用户名: 密码: 验证码:
不结球白菜小孢子培养及其胚胎发生机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不结球白菜(Brassica campestris ssp. chinensis Makino)是十字花科芸薹属中最重要的蔬菜作物之一。原产于中国,不结球白菜营养丰富,在中国、韩国、日本等东亚国家普遍栽培,近年来欧美等国家也广泛引种,逐渐成为世界性的重要蔬菜。不结球白菜具有明显的杂种优势,了解小孢子胚胎发生的机理、提高小孢子胚胎发生频率及可重复性,从而建立稳定的培养体系,在杂种优势利用上具有重要的意义。具体的研究结果如下:
     1.小孢子胚胎诱导技术研究
     以抽薹较早的4个不结球白菜品种为试材,对可能影响其小孢子胚胎发生的主要因素进行了研究,筛选出了稳定的培养程序并利用该程序对18个品种进行培养以验证其可靠性。结果表明:从植株始花开始不断采摘幼嫩小花序进行培养,可以使植株上的花序长时间保持初花状态,延长适宜取材的时期,并有利于减少或克服部分品种由于裂蕾等导致的污染;2d或3d32.8℃预处理以及NLN培养基中添加适宜浓度的活性炭能够提高小孢子的胚胎发生频率;使用前将B5培养基以及NLN培养基的pH值调整至5.8可大大提高小孢子胚胎发生频率;B5培养基和/或NLN培养基添加0.05mg·L-16-BA有利于提高不结球白菜小孢子胚胎发生频率;利用该培养程序可使基因型反应频率达到88.9%,并使多数品种的胚胎发生频率达到或超过10胚/皿。
     2.小孢子胚胎萌发及炼苗移栽
     利用试验中获得的小孢子胚胎对部分影响胚胎萌发成苗的因素以及炼苗移栽技术进行了研究,结果表明:诱导期间的热处理时间不同会影响小孢子成苗,热处理2d和3d后诱导产生的胚胎移栽成苗率较热处理1d的高;培养25d的胚胎在固体培养基上萌发率最高;胚胎根部插入培养基较平放培养基表面胚胎成苗率更高,低温预处理不能增加胚胎成苗率;含1.2%琼脂的B5培养基中添加0.4g·L-1活性炭和0.05mg·L-16-BA有利于小孢子胚胎直接成苗,‘青梗’小孢子胚胎成苗率可达93.51%;直接成苗的小孢子植株经过生根后更有利于移栽,移栽过程中注意保湿可使成活率达到74%以上。移栽后的多数小孢子植株能够现蕾开花。
     3.小孢子再生植株倍性鉴定
     利用流式细胞仪对移栽成活的123株再生株进行倍性鉴定,对其中的113株进行了叶绿体计数分析,将两种方法鉴定的结果进行比较分析并进一步用形态法和减数分裂观察法进行验证,结果表明:不结球白菜小孢子培养再生植株中存在单倍体、二倍体和四倍体等不同倍性的植株,总自然加倍率为55.3%,但不同品种加倍率有一定的差异,‘华京’自然加倍率最低,为57.5%,‘华冠’为73.1%,‘夏绿2号’为80.0%,‘青梗’最高,达94.7%;叶绿体数目鉴定法与流式细胞仪鉴定的结果一致性很高,均达到92.8%以上。对结果一致的103株进一步分析则表明:无论是单一品种分别分析还是各品种综合分析,结果均表明不同倍性植株叶绿体平均数之间差异极显著;根据各不同倍性植株叶绿体平均数分布推断叶绿体平均数平均值(四舍五入)在不同倍性植株的分界为:单倍体≤9;10≤二倍体<16;四倍体等多倍体则≥16。叶绿体数分界法鉴定结果与田间形态鉴定倍性结果吻合,较流式细胞仪法更简便,该方法既可以在苗期利用莲座叶也可以在抽薹期利用薹生叶进行植株倍性鉴定。不同倍性植株在形态上存在很大的区别,主要表现为植株倍性越高植株生长势越强,花瓣先端也随倍性增加而变宽。单倍体减数分裂中期I出现10个单价体,中期Ⅱ观察到单价体5/5分离,花粉呈不规则的扁盘状;二倍体减数分裂正常,终变期、中期I可见到10个二价体,中期II出现两组各10条染色体,花粉三裂状;而四倍体中期II、后期Ⅱ及末期Ⅱ中染色体数目明显多于10条,中期II可观察到两组染色体中一组染色体数目为20个,其花粉常出现四裂或多裂。
     4.小孢子形成、发育及胚胎发生细胞学研究
     采用H33258荧光染色法研究了不结球白菜花粉母细胞减数分裂及其雄配子体发育过程,并用FDA荧光染色法对小孢子游离后的发育过程进行了追踪观察。结果表明;不结球白菜花粉母细胞减数分裂的胞质分裂方式为同时型,终变期二价体多为棒状和环状。终变期、中期I和中期Ⅱ是染色体数目鉴定的最佳时期。1.5-2.49mm长的花蕾中花粉处于单核早至中期,2.5-3.0mm长的花蕾中花粉处于单核靠边期至2核早期。FDA染色反应显示单核靠边期小孢子活力最强,适宜进行培养。多数游离小孢子培养经历的发育过程与合子胚相似,并且胚胎发育迅速,6-9d产生大量球胚,13d开始出现子叶形胚胎。其发育途径既有白菜中普遍报道的B途径,也有第1次不对称分裂后营养细胞发育的A途径;第1次不对称分裂后,观察到营养细胞和生殖细胞共同发育的现象即E途径,未发现生殖细胞单独发育。不同品种胚胎发育的途径存在一定的差异。
Non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) is one of the most important vegetable crops in the Brassica genus. Non-heading Chinese cabbage, known as Pak Choi, originated in China, is among the most popular vegetables crops in eastern Asia like China, Korea and Japan and is now common in Europe and America. Like the other Brassicas, Non-heading Chinese cabbage is a good source of nutrients. Non-heading Chinese cabbage obtained the character of heterosis, so it's very important to study on the embryogenesis mechanism and optimize the isolated microspore culture technology for the crop breeding. The results are as follows:
     1. Study on the isolated microspore culture technology of non-heading Chinese cabbage
     Factors affected on microspore culture were studied on four early bolting cultivars of non-heading Chinese cabbage. Established a stable and reproducible embryogenesis system of microspore culture technology, then applied this program to18materials. The results showed that kept picking small inflorescence from the early flowering season can remained on the fresh inflorescence for a long time, and help reduce or overcome contaminate which came from the crack bud. There were some factors that could improve the induction rate of microspore-derived embryos significantly, such as pre-culture under32.8℃for2-3days; with1%of active charcoal in the NLN culture medium; the value of pH were5.8and add6-BA with0.05mg·L-1both for NLN culture medium and B5.The response frequency of genotype was88.9%, and the embryogenesis frequency of almost cultivars can reached or exceeded ten embryos per dish with the optimized program.
     2. Plant regeneration and transplanting in non-heading Chinese cabbage
     The microspore-derived embryos we had obtained were used as materials for research the effect on the development of the embryoids and plantlet formation. Results showed that: heat treatment time would affect the survival rate of plantlet, the rate of heat treatment for2days and3days was higher than survival rate for1day in'qinggeng'; After cultured for25days, the percentage of embryos germination was highest in the solid medium; Seedling rate of embryonic roots into the medium was higher than keeping flat on the medium, and cold treatment didn't help improve the survival number; Improved B5added with1.2%agar,0.4g-L"1AC and0.05m g-L-16-BA could promote the development of the embryoids and plantlet formation. The survival rate of the 'qinggeng' plantlets was93.51%after being transplanted into soil. The average survival rate was more than74%, when the plantlets were induced roots and transferred under wet environment. Most of the plantlets after transplanted could grow to flower.
     3. Studies on the determination of ploidy level of microspore-derived plants
     The relationship between the ploidy level of microspore-derived plants and chloroplast number in stomatal guard cells was studied in non-heading Chinese cabbage. We had determined123plants by the FCM (Flow Cytometry) and113plants by chloroplast counting, then morphology identifying and chromosome counting through meiosis were used to test accuracy. The results showed there were haploid, diploid, triploid, tetraploid and chimera for the plantlets. The average rate of spontaneously doubled haploid was55.3%. Different cultivars had different rate, as follow,57.5%of huajing,73.1%of huaguan,80.0%of xialv No.2and the highest rate was qinggeng (94%). The accuracy of the two methods for identification of different ploidy plants was92.8%. The chloroplast average number in stomatal guard cells varied significantly among the different ploidy stoma in the same variety. A correlation has been established between ploidy and chloroplast number in the stomatal guard cells. In every single stoma of microspore-derived plants, the chloroplast number for a haploid should not be more than9, that for diploids should be10to16, and polyploids should be more than16. The result of this method was the same with the morphology identifying method, and was simpler than by the FCM. Furthermore, the accuracy of this method was reliable and did not vary with the plants growth conditions (seedling or bolting stage). The multiploids plants grew faster and the petal was larger.10univalents were observed in the haploid cells at metaphase I stage, and they symmetrically divide at metaphase Ⅱ stage. The shape of pollen from haploid was irregular; the germinated groove was deeper than diploids and there was little fluorescence area (no DNA); For the normal form of diploids,10bivalents could be observed at diakinesis and metaphase Ⅰ stage; But more than10chromosomes could be observed in the tetraploid cells at metaphase Ⅱ stage and so on. For the normal form of tetraploid,20bivalents could be observed.
     4. Cytological studies on pollen mother cell meiosis, embryogenesis and development
     Chromosomal meiotic behaviors and male gametophytes development of non-heading Chinese cabbage were studied using chromosome preparation and fluorescence staining technique. The research showed that:the cytokinesis and chromosomes meiosis of pollen mother cells of non-heading Chinese cabbage was simultaneous type; diakinesis bivalents was mostly rod and ring. A few lagging bivalents appeared in anaphase Ⅰ and the spindle arranged in vertical, parallel and an acute angle in metaphase Ⅱ. The microspores in tetrad stage showed the arrangement of decussate type, isobilateral type and tetrahedral type. Diakinesis, metaphase Ⅰ and metahase Ⅱ was the best period for identification of chromosome numbers. The length of buds which were from1.5to2.49mm was usually at the stage of uniuclaete microsore in center. Uniucleate microsore at periphery and early2-celled pollen existed in buds long from2.5to3.0mm.2.0~3.0mm long flower buds were adapt for anther or microspore culture. Most of microspore embryos development was same to the zygotic embryos, and the development process was very fast. The embryos grow to globular stages after6-9days of culture, and to cotyledonary stages after13days. There were two kinds of male gametophyte development, one was asymmetrical division (names A pathway), other was B pathway. Both A and B pathway were observed in our study. After the first asymmetrical division, we found that both the vegetative and germ cells could be inducted to embryos, or only the vegetative cells could be inducted, but not the germ ones.
引文
[1]Aionesei T, Touraev A, Heberle-Bors E. Pathways to microspore embryogenesis [A]. In:Haploids in Crop Improvement Ⅱ-Biotechnology in Agriculture and Forestry. Palmer CE, Leller WA, Kashe KJ (eds). Springer-verlag, Germany 2005,56:11-34
    [2]Alexandra G, Gilles F, Christiane C, et al., Tracking T cell clonotypes in complex Tlymphocyte populations by real-time quantitative PCR using fluorogenic complementarity determining region-3-specific probes [J]. Journal of Immunological Methods,2002,270 (2):269-280
    [3]Amrite K, Brian E E. The Phenylalanine ammonia-yase gene family in raspberry:truture, expression, and evolution [J]. Plant Physiology,2001,127 (1):230-239
    [4]Ballie AMR, Epp DJ, Hutcheson D and Keller WA. In vitro culture of isolated microspores and regeneration of plants in Brassica campestris [J]. Plant Cell Reports.1992,11:234-237
    [5]Barinova I, Clement C, Martiny L, et al., Regulation of developmental pathways in cultured microspores of tobacco and snapdragon by medium pH [J]. Planta,2004,219:141-146
    [6]Boutilier K A, G inesM J, Demoor J M, et al., Expression of the BnmNAP ubfamily of napin genes coincides with the induction of Brassica microspore embryogenesis [J]. Plant Molecular Biology, 1994,26:1711-1723
    [7]Boutilier K, O Vringa R Sharma V K, et al., EetoPic expression of Baby Boom triggers a conversion from vegetative to embryonic growth [J]. Plant Cell,2002,14:1737-1749
    [8]Burnett L, Yarrow S, Huang B. Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L. ssp. oleifera [J]. Plant Cell Reports,1992,11:215-218
    [9]Chen Z Z, Snyder S, Fan Z G, et al., Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica napus [J]. Plant Breeding,1994,113: 217-221
    [10]Chuong P V, Beversdorf W D. High frequency embryogenesis through isolated microscope culture in Brassica napus L. and B. carinata Braun [J]. Plant Science,1985,39:219-226
    [11]Chuong P V, Deslauriers C, Kott L S, Beversdorf W D. Effect of donor genotype and bud sampling on microspore culture of Brassica napus [J]. Canadian Journal of Botany,1988,66:1653-1657
    [12]Cordewener J H G, Custers J M B, et al., Temperature controls both gametophytic and sporphytic development in microspore culture of Brassica napus [J]. Plant Cell Reports,1994, (13):267-271
    [13]Cordewener J H G, Hause G, Gorgen E, et al., Changes in synthesis and localization of members of the 70 kDa class of heat sock proteins accompany the induction of embryogenesis in Brassica napus L. microspores [J]. Planta,1995,196:747-755
    [14]Custers J B M, Cordewener J H G, Dons H J M, et al., Regulation of the inductive phase of microspore embryogenesis in Brassica napus [A]. In:Dias J S, Crate I, Monteiro A A. Proceedings of the international iymposium on Brassica, ninth Crucifer genetics workshop [C]. Acta Horticulturae,1996,407:209-217
    [15]Custers J B M, Cordewenner J H G, Nollen Y, et al., Temperature controls both Dias JS. Protocol for broccoli microspore culture [A]. In:Doubled Haploid Production in Crop Plants. Maluszynski M, Kasha KJ, Forster BP and Szarejko I(eds). Kluwer Academic Publishers, the Netherlands 2003, pp:195-204
    [16]Custers J B., Cordewener J H, Nollen Y., et al., Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus [J]. Plant Cell Reports.1994,13: 267-271
    [17]Deng X, Li H, Tang Y. Cytokine expression in respiratory syncytial virvus infected mice as measured by quantitative reverset ranscriptase PCR [J]. Journal of Virological Methods,2003,107 (2):141-146
    [18]Dias J S, Martin M G. Effect of silver nitrate on anther culture embryo production of different Brassica oleracea morphotypes [J]. Scientia Horticultural 1999,82:299-307
    [19]Duijs J G, Voorrips R E, Visser D L, Custers J B M. Microspore culture is successful in most types of Brassica oleracea L.[J]. Euphytica,1992,60:45-55
    [20]Dunwell J M, Cornish M. Influence of preculture variable on microspore embryo production in Brassica napus ssp. oleifero cv. Duplo [J]. Annals of Botany,1985,56:281-289
    [21]Dunwell J M, Sunderland N. Pollen ultrastructure in anther cultures of nicotiana tabacum I early stages of culture [J]. Journal of Expermiental Botany,1974,25 (2):352-361
    [22]Ence DarmoJaya Supena, Budi Winarto, Tjitske Riksen, et al., Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning [J]. Journal of Experimental Botany,2008,59 (4):803-814
    [23]Fan Z, Armstrong K C, Keller W A. Development of microspores in vivo and in vitro in Brassica napus L. [J]. Protoplasma,1988,147:191-199
    [24]Farnham M W, Caniglia E J, Thomas C E. Efficient ploidy determination of anther derived broccoli [J]. HortScience,1998,32:323-327
    [25]Fiers M, Hause G S, Boutilier K, et al., Mis-expression of the CLU3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem [J]. Gene,2004,327:37-49
    [26]Friml J, Vieten A, Sauer M, et al., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis [J]. Nature,2003,426:147-153.
    [27]Fu Z, Rogelj S, Kieft T L, International Journal of Food [J]. Microbiology,2005,99:47-57
    [28]Genovesi A D, Magill C W O. Embryogenesis in callus derived from rice micro-spores Oryza sativa, histology, regeneration process [J]. Plant Cell Reports,1982,1(6):257-260
    [29]Girard B M, May V, Bora S H, et al., Regulation of neurotrophic peptide expression in sympathetic neurons:quantitative analysis using radioimmunoassay and real time quantitative polymerase chain reaction [J]. Regul Peptides,2002,109 (123):89-101
    [30]Gland A, Lichter R, Schweiger H G. Genetic and exogenous factors affecting embryogenesis in isolated microspore cultures of Brassica napus L. [J]. Plant Physiology,1988,132:613-617
    [31]Goldberg R, Thor V, Dubacq J P, et al., Time course of a dedifferentiation process during isolation and culture of protoplasts:comparison between protoplasts from young and mature regions of the mung bean hypocotyl [J]. Plant Science,1986,46(1):63-68
    [32]Haccius B, Bhandari N N, Hausner G. In vitro transformation of ovules into rudimentary pistils in Nicotiana tabacum L. [J]. Journal of Experimental Botany,1974,25 (87):695-704
    [33]Handa H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.):comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana [J]. Nucleic Acids Research,2003,31:5907-5916
    [34]Hansen M. ABA Treatment and desiccation of microspore-derived embryos of cabbage (Brassica oleracea ssp. capitata L.) improves plant development [J]. Plant Physiology,2000,156:164-167
    [35]Hansen N J, Andersen S B. In vitro chromosome doubling potential of colchicines oryazlin, trifluralin and APM in Brassica napus microspore culture [J]. Euphytica,1996,88:159-164
    [36]Hause B, van Veenendaal W L, Hause G, et al., Expression of polarity during early development of microspore-derived and zygotic embryos of Brassica napus L.cv Topas [J]. Botanica Acta,1994, 107,407-415
    [37]Higuchi R, Fockler C, Dollinger G, et al., Kinetic PCR analysis:real-time monitoring of DNA amplification reactions [J]. Biotechnology,1993,11 (9):1026-1030
    [38]Horner M, Street H E. Problems encountered in the culture of isolated pollen of a Burley cultivar of nicotiana tabacum [J]. Journal of Experimental Botany,1972,29 (1):217-226
    [39]Hu T C, Kasha K J. A cytological study of pretreatments used to improve isolated microspore cultures of wheat (Triticum aestivum L.) cv. Chris [J]. Genome,1999,42 (3):432-441
    [40]Huang B, Sunderland N. Temperature-stress pretreatment in barley anther culture [J]. Annals of Botany,1982,49(1):77-88
    [41]Ilic-Grubor K I, Attree S M, Fowke L C. Induction of microspore-derived embryos of Brassica napus L. with polyethylene glycol as osmoticum in a low sucrose medium [J]. Plant Cell Reports, 1998,17:329-333
    [42]Iyer R D, Raina S K. The early ontogeny of embryoids and callus from pollen and subsequent organogenesis in anther cultures of Dutura metel and rice [J]. Planta,1972,104:146-156
    [43]Jurgens G. Apical-basal pattern formation in Arabidopsis embryogenesis [J]. EMBO Journal,2001, 20:3609-3616
    [44]Kasha K J, Simion E, Oro R, et al. An improved in vitro technique for isolated microspore culture of barley [J]. Euphytica,2001a,120:379-385
    [45]Kasha K J, Hu T C, Oro R, et al. Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores [J]. Journal of Experimental Botany, 2001b,52 (359):1227-1238
    [46]Kasha K J, Ziauddin A, Cho U H. Haploids in cereal improvement:anther and microspore culture, in Gene Manipulation in Plant improvemet Ⅱ [M]. New York:1990, pp,213-235
    [47]Keller W A, Armstrong K C. Embryogenesis and plant regeneration in Brassica napus anther culture [J]. Canadian Journal of Botany,1977,55:1383-1388
    [48]Keller W A, Fan Z, Pechan P, et al., An efficient method for culture of isolated microspore of Brassica napus [M]. In:Proc.7th Inter Rapeseed Cong,1988,152-157
    [49]Keller W A, Armstrong K C. Stimulation of embryogenesis and haploid production in Brassica campestris anther cultures by elevated-temperature treatments [J]. Theoretical Applied Genetics. 1979,55:65-67
    [50]Kott L S, Polsoni L, Beversdorf WD. Autotoxicity in isolated microspore culture of Brassica napus L. [J]. Canadian Journal of Botany,1988,66 (8):1658-1664
    [51]Kott LS. Autoyoxicity in isolated microspores of Brassica napus [J]. Canadian Journal of Botany, 1988,66:1665-1670
    [52]Kyo M, Harada H. Specific phosphoproteins in the initial period of tobacco pollen embryogenesis [J]. Planta,1990,182:58-63
    [53]Kyo M, Harada H. Control of the developmental pathway of tobacco pollen in vitro [J]. Planta, 1986,168:427-432
    [54]Lazar G, Weiss A, Schmid R D. Synthesis of esters by lipases [J]. Proceedings World Conference on Emerging Technologies in the Fats and Oils Industry Cannes France,1981,11:346-354
    [55]Lichter R. Efficient yield of embryoids of isolated microscope culture of different Brassicaceae species [J]. Plant Breeding,1989,103:119-123
    [56]Litcher R. Induction of haploid plants from isolated pollen of Brassica napus [J]. Z. P flanzenphysiol,1982,105:427-434
    [57]Maeda S, Miyauchi T, lemitsu M, et al. Effects of exerciset raining on expression of endot helinl mRNA in t he aorta of aged rats [J]. Clinical Science,2002,103:118-123
    [58]Makino S, Cheun H. Application of the real-time PCR for thedetection of airborne microbial pathogens in reference to the anthrax spores [J]. Microbio Methods,2003,53 (2):141-147
    [59]Maraschin S F, de-Priester W, Spaink H P, et al., Androgenic switch:an example of plant embryogenesis from the male gametophyte perspective [J]. Journal of Experimental Botany.2005, 56(417):1711-1726
    [60]Marc A H, Mare J, Martin W. The basic helix-loop-helix transeription faetor family in Plants:a genome wide study of protein strueture and funetiona ldiversity [J]. Molecular Biology Evolution, 2003,20 (5):735-747
    [61]Marsolais A A, Seguin Swartz G, Kasha K J. The influence of anther cold pretreatments and donor plant genotypes on in vitro androgenesis in wheat (Triticum aestivum L.) [J]. Plant Cell Tissue and Organ Culture,1984,3 (1):69-79.
    [62]Meghna R M, Feng W, Joan M D, et al., Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus [J]. Plant Physiology,2007,144: 134-154
    [63]Micheal W, Pfaff I. The whole story of quantitative PCR from tissue preparation to bioinformatics [M]. Munich:Technical University Munich,2005:5
    [64]Mitas M, Cole D J, Hoover L, et al., Real-time reverse transcription-PCR detects KS1/4 mRNA in mediastinal lymphnodes from patients with non-small cell lung cancer [J]. Clinical Chemistry,2003, 49:312-315
    [65]Nitsch C, Norreel B. Factors favoring the formation of androgenetic embryos in anther culture [M]. Genes Enzymes and Populations Proceedings International latin American Symposium Cali Colombia,1972,12:129-144
    [66]Nitta T, Takahata Y, Kaizuma N. Scanning electron microscopy of microspore embryogenesis in Brassica ssp [J]. Plant Cell Reports.1997,16:406-410
    [67]Ogas J, Cheng J C, Sung Z R, et al., Cellular differentiation regulated by giberellin in the Arabidopsis thalianapla mutant [J]. Science,1997,277:91-94
    [68]Ouyang J W, Zhou S M, Jia S E O. The response of anther culture to culture temperature in Triticum aestivum Wheat [J]. Theoretical and Applied Genetics,1983,66 (2):101-109
    [69]Pace. Rew contribution to the knowledge of Italian species of the genus Leptusa Kraatz [J]. Bollettino Societa entomologica italiana,1981,114 (13):34-41
    [70]Pan J L, Gao G H, Ban H. Initial patterns of androgenesis in wheat anther culture [J]. Acta Botanica Sinica,1983,25:34-39
    [71]Raghavan V. Origin and development of pollen embryoids and pollen calluses in cultured anther segments of hyoscyamus niger (henbane) [J]. American Journal of Botany,1978,65:984-1002
    [72]Raghavan V. Role of the generative cell in androgenesis in henbane [J]. Science,1976,191: 388-389.
    [73]Reynolds T L, Crawford R L. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat(Triticum aestivum) [J]. Plant Molecular Biology,1996,32 (5):823-820
    [74]Reynolds T L, Kitto S L. Identification of embryoid-abundant genes that are temporally expressed during pollen embryogenesis in wheat anther cultures [J]. Plant Physiology,1992,100 (4): 1744-1750
    [75]Reynolds T L. A cytological analysis of microspores of triticum aestivum (poaceae) during normal ontogeny and induced embryogenic development [J]. American Journal of Botany,1993,80: 569-576.
    [76]Reynolds T L. Effects of calcium on embryogenic induction and the accumulation of abscisic acid, and an early cysteine-labeled metallothionein gene in androgenic microspores of triticum aestivum [J]. Plant Science,2000,150:201-207
    [77]Reynolds T L. Pollen embryogenesis [J]. Plant Molecular Biology,1997,33:1-10
    [78]Ritala A, Mannonen L, Oksman-Cadentey K M. Factors affecting the regeneration capacity of isolation barley microspores (Hordeum vulgare L.) [J]. Plant Cell Reports,2001,20 (5):403-407
    [79]Roberts M R. Regulatory 14-3-3 protein-protein interactions in plant cells [J]. Current Opinion in Plant Biology,2000,3 (5):400-405
    [80]Sandberg M, Lundberg L, Ferm M, et al. Real-time PCR for the detection and discrimination of cereal contamination in gluten free foods [J]. European Food Research and Technology,2003,217 (4):344-349
    [81]Sato T. Plant regeneration from isolated microspore culture of Chinese cabbage(Brassica campestris ssp. pekinensis) [J]. Plant Cell Reports,1989,8:486-488
    [82]Segui Simarro J M, Testillano P S, Risueno M C. Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. [J]. Journal of Structural Biology,2003,142 (3):379-391
    [83]Simmonds D H, Keller W A. Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brasica napus [J]. Planta,1999,208 (3):383-391
    [84]Stahlberg A, Aman P, Ridell B, et al., Quantitative real-time PCR method for detection of B-lymphocyte monoclonality by comparison of comparison of kappa and lambda immunoglobulin light chain expression [J]. Biochemistry,2003,49 (1):51-59
    [85]Sterk P, Booij H, Schellekens G A, et al., Cell specific expression of carrot EP2 lipid transfer protein gene [J]. The Plant Cell,1991,3 (9):907-921
    [86]Stirn S, Mordhorst A P, Fuchs S, et al., Molecular and biochemical markers for embryogenic potential and regenerative capacity of barley (Hordeum vulgare L) cell cultures [J]. Plant Science, 1995,106 (2):195-206
    [87]Sunderland N, Collins G B, Dunwell J M. The role of nuclear fusion in pollen embryogenesis of Datura innoxia Mill [J]. Planta,1974,117:227-241
    [88]Sunderland N, Dunwell J M. Anther and pollen culture. Plant Tissue and Cell Culture [M]. Oxford, U K:Blackwell,1977
    [89]Sunderland N, Vans L J. Multicellular pollen formation in cultured barley anthers [J]. Experimental Botany,1980,1(21):501-514
    [90]Sunderland N, Wicks F M. Embryoid formation in pollen grains of Nicohana tabacum [J]. Journal of Experimental Botany,1971,22 (1):213-226
    [91]Sunderland N. Pollen and anther culture [J]. In:Street H E. Plant Tissue and Cell culture [M]. Berkeley:University of California Press,1973,205-239
    [92]Swanson E B, Coumans M P, Wu S C, et al. Efficient isolation of microspores and the production of microspore-derived embryos from Brassica napes [J]. Plant Cell Reports,1987,6 (1):94-97
    [93]Reynolds T L, Crawford R L. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum) [J]. Plant Molecular Biology,1996,32:823-829
    [94]Takahata Y, Brown D C W, Keller W A. Dry artificial seeds and desiccation tolerance induction in microspore-derived embryos of broccoli [J]. Plant Cell Tissue and Organ Culture,1993,35: 121-129
    [95]Takahata Y, Keller W A. High frequency embryogenesis and plant regeneration in isolated microscope culture of Brassica oleracea L. [J]. Plant Science,1991,74:235-242
    [96]Telmer C A, Newcomb W, Simmonds D H. Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napes cv. Topas [J]. Protoplasma,1995, 185:106-112
    [97]Telmer C A, Newcomb W, Simmonds D H. Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro [J]. Protoplasma,1993,172:154-165
    [98]Touraev A, Indrianto A, Wratschko I, et al. Efficient microspore embryogenesis in wheat (Trihcum aestivum L.) induced by starvation at high temperature [J]. Sexual Plant Reproduction,1996a,9 (4): 209-215
    [99]Touraev A, Ilham A, Vicente O, et al. Stress induced microspore embryogenesis from tobacco microspores:an optimized system for molecular studies [J]. Plant Cell Reports,1996b,15:561-565
    [100]Touraev A, Pfosser M, Heberle-Bors E. The microspore:a haploid multipurpose cell [J]. Advances in Botanical Research,2001,35:53-109
    [101]Touraev A, Vincente O, Heberle-Bors E. Initiation of microspore embryogenesis by stress [J]. Trends in Plant Science,1997,2(8):297-302
    [102]Turling N, Chay P M. The influence of donor plant genotype and environment on production of multicellular microspore in cultured anthers of Brassica napus ssp. oleifera [J]. Annals of Botany, 1984,54 (5):681-693
    [103]Ulrike M S, Bayerer B, Wolf S, et al. Rapid and reliable method for cytochrome P450 2D6 genotyping [J]. Clinical Chemistry,2002,48:1412-1417
    [104]Virnten P L, Nakamura T, Kasha K J. Characterization of cDNA expressed in the early stages of microspore embryogenesis in barley(Hordeum vulgare L) [J]. Plant Molecular Biology,1999, 41(4):455-463
    [105]Volkov R A, Panchuk I I, Schoffl F. Small htat shock proteins are differentially regulated during pollen development and following heat stress in tobacco [J]. Plant Molecular Biology,2005,57(4): 487-502
    [106]Vrinten P L, Nakamura T, Kasha K J. Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgre L.) [J]. Plant Molecular Biology,1999,41 (4):455-463
    [107]Wang H, Cutler A J, Saleem M, et al., Microtubules in maize leaf protoplasts in relation to donor tissue and in vitro culture [J]. Protoplasma,1989,150 (1):48-53
    [108]Wickert L, Steinkruger S, Abiaka M, et al., Quantitative monitoring of the mRNA expression pattern of the TGF-p-isoforms (β1,β2,β3) during transdifferentiation of hepatic stellate cell susing a newly developed real-time SYBR Green PCR [J]. Biochemical and Biophysical Research Communications,2002,95 (2):330-335
    [109]Yeung E C, Rahman M H, Thorpe T A. Comparative development of zygotic and microspore-derived embryos in Brassica napus L.cv. Topas. I. Histodifferentiation [J]. International Journal of Plant Sciences,1996,157:27-39
    [110]Zaki M A M, Dickinson H G Microspore-derived embryos in Brassica:the significance of division symmetry in pollen mitosis I to embryogenic development [J]. Sexual Plant Reproduction, 1991,4(1):48-55
    [111]Zaki M A M, Dickinson H G. Structural changes during the first divisions of embryos resulting from anther and microspore culture in Brassica napus [J]. Protoplasma 1990,156:149-162
    [112]Zhang G Q, Zhang D Q, Tang G X, et al., Plant development from microspore-derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision [J]. Biologia Plantarum, 2006,50(2):180-186
    [113]Zhao J P, Newcomb W, Simmonds D. Heat-shock proteins 70 kDa and 19kDa are not requiredfor induction of embryogenesis of Brassica napus L. cv. Topas [J]. Plant Cell Physiology,2003,44: 1417-1421
    [114]Zhao J P, Simmonds D H, Newcomb W. High frequency production of doubled haploid plants of Brassica napus cv. Topas derived from colchicines-induced microspore embryogenesis without heat shock [J]. Plant Cell Reports,1995,15:668-669
    [115]Zhao J P, Simmonds D H, Newcomb W. Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas [J]. Planta,1996,198:433-439
    [116]Zhou W J, Hagberg P, Tang G X. Increasing embryogenesis and doubleing efficiency by immediate colchicine treatment of isolated microspores in spring Brassica napus [J]. Euphytica, 2002,128:27-34
    [117]Zhu Z Q, Sun J S, Wang J J. Cytological investigation on androgenesis of triticum aestivum [J]. Acta Botanica Sinica,1978,20:6-12.
    [118]Zondlo S C, Irish V F. CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis [J]. Plant,1999,19:259-268
    [119]蔡慧农,刘光明,苏文金,等TaqMan探针用于转基因食品的荧光定量PCR检测[J].食品与发酵工业,2003,29(12):1-7
    [120]曹鸣庆,李岩,蒋涛,等.大白菜和小白菜游离小孢子培养试验简报[J].华北农学报,1992,7(2):119-120
    [121]曹鸣庆,李岩,刘凡.基因型和供体生长环境对大白菜游离小孢子胚胎发生的影响[J].华北农学报,1993,8(4):1-6
    [122]曾爱松,冯翠,高兵,等.结球甘蓝小孢子培养技术体系的优化研究[J].华北农学报,2010,5(增刊):40-44
    [123]曾君祉,欧阳俊闻.在常温和低温条件下离体培养的小麦花药中小孢子的早期发育[J].遗传学报,1980,(2):65-73
    [124]陈建魁.定量PCR技术的研究进展[J].临床检验杂志,1997,15(2):58-60
    [125]陈军,陈正华,刘澄清,等.甘蓝型油菜离体小孢子培养的胚胎发生[J].遗传学报,1995,22(4):307-315
    [126]陈文辉,方淑桂,曾小玲,等.甘蓝和青花菜杂种小孢子培养[J].热带亚热带植物学报,2006,14(4):321-326
    [127]陈英,王瑞丰,田文忠,等.水稻游离花粉粒培养诱导形成植株的研究[J].遗传学报,1980,7(1):46-54
    [128]陈玉萍,田志宏,陈爱武,等.包心芥菜游离小孢子培养的初步研究[J].华中农业大学学报,1998,17(1):93-95
    [129]成妍,班青宇,王倩,等.不结球白菜游离小孢子培养及再生植株的倍性鉴定[J].南京农业大学学报.2009b,32(2):29
    [130]成妍,侯喜林.不结球白菜分子遗传图谱构建及数量性状位点分析[D].南京,南京农业大学,2009a
    [131]崔凯荣,戴若兰.植物体细胞胚胎发生的分子生物学[M].北京:科学出版社,2000
    [132]崔凯荣.植物体细胞胚胎发生研究的某些现状[J].植物学通报,1993,10(3):14-20
    [133]方淑桂,曾小玲,朱朝辉,等.结球甘蓝游离小孢子胚胎发生[J].武汉植物学研究,2005,23(6):530-534
    [134]方淑桂,陈文辉,曾小玲,等.大白菜游离小孢子培养技术研究初报[J].福建农业学报,2002,18(2):123-126
    [135]方淑桂,陆文辉,曾小玲,等.结球甘蓝游离小孢子培养及植株再生[J].园艺学报,2006,31(1):158-160
    [136]方淑桂,张朝辉,曾小玲,等.影响青花菜的游离小孢子培养若干因素[J].福建农林大学学报(自然科学版),2005,34(1):51-55
    [137]冯辉,姜凤英,冯建云,等.羽衣甘蓝游离小孢子培养技术研究及应用[J].园艺学报,2007,34(4):1019-1022
    [138]付传翠,张丽,宫国义,等.不同预处理方式对萝卜小孢子活力的影响[J].华北农学报,2006,21(6):45-48
    [139]高红亮,李英,宋玉萍,等.不结球白菜离体培养与植株再生体系研究[J].西北植物学报,2008,28(5):0963-0968
    [140]高睦枪,张晓伟,耿建峰,等.利用游离小孢子培养育成旱熟春甘蓝新品种“豫生1号”[J].园艺学报,2001,28(6):577
    [141]高素燕,侯喜林,李英等.不结球白菜小孢子胚植株再生及倍性研究[J].西北植物学报,2009,29(6):1091-1096
    [142]高素燕,李英,单晓政,等.预处理对不结球白菜游离小孢子胚胎发生的影响[J].江苏农业学报,2008,24(6):878-881
    [143]高素燕.不结球白菜游离小孢子培养及胚胎发生相关基因的分离[D].南京农业大学,2009
    [144]耿建峰,侯喜林,张晓伟,等.影响白菜游离小孢子培养关键因素分析[J].园艺学报,2007a,34(1):111-116
    [145]耿建峰.利用DH群体构建不结球白菜遗传连锁图谱及重要农艺性状QTL定位[D].南京:南京农业大学,2007b,32-41
    [146]顾宏辉,唐桂香,张国庆,等.冬性花椰菜的小孢子胚诱导和植株再生研究[J].浙江大学学报,2004,30(1):34-38
    [147]官春云.油菜小孢子培养和双单倍体育种研究[J].作物学报,1995,21(6):665-670
    [148]郭向荣,景建康,胡含,等.大麦直接游离小孢子培养中的脱分化启动和胚胎发生[J].中国农业科学,1997,27(1):50-54
    [149]郭永强,王建设,张慧玲,等.西葫芦胚囊再生植株倍性鉴定[J].华北农学报,2004,19(3):80-83
    [150]韩阳,叶雪凌,冯辉.大白菜小孢子植株的倍性变异及倍性鉴别方法的研究[J].中国蔬菜,2006,(11):9-11
    [151]韩雪梅,王艳,任吉君.草莓花药苗染色体观察方法及数目变异的研究[J].北方园艺,1997,3:44-45
    [152]韩阳,叶雪凌,冯辉.提高大白菜小孢子植株获得率的研究[J].园艺学报,2005,32(6):1092-1094
    [153]韩毅科,杜胜利,王鸣.黄瓜染色体制片及倍性研究[J].华北农学报,2003,18(1):72-74
    [154]何定钢,欧阳俊闻.小麦不同发育时期花药雄核发育的细胞学观察[J].植物学报,1985,27(5):469-475
    [155]何杭军,王晓武,汪炳良.芥蓝游离小孢子培养初报[J].园艺学报,2004,31(2):239-240
    [156]和江明,王敬乔,陈薇,等.EMS对甘蓝型油菜离体小孢子胚胎发生能力的影响[J].西南农业学报,2004,17(6):690-693
    [157]侯喜林.不结球白菜育种研究新进展[J].南京农业大学学报,2003,26(4):111-115
    [158]黄斌.大麦花药培养中若十因素对愈伤组织形成的影响[J].植物生理学报,1984,4:403-405
    [159]霍赫洛夫C.C主编.刘龙杰译.单倍体与育种[M].农业出版社,北京,1985,11-18
    [160]姜凤英,冯辉,王超楠,等.几种影响羽衣甘蓝小孢子胚状体成苗的因素[J].植物生理学通讯,2006b,42(1):58-60
    [161]姜凤英,冯辉,王超楠.小白菜小孢子培养胚状体的诱导[J].沈阳农业大学学报,2006a,37(5):763-765
    [162]姜凤英.羽衣甘蓝游离小孢子培养体系的构建及应用[D].沈阳农业大学博士学位论文,2007
    [163]姜立荣,刘凡,李怀军.大白菜小孢子胚状体发生早期的超微结构研究[J].北京农业科学,1996,14(3):28-31
    [164]蒋武生,原玉香,张晓伟,等.小白菜游离小孢子培养及其再生植株[J].河南农业大学学报,2005,39(4):398-401
    [165]蒋武生,张晓伟,姚秋菊,等.活性炭对小白菜游离小孢子培养的影响[J].华北农学报,2008,23(5):93-96
    [166]梁子超,陈柏锉.木麻黄对青枯病的抗性及其与细胞膜透性和过氧化物酶同工酶关系的探讨[J].华南农学院学报.1982,3(2):28-35
    [167]雷学忠,陈守春.定量PCR技术研究进展[J].四川医学,2002,21(11):991
    [168]李春红,孟祥启,蒋有绎.玉米花药培养及再生植株倍性鉴定[J].华北农学报,1993,8(2):64-68
    [169]李菲,张淑江,章时蕃,等.大白菜游离小孢子培养胚胎发生中的加倍机制[J].园艺学报,2006,33(5):974-978
    [170]李文泽,胡含.大麦花药培养中甘露醇预处理作用的研究[J].莱阳农学院学报,1991,8(4):252-256
    [171]李文泽,宋子红,景健康,等.甘露醇预处理对大麦雄核发育的影响[J].植物学报,1995a,37(7):552-557
    [172]李文泽,胡含.预处理过程中大麦花药蛋白质变化的研究[[J].莱阳农学院学报,1995b,12(1):6-10
    [173]李岩,刘凡,曹鸣庆.通过游离小孢子培养方法获得白菜三个变种的胚胎及植株[J].华北农学报,1993,8(3):92-97
    [174]李再云,刘后利.Observation on chromosome behaviour during meiosis of Brassica napus [J].华中农业大学学报,1994,13(4):418-421
    [175]栗根义,高睦枪,赵秀山.大白菜游离小孢子培养[J].园艺学报,1993,20(2):167-170
    [176]栗根义,耿建峰,原玉香,等.利用游离小孢子培养技术育成抗热大白菜新品种‘豫园50’[J].园艺学报,2002,29(1):89
    [177]栗根义,耿建峰,原玉香,等.通过游离小孢子培养育成的优质大白菜新品种‘豫白菜12号[J].园艺学报,2001,28(1):88
    [178]刘凡,李岩,姚磊,等.培养基水分状况对大白菜小孢子胚成苗的影响[J].农业生物技术学报,1997,5(2):131-136
    [179]刘凡,莫东发,姚磊,等.遗传背景及活性炭对白菜小孢子胚胎发生能力的影响[J].农业生物技术学报,2001,9(3):297-300
    [180]刘凡,姚磊,李岩,等.利用大白菜小孢子胚状体获得抗除草剂转基因植株[J].华北农学报,1998,13(4):93-98
    [181]刘公社,曹鸣庆,李岩,等.高温对大白菜小孢子培养的影响[J].植物学报,1995,37(2):140-146
    [182]刘仁祥,黄莺.烟草花粉植株染色体倍性的早期快速鉴定[J].贵州农业科学,1998,26(6):4-7
    [183]罗超权,杨英浩.人DN指纹的研究及其应用[J].医学研究通讯,1996,25(5):18-19
    [184]吕家龙.蔬菜栽培学各论(南方本)[M].北京:中国农业出版社,2001,48-57
    [185]马丽华,沈火林,郭爽,等.不结球白菜游离小孢子培养成胚影响因素的研究[J].华北农学报,2007a,22(5):63-66
    [186]马丽华,沈火林,王娟,等.不结球白菜小孢子胚成苗及倍性变异研究[J].华北农学报,2007b,22(增刊):200-203
    [187]马宗新,汪茂斌,赵红,等.组培苗的炼苗技术[J].安徽农业科学,2000,28(4):420-421
    [188]牛艳梅,沈文涛,卢雅薇,等.番木瓜果实扩展蛋白Cp-EXP1基因表达的荧光定量PCR分析[J].生物技术通讯,2008,19(1):84-86
    [189]牛应泽,刘玉贞,汪良中,等.人工合成甘蓝型油菜游离小孢子培养及其植株再生研究初报[J].四川农业大学学报,1999,17(2):167-171
    [190]祁永琼,林良斌,董娜,等.甘蓝型油菜小孢子再生体系的优化研究[J].云南农业大学学报,2005,20(1):6-10
    [191]任飞,王羽梅.我国十字花科蔬菜游离小孢子培养研究进展[J].韶关学院学报,“2010,31(3):77-83
    [192]桑玉芳,张恩慧,杨安平,等.甘蓝游离小孢子培养中影响胚状体形成的主要因素[J].西北农业学报,2007,16(2):125-129
    [193]申书兴,梁会芬,张成合,等.提高大白菜小孢子胚胎发生及植株获得率的几个因素研究[J].河北农业大学学报,1999a,22(4):65-68
    [194]申书兴,赵前程,刘世雄,等.四倍体大白菜小孢子植株的获得与倍性鉴定[J].园艺学报,1999b,26(4):232-237
    [195]孙海鹏.大麦雄核发育的基因型效应及相关的分子标记[D].北京:中国科学院植物研究所,1999
    [196]孙淑斌,李宝珍,胡江,等.水稻低丰度表达基因OsAMT1;3实时荧光定量PCR方法的建立及其应用[J].中国水稻科学,2006,20(1):8-12
    [197]汤伟华,张蜀宁,孔艳娥.不结球白菜同源四倍体Pol CMS及其保持系花药发育的解剖学研究[J].西北植物学报,2008,28(4):0704-0708
    [198]王超楠,冯辉,姜凤英,等.小白菜小孢子胚状体诱导成苗及利用[J].中国蔬菜,2007a(8): 18-21
    [199]王超楠,冯辉,姜凤英,等.小白菜小孢子胚状体诱导影响因素研究[J].华北农学报,2007b,22(增刊):204-206
    [200]王得元,何晓明,王鸣.蔬菜生物技术概论[M].中国农业出版社,北京,2002,26-38
    [201]王蒂,冉毅,王汗宁,等.不同培养基对甘蓝型油菜花药和花粉培养的效应比较[J].中国油料,1996,18(2):1-3
    [202]王宏伟,史振声,邢志远.玉米幼胚组织培养褐化发生因素的研究[J].安徽农业科学.2006,34(18):4665-4666
    [203]王羡雪.西瓜染色体倍数性的简易测定方法[J].贵州农业科学,1980,(3):36-37
    [204]王亦菲,陆瑞菊,孙月芳,等.大田油菜游离小孢子培养高频胚状体诱导及植株再生[J].中国农学通报,2002,18(1):20-23
    [205]徐艳辉,冯辉,张凯,等.大白菜游离小孢子培养中若干因素对胚状体诱导和植株再生影响[J].北方园艺,2001(3):6-8
    [206]轩正英,徐书法,冯辉.大白菜游离小孢子培养成胚影响因素的研究[J].辽宁农业科学,2005,(2):18-19
    [207]严菊英,卢亦愚,冯燕,等.Taqman荧光定量快速检测甲型流感病毒[J].中国人兽共患病杂志,2005,21(2):169-172
    [208]严准,田志宏,孟金陵.甘蓝游离小孢子培养的初步研究[J].华中农业大学学报,1999,18(1):5-7
    [209]杨宏远,周嫦.植物有性生殖实验研究四十年[M].武汉大学出版社,2001:27-31
    [210]杨今后,杨新华.桑叶气孔保卫细胞叶绿体数与染色体倍数性关系的测定[J].浙江农业科学,1990,(5):238-240
    [211]杨丽梅,方智远,刘玉梅,等.利用小孢子培育选育甘蓝自交系[J].中国蔬菜,2003,(6):31-32
    [212]杨清,曹鸣庆.通过花药漂浮培养提高花椰菜小孢子胚胎发生率[J].华北农学报,1991,6(3):65-69
    [213]杨晓云,曹寿椿.不结球白菜波里马胞质雄性不育系花药发育的细胞形态学究[J].南京农业大学学报,1997,20(3):36-43
    [214]叶嘉良,陈健,吕正兵,等.PCR技术在海洋生物多肽毒素研究中的应用[J].蚕业科学,2007,33(3):394-402
    [215]余凤群,傅丽霞,刘后利,等.油菜小孢子胚发生的超微结构和胚状体形态[J].西北植物学报,1997a,17(2):.181-186
    [216]余凤群,刘后利.供体材料和培养基成分对甘蓝型油菜小孢子胚状体产量的影响[J].华中农业大学学报,1995,14(4):327-331
    [217]余凤群,刘后利.提高甘蓝型油菜小孢子胚状体成苗率的某些培养因素研究[J].作物学报,1997b,23(2):165-169
    [218]袁惠燕.不结球白菜花药培养研究[D].南京:南京农业大学,2002
    [219]袁素霞,刘玉梅,方智远,等.甘蓝类蔬菜小孢子再生植株染色体倍性与气孔保卫细胞叶绿体数的相关性[J].中国农业科学,2009a,42(1):189-197
    [220]袁素霞.结球甘蓝和青花菜游离小孢子培养及早期胚胎形成相关基因的差异表达分析[D].北京:中国农业科学院,2009b
    [221]张德双,曹鸣庆,秦智伟.绿菜花双核期小孢子比例对游离小孢子培养的影响[J].园艺学报,1998a,25(2):201-202
    [222]张德双,曹鸣庆,秦智伟.绿菜花游离小孢子培养、胚胎发生和植物再生[J].华北农学报,1998b,13(3):102-106
    [223]张德双,曹鸣庆.通过游离小孢子培养获得绿菜花再生植株[J].华北农学报,1997,12(2):136
    [224]张凤兰,钉贯靖久,吉川宏昭.环境条件对白菜小孢子培养的影响[J].华北农学报,1994,9(1):95-100.
    [225]张凤兰,赵岫云.用小孢子培养创建大白菜双单倍体永久作图群体[J].华北农学报.2003,18(4):55-57
    [226]张贺,李波,周虚,等.实时荧光定量PCR技术研究进展及应用[J].动物医学进展,2006,27(增刊):5-12
    [227]张建军,殷丽青,范昆华,等.应用组织培养诱导白菜和离芭四倍体[J].上海农业学报,1997,13(4):21-27
    [228]张菊平,巩振辉,刘珂珂,等.辣椒染色体倍性水平的快速检测[J].西北农林科技大学学报(自然科学版),2007,35:121-124
    [229]张俊龙.葡萄气孔、花粉等与倍性的关系及倍性判别分析[J].甘肃科技,2005,21(5):103-104
    [230]张丽,王静.十字花科作物单倍体育种研究进展[J].安徽农业科学,2003,31(2):231-234
    [231]张凌媛,郭启高,李晓林,等.枇杷气孔保卫细胞叶绿体数目与倍性相关性研究[J].果树学报,2005,22(3):229-233
    [232]张蜀宁,万双粉,张伟.同源四倍体青花菜花粉母细胞的减数分裂[J].园艺学报,2007,34(2):387-390
    [233]张伟,张蜀宁,张红亮.萝卜花粉母细胞减数分裂及其雄配子体发育[J].南京农业大学学报,2007,30(3):38-41
    [234]张晓芬,王晓武,张延国,等.花椰菜游离小孢子培养再生植株研究[J].中国蔬菜,2005,(1):16-17
    [235]张延国,王晓武.小孢子培养技术在青花菜上的应用[J].中国蔬菜,2005,(6):7-9
    [236]张有铎,蔡祖国,李昭北,等.生根基质对菜用大黄组培苗生根及移栽成活率的影响[J].广东农业科学,2010,9:89-95
    [237]张有做,楼程富,周金妹.不同倍性桑品种基因组DNA多态性比较[J].浙江农业大学学报,1998,24(1):79-81
    [238]张振超,张蜀宁,张伟,等.四倍体不结球白菜的诱导及染色体倍性鉴定[J].西北植物学报,2007,27(1):23-28
    [239]张中保,李会勇,石云素,等.应用实时荧光定量PCR技术分析玉米水分胁迫诱导基因的表达模式[J].植物遗传资源学报,2007,8(4):421-425
    [240]赵成章.低温处理对水稻花药愈伤组织的诱导、分化的影响[J].植物生理学通讯,1980,5:37-40
    [241]赵前程,蔡荣旗,刘莉莉,等.影响花椰菜游离小孢子培养因素的研究[J].江苏农业科学,2007a,(4):93
    [242]赵前程,李素文,文正华,等.芥蓝游离小孢子培养及植株再生研究[J].北方园艺,2007b,(9):4-6
    [243]赵岫云,张凤兰,徐家炳.白菜育种中应用小孢子培养技术应注意的问题[J].辽宁农业科学,2003(4):32
    [244]周巍,许明.不结球白菜细胞核雄性败育过程的细胞学研究[J].安徽农业科学,2007,35(6):1600-1601
    [245]周朴华,何立珍,刘选明.组织培养中用秋水仙素诱发黄花菜同源四倍体的研究[J].中国农业科学,1995,28(1):49-55
    [246]周伟军,毛碧增,顾宏辉,等.秋水仙碱及热击与低温诱导对油菜小孢子胚状体成苗率的影响[J].作物学报,2003,28(3):369-373
    [247]周伟军,毛碧增,唐桂香,等.甘蓝型油菜小孢子再生植株染色体倍数检测研究[J].中国农业科学,2002,35(6):724-727
    [248]周雄韬,程庆莲.低温预处理对釉稻花粉植株诱导的效应[J].遗传,1982,4(6):16-18
    [249]朱捷,杨成君,王军.荧光定量PCR技术及其在科研中的应用[J].生物技术通报,2009,2:73-76.
    [250]朱允华,刘明月,吴朝林.影响菜心游离小孢子培养的因素[J].长江蔬菜,2003,(9):46-47
    [251]朱至清,孙敬三,王敬驹.小麦(Triticum aestivum)雄核发育的细胞学研究[J].植物学报,1978,20(1):6-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700