V. K.. Application of a rice growth and water balance model in an irrigated semi-arid subtropical environment [J].Agricultural Water Management,2006,83:51-57.
    [9]Asseng S., Jamieson P. D., Kimball B., Pinter P., Sayre K., Bowden J. W., Howden S.M.. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2 [J].Field Crops Research,2004,85:85-102.
    [10]Sarr B., Lecoeur J., Clouvel P.. Irrigation scheduling of confectionery groundnut (Arachis hypogeaea L.) in Senegal using a simple water balance model [J].Agricultural Water Management, 2004,67:201-220.
    [11]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊生长动态影响的模拟[J].农业工程学报,2008,24(11):176-182.
    [12]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊外观品质影响的模拟[J].农业工程学报,2009,25(6):204-209.
    [13]Erwin J. E. and Heins R. D.. Temperature effects on Lilium development rate and morphology from the visible bud stage until anthesis [J].The American Society of Horticultural Science,1990,115 (4): 644-646.
    [14]Fisher P. R., Heins R. D., Ehler N., Lieth J. H., Karlsen P. and Brogaard M.. A decision-support system for real-time management of Easter Lilium(Lilium longiflorum Thunb.) scheduling and height-Ⅱ. Validation [J].Agricultural Systems,1997,54:39-55
    [15]Erwin J. E., Heins R. D. and Karlsson K. G., Thermomorphogenesis in Lilium (Lilium longiflorum Thunb.) [J].American Journal of Botany,1989,76 (1):42-52.
    [16]Fisher P. R., Lieth J. H, Heins R. D.. Modeling flower bud elongation in Easter lilium(Lilium longiflorum Thunb.) in response to temperature [J].HortScience,1996,31:349-352.
    [17]Fisher P. R., Heins R. D., Ehier N. and Lieth J. H.. A decision-support system for realtime management of Easter lilium (Lilium longiflorum Thunb.) scheduling and height-I.System description [J] Agricultural Systems,1997,54:23-37.
    [18]Paul R., Fisher J., Heinrich Lieth.. Variability in flower development of Easter lilium (Lilium longiflorum Thunb.):model and decision-support system [J].Computers and Electronics in Agriculture,1999,26 (200):53-64.
    [19]Kawagishi K., Miura T.. Growth characteristics and effect of nitrogen and potassium topdressing on thickening growth of bulbs in spring planted edible lilium (Lilium leichtlinii varmaximowiczii Baker) [J].Japanese Journal of Crop Science,1996,65 (1):51-57.
    [20]余艳玲,余杨,董云昆,等.设施栽培中百合需水量、需水规律及灌溉方式初探[J].云南农业大学学报,2004,19(3):304-306.
    [21]赵秀梅,王发林,董铁.土壤含水量对兰州百合鳞茎发芽出苗的影响[J].北方园艺,2006,(1):43-44.
    [22]李黛,胡凯,谈锋.干旱条件下淡黄花百合叶片水分生理的适应性变化[J].西南师范大学学报(自然科学版),2004,29(5):852-855.
    [23]张正伟,曹玲玲,李云飞,等.东方百合鲜切花种植技术[J].农业工程技术,2008,(5):57-58.
    [24]刘刚,杨雨翠,李学斌,等.日光温室切花百合栽培技术[J].陕西农业科学,2009,(6):254-255.
    [25]朱艳,胡继超,曹卫星,等.基于作物模型的农田水分管理决策支持系统研究[J].水土保持学报,2005,19(2):161-162.
    [26]Panigrahi B., Panda S.N.. Field test of a soil water balance simulation model [J].Agricultural Water Management,2003,58:223-240.
    [27]Ji X., Kang E., Chen R., Zhao W., Zhang Z., Jin B.. A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied [J].Agricultural Water Management,2007,87:337-346.
    [28]李建明,邹志荣,刘迎春,等.温度与水分驱动的甜瓜幼苗生长形态模拟模型研究[J].农业工程学报,2006,22(11):203-208.
    [29]Yin X., Schapendonk A. H. C. M.. Simulating the partitioning of biomass and nitrogen between root and shoot in crop and grass plants. NJAS-Wagen [J].Life Sciences,2004,51:407-426.
    [30]Martin P. J., Stephens W.. Willow growth in response to nutrients and moisture on a clay landfill cap soil. I. Growth and biomass production [J].Bioresource Technology,2006,97:437-438.
    [31]Erice G, Irigoyen Perez P., Martinez-Carrasco R., Sanchez-Diaz M.. Effect of elevated temperature and drought on dry matter partitioning and photosynthesis before and after cutting of nodulated alfalfa [J].Plant Science,2006,170:1059-1067.
    [32]Carvalho S. M. P., Heuvelink E.. Modelling external quality of cut chrysanthemum:achievements and limitations [J].Acta Horticulturae,2004,196:287-294.
    [33]Carvalho S. M. P., Abi-Tarabay H., Heuvelink, E.. Temperature affects Chrysanthemum flower characteristics differently during three phases of the cultivation period [J].Horticulture Science and Biotechnology,2005,80:209-216.
    [34]Carvalho S. M. P., Heuvelink E.. Effect of assimilate availability on flower characteristics and plant height of cut chrysanthemum:an integrated study [J].Horticulture Science and Biotechnology,2003, 78:711-720.
    [35]Lee J. H., Heuvelink E., Challa H.. Effects of planting date and plant density on crop growth in cut chrysanthemum [J].Horticulture Science and Biotechnology,2002,77:238-247.
    [36]Lee J. H., Goudriaan J., Challa H.. Using the expolinear growth equation for modelling crop growth in year-round cut chrysanthemum [J].Annals of Botany,2003,92 (5):697-708.
    [37]郭友红,马文奇.东方百合养分吸收规律和分配特点的研究[J].土壤通报,2004,35(6):753-757.
    [38]郭友红,马文奇.切花百合生物量动态及其与施肥关系研究[J].华北农学报,2007,22:180-183.
    [1]Yin X. Y.. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence [J].Annals of Botany,2000,85:579-585.
    [2]Ploeg A., van der Kularathne R. J. K. N., Carvalho S. M. P., Heuvelink E.. Variation between cut chrysanthemum cultivars in response to suboptimal temperature [J].American Society for Horticultural Science,2007,132 (1):52-59.
    [3]Spollen W. G., Sharp R. E.. Spatial distribution of turgor and root growth at low water potentials [J]. Plant Physiology,1991,96:438-443.
    [4]Hsiao T. C., Xu L. K.. Sensitivity of growth of roots versusleaves to water stress:biophysical analysis and relation to water transport [J].Experimental Botany,2000,51:1595-1616.
    [5]程智慧,孟焕文.Stephen ARolfe,等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报,2002,30(6):93-96.
    [6]王军,王益奎,李鸿莉,等.水分胁迫对烟草生长发育的影响研究进展[J].广西农业科学,2004,35(6):440-442.
    [7]ALFREDO A. C. ALVES and TIM L. SETTER. Response of cassava leaf area expansion to water deficit:cell proliferation, cell expansion and delayed development [J].Annals of Botany,2004,94: 605-613.
    [8]吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报,2000,15(3):92-96.
    [9]Jensen C. R, Mogensen V. O., Mortensen G., Andersen M. N., Schjoerring J. K., Thage J. H., Koribidis J.. Leaf photosynthesis and drought adaptation in field-grown oilseed rape (Brassica napus L.) [J].Plant Physiology,1996,23:631-644.
    [10]梁银丽,康绍忠,张成娥,等.不同水分条件下小麦生长特性及氮磷营养的调节作用[J].干旱地区农业研究,1999,17(4):58-64.
    [11]Cohen S., Cohen Y.. Field studies of leaf conductance response to environmental variables in citrus [J].Applied Ecology,1983,20:561-570.
    [12]张正伟,曹玲玲,李云飞,等.东方百合鲜切花种植技术[J].农业工程技术,2008,(5):57-58.
    [13]刘刚,杨雨翠,李学斌,等.日光温室切花百合栽培技术[J].陕西农业科学,2009,(6):254-255.
    [14]Pierre Casadebaig, Philippe Debaeke, Jeremie Lecoeur. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes [J].European Journal of Agronomy,2008,28:646-654.
    [15]Jeremie Lecoeur, Lydie Guilioni. Rate of leaf production in response to soil water deficits in field pea [J].Field Crops Research,1998,3:219-328.
    [16]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊生长动态影响的模拟[J].农业工程学报,2008,24(11):176-182.
    [17]Yin C. Y., Wang X., Duan B. L., Luo J. X., Li C. Y.. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress [J].Environmental and Experimental Botany,2005,53:315-322.
    [18]王学文,付秋实,王玉珏,等.水分胁迫对番茄生长及光合系统结构性能的影响[J].中国农业大学学报,2010,15(1):7-13.
    [19]谭雪红,郭小平,王亮.土壤水分胁迫对大叶黄杨和月季光合生理特性的影响[J].水土保持通报,2010,30(4):73-77.
    [20]曲桂敏,沈向,王鸿霞,等.不同品种苹果树水分利用效率及有关参数的日变化[J].果树科学,2000,17(1):7-11.
    [21]王峰伟,马延康,焦广斌,等.水分胁迫对桔梗生长发育的影响[J].西北师范大学学报,2010,46(5):82-85.
    [22]谭美,王四清.观赏植物生长模拟模型研究进展[J].园艺学报,2010,37(9):1523-1530.
    [23]Lee J. H., Heuvelink E., Challa H.. Effects of planting date and plant density on crop growth in cut chrysanthemum [J].Horticulture Science and Biotechnology,2002,77:238-247.
    [24]Lee J. H., Goudriaan J., Challa H.. Using the expolinear growth equation for modelling crop growth in year-round cut chrysanthemum [J].Annals of Botany,2003,92 (5):697-708.
    [25]Pronk A. A., Heuvelink E., Challa H.. Dry mass production and leaf area development of field-grown ornamental conifers:Measurements and simulation [J].Agricultural Systems,2003,78 (3):337-353.
    [26]杨再强,罗卫红,陈发棣,等.温室标准切花菊干物质生产与分配模型[J].中国农业科学,2007,40(9):2028-2035.
    [27]Karlsson M. G., Heins R. D.. Chrysanthemum dry matter partitioning pattern along irradiance and temperature gradients [J].Canadian Journal of Plant Science,1992,72:307-316.
    [28]施泽平,郭世荣,康云艳,等.温室甜瓜干物质分配模型的研究[J].江苏农业科学,2005,4:61-65.
    [29]徐刚,郭世荣,张昌伟,等.温室小型西瓜的干物质分配模型[J].江苏农业学报,2005,21:346-353.
    [30]倪纪恒,罗卫红,李永秀,等.温室番茄干物质分配与产量的模拟分析[J].应用生态学报,2006,17(5):811-816.
    [31]张晓艳,刘锋,王风云,等.温室蝴蝶兰干物质分配及产品上市期模拟研究[J].中国生态农业学报,2008,16(6):1453-1457.
    [32]杨再强,罗卫红,陈发棣,等.基于光温的温室多杆切花菊干物质生产与分配的预测模型[J].生态学报,2009,29(3):1478-1485.
    [33]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究.Ⅰ干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320.
    [34]许振柱,李长荣,陈平,等.土壤干旱对冬小麦生理特性和干物质积累的影响[J].干旱地区农业研究,2000,18(1):113-118.
    [35]韩占江,于振文,王东,等.测墒补灌对冬小麦干物质积累和分配及水分利用效率的影响[J].作物学报,2010,36(3):457-465.
    [36]Wilson J. B.. A review of evidence on the control of shoot:root ratio, in relation to models [J].Annals of Botany,1988,61:433-449.
    [37]Wardlaw I. F.. The control of carbon partitioning in plants [J].New Phytology,1990,116:341-381.
    [38]Kage H., Kochler M., Stiitzel H.. Root growth and dry matter partitioning of cauliflower under drought stress conditions:measurement and simulation [J].European Journal of Agronomy,2004, 20:379-394.
    [39]Erwin J. E., Heins R. D. and Karlsson K. G. Thermomorphogenesis in Lilium longiflorum [J].American Journal of Botany,1989,76 (1):42-52.
    [40]Erwin J. E. and Heins R. D.. Temperature effects on lilium development rate and morphology from the visible bud stage until anthesis [J] American Society of Horticultural Science,1990,115 (4): 644-646.
    [41]Fisher P. R., Heins R. D., Ehler N., Lieth J. H., Karlsen P. and Brogaard M.. A decision-support system for real-time management of Easter lilium (Lilium longiflorum Thunb.) scheduling and height-Ⅱ Validation [J].Agricultural Systems,1997,54:39-55.
    [42]Fisher P. R., Lieth J. H., Heins R. D.. Modeling flower bud elongation in Easter lilium (Lilium longiflorum Thunb.) in response to temperature [J].HortScience,1996,31:349-352.
    [43]Fisher P. R., Heins R. D., Ehier N. and Lieth J. H.. A decision-support system for realtime management of Easter lilium (Lilium longiflorum Thunb.) scheduling and height-Ⅰ System description [J].Agricultural Systems,1997,54:23-37.
    [44]Paul R., Fisher J., Heinrich Lieth.. Variability in flower development of Easter lilium (Lilium longiflorum Thunb.):model and decision-support system [J].Computers and Electronics in Agriculture,1999,26 (200):53-64.
    [45]杨再强,罗卫红,陈发棣,等.基于光温的温室标准切花菊品质预测模型[J].应用生态学报,2007, 18(4):877-882.
    [46]杨再强,戴剑锋,罗卫红,等.单位面积杆数对温室标准切花菊品质影响的预测模型[J].应用生态学报,2008,19(3):575-582.
    [47]Carvalho S. M. P., Heuvelink E., Van Kooten O.. Effect of light intensity, plant density and flower bud removal on the flower size and number in cut chrysanthemum [J].Acta Horticulturae,2002,593: 33-38.
    [48]Carvalho S. M. P., Heuvelink E.. Modelling external quality of cut chrysanthemum:Achievements and limitations [J].Acta Horticulturae,2004,654:287-294.
    [49]Notnnagl M., Andrea K., Larsen R. U.. Predicting the effect of irradlance and temperature on the flower diameter of greenhouse grown Chrysanthemum [J].Scientia Horticulturae,2004,99: 319-329.
    [50]Asseng S., Jamieson P. D., Kimball B., Pinter P., Sayre K., Bowden J. W., Howden S. M.. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2 [J].Field Crops Research,2004,85:85-102.
    [51]Ji X., Kang E., Chen R., Zhao W., Zhang Z., Jin B.. A mathematical model for simulating water balances in cropped sandy soil with conventional flood irrigation applied [J].Agricultural Water Management,2007,87:337-346.
    [52]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊外观品质影响的模拟[J].农业工程学报,2009,25(6):204-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700