用户名: 密码: 验证码:
断奶仔猪肠道健康的营养调节剂的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用断奶的杜长大仔猪,公母各半,按窝别、体重相近原则随机分组。对照组饲喂基础日粮或基础日粮加抗生素,试验组在基础日粮基础上分别添加不同水平的肠道健康的营养调节剂(丁酸甘油酯、谷氨酰胺、复合有机酸、丁酸梭菌或其复配营养组分),进行了生产试验及实验室分析研究。
     1丁酸甘油酯调节断奶仔猪肠道健康的应用
     与对照组相比,试验期添加0.15%的丁酸甘油酯可以显著提高平均日增重10.24%,显著降低料肉比6.62%,显著减少仔猪腹泻发生率49.36%。
     与对照组相比,添加0.15%丁酸甘油酯可显著提高小肠绒毛高度,降低小肠隐窝深度,提高绒毛高度/隐窝深度比值。与添加0.08%丁酸甘油酯相比,添加0.15%丁酸甘油酯差异显著。
     2谷氨酰胺调节断奶仔猪肠道健康的应用
     试验结果表明,添加1%G1n显著提高断奶仔猪21-42日龄平均日增重,降低腹泻。显著提高肠道对D-木糖的吸收,降低尿素氮水平。1%Gln可显著抑制仔猪断奶早期二糖酶活性和绒毛长度的降低,降低隐窝深度。
     小肠扫描电镜结果表明,添加1%Gln可显著降低断奶仔猪小肠上皮细胞的萎缩和损伤,对照组小肠上皮细胞有明显的萎缩和损伤,而试验组肠上皮细胞比较完整。断奶7天后对照组绒毛发育略有好转。添加G1n后能够改善小肠黏膜上ATP的含量。受断奶应激的影响,断奶后各肠段黏膜NO含量略有下降,添加Gln后,能显著改善小肠黏膜内NO含量。断奶3天十二指肠和空肠黏膜NO含量两组差异显著,试验组比对照组分别高47.5%(P<0.05)、43.38%(P<0.05)。肠黏膜cAMP含量在断奶3天有显著的差异,其他各期差异不显著。空肠各时期cAMP含量变化不大,差异不显著。
     3复合有机酸调节断奶仔猪肠道健康的应用
     通过抑菌圈试验,筛选出乳酸、柠檬酸、苹果酸、酒石酸作为复合酸化剂的有机酸源。通过正交试验,筛选出抑菌和有效降低饲料系酸力的配伍组合。与对照相比,在饲料中添加0.25%的各复合酸组合均可显著降低饲料系酸力。根据抑菌性、系酸力、分散度等,筛选出三种复合酸化剂。将筛选出的三种酸化剂应用于仔猪生产,生产性能试验结果表明:酸化剂效果与抗生素差异不显著。DGGE图谱分析表明,复合有机酸组细菌多样性优于抗生素组,但差异不显著(P>0.05)
     4丁酸梭菌调节断奶仔猪肠道健康的应用
     体外研究表明,丁酸梭菌和大肠杆菌以1:1、5:1、10:1、100:1的菌数比在三角瓶中混合培养时,对大肠杆菌都产生了明显的拮抗作用。丁酸梭菌和产气荚膜梭菌以1:1、5:1、10:1、100:1的菌数比在三角瓶中混合培养时,都对产气荚膜梭菌产生了明显的拮抗作用。混合比例为5:1、10:1组的双歧杆菌活菌数在对数生长期的增值速度比对照组分别提高了75.98%、172.14%。
     断奶仔猪上的应用表明,断奶后0-7天内,丁酸梭菌组的日均采食量显著大于对照组。丁酸梭菌组腹泻率较对照组有降低,但差异不显著。在各个阶段,丁酸梭菌组的大肠杆菌数均小于对照组,而乳酸菌数与双歧杆菌数均大于后对照组组,但差异不显著;在断奶后第7天与14天,丁酸梭菌组小肠各段的隐窝深度与对照组相比,均有下降的趋势。丁酸梭菌可显著提高仔猪断奶7天十二指肠绒毛高度。在断奶后第14天,丁酸梭菌组的溶菌酶、碱性磷酸酶活性显著大于对照组,在断奶后第7天,试验组的血清超氧化物歧化酶(SOD)活性显著大于对照组,丁酸梭菌组仔猪总抗氧化能力(T-AOC)显著大于对照组。
     5、复合肠道营养调节剂在断奶仔猪上的应用
     试验表明,将0.15%丁酸甘油酯、1%谷氨酰胺、0.25%复合有机酸和0.05%丁酸梭菌复配后添加到断奶仔猪专用饲料中,可以显著提升断奶仔猪的采食量和增重,并显著降低断奶仔猪腹泻率,
     试验表明:复合肠道营养调节剂经过合理复配后完全可以替代乳猪饲料中的抗生素和高锌,而并不增加乳仔猪的腹泻率。
     本文研究了谷氨酰胺、丁酸甘油酯、有机酸和丁酸梭菌等营养物质,并形成了一套完整的断奶仔猪肠道健康生理调节技术,开发了促进断奶仔猪肠道健康的营养调节剂,该产品应用于断奶仔猪饲料产品:离乳健、猪可乐和离乳乐。从2009年投产以来,已累计销售近5万吨,新增销售收入约20000万元,新增利润8400万元,新增税收1260万元。
The scholars, both at home and abroad, have been focusing on the effects of weaning stress on bowel structure damage and repair. The aim of this study is to investigate the mechanism of weaning stress to the intestinal epithelium cells damage and thereby explore the repair process with nutrient treatment. It may lay the foundation for the further development of intestinal protection and restoration agent during early weaning.
     The piglets (Duroc×Landrace×Large Yorkshire strain) were weaned,and the same proportion of males and females was used. The piglets were randomly assigned into the control group and treatment groups based on their body weitht and litters. The piglets in control group were fed with basal diet or basal diet with antibiotics, and the piglets in treatment group were fed with the basal diet supplemented different level of nutrients including butyrin, glutamine, compound organic acids, Clostridium Butyricum or its complex. Results are as follows:
     Experiment of butyrin supplementation:(1) Compared with the control group,0.15%butyrin supplementation greatly increased the average daily gain by10.24%, decreased the feed conversion ratio by6.62%, and reduced diarrhea piglets rate by49.36%for the entire experiment.(2) Compared with control group,0.15%butyrin supplementation significantly increased the height of the intestinal villus, decreased the intestinal crypt depth, and improved the ratio of villus height to crypt depth. Compared with0.08%butyrin supplementation,0.15%butyrin supplementation showed better productive performance and ameliorative effects on intestinal structure.
     Experiment of glutamine (Gln) supplementation:The average daily gain was significantly increased by1%Gln supplementation during21-42days of age in weaned piglets, and the absorption of D-xylose was significantly improved. Gln treatment decreased diarrhea incidence and urea nitrogen level, and inhibited the reduction of disaccridase activity, villus height, and crypt depth in the small intestine.
     The results of scanning electron microscope showed that1%Gln supplementation significantly reduced the shrinkage and damage of small intestinal epithelium cells of the Piglets compared with those in the control group. The villus development in control group was improved7days post-weaning. Gln treatment elevated ATP and NO concentration of in the small intestinal mucosa. The levels of NO in the duodenal and jejunal mucosa increased by47.5%(P<0.05) and43.38%(P<0.05), respectively, in the Gin group than those in the control group. The cAMP level in the duodenal mucosa was significantly different between the Gln group and the control group at3days post-weaning. No significant difference was found in the other phases. The difference of cAMP level was not significant in the jejunum at various stages.
     Experiment of compound organic acid supplementation:By bacteriostatic circle test, lactic acid, citric acid, malic acid, and tartaric acid were used as the organic compound acidification agent source. The antibacterial compatibility combination, which reduced the acid cohesion force of the feed, was selected through orthogonal test. Compared with the control group,0.25%compound acid combinations supplementation significantly decreased the acid cohesion force of feed. Based on the property of antibacterial,the acid cohesion, and the dispersion, three compound acid combinations were employed in piglet production. Results of productive performance indicated that there was no significant difference betteween the antibiotics group and acidulant group. DGGE map analysis showed that the diversity of bacteria in compound organic acids group was superior to antibiotics groups, but the diffirence is not significant (P>0.05).
     Experiment of Clostridium Butyricum supplementation:the vitro studies showed that Clostridium Butyricum had significantly inhibitory effect on Escherichia coli when mixing them at the ratios of1:1,5:1,10:1100:1in the triangle bottle. Clostridium Butyricum had significantly inhibitory effect on Clostridium perfringens when mixing them at the ratios of1:1,5:1,10:1100:1in the triangle bottle. Clostridium Butyricum and Clostridium perfringens which mix proportions were1:1,5:1,10:1in the logarithm growth period increased by75.98%,172.14%compared with the control group.
     The application of the study on weaned piglets showed that the average daily gain in Clostridium Butyricum group was significantly greater than that in the control group.The diarrhea rate was lower in Clostridium Butyricum group, but it had no significant difference compared with the control group.The number of Escherichia coli in Clostridium Butyricum group was less than that in the control group at each stage.whereas the number of lactobacillus and bifidobacterium were greater, but there was no significant difference. Compared with the control, crypt depth in the small intestine had a decreased trend in Clostridium Butyricum group at7and14days post-weaning. Clostridium Butyricum treatment increased duodenal villus height significantly at7days post-weaning. The activities of lysozyme and alkaline phosphatase were significantly greater in Clostridium Butyricum group than control group at14days after weaning. The superoxide dismutase (SOD) activity and antioxidant capacity (T-AOC) in the serum of Clostridium Butyricum group were higher than the control group at7days after weaning.
     Results showed that the feed intake and average daily gain increased significantly while the feed special for weaned piglet was supplemented with the combination of butyrin, glutamine, compound organic acids, and Clostridium Butyricum in appropriate dose
     Summarily, butyrin and glutamine promote intestinal villi growth as one of the essential energy resources. Compound organic acids and Clostridium Butyricum inhibit the harmful germs, improve the proliferation of dominant bacterial, and maintain the intestinal microecology balance, which contributes to intestinal health. Thus, the product, combining butyrin, glutamine, compound organic acids, and Clostridium Butyricum, possesses the anti-weaning stress and intestinal repair function and will be sure to have board market.
引文
1. Argenzio R A, Lincos J A, Levy M L,et al. Villous atrophy,crypt hyperplasia, cellular infiltration and impaired glucose Na absorption in enteric cryptosporidiosis of pigs[J].Gastroenterology,1990, 98:1129-1140.
    2. Ayonrinde A I, Williams I H, Mccauley R,et al. Glutamine stimulates intestinal hyperplasia in weanling piglets. Manipulating Pig Production V[M].Vivtoria Australasian Pig Science Association,1995.
    3. Hai-Qiang Zhang, Tomas T Ding, Jun-Sheng Zhao, et al. Therapeutic effects of Clostridium butyricum on experimental colitis induced by oxazolone in rats[J]. World J Gastroenterol 2009 April 21;15(15):1821-1828
    4. Helton S R, Smith J, Rounds.Glutamine prevents pancreatic atrophy and fatty liver during elemental feeding[J].Surgery Reseach,1990,48:297-303.
    5. Imase K, Takahashi M, Tanaka A, Tokunaga K, Sugano H, Tanaka M, Ishida H, Kamiya S, Takahashi S. Efficacy of Clostridium butyricum preparation concomitantly with Helicobacter pylori eradication therapy in relation to changes in the intestinal microbiota[J]. Microbiology and immunology.2008,52(3):156-61.
    6. Jensen N S.Development of digestive enzymes in pigs with Emphasis on lipolytic activity in the stomach and pancreas[J].Animal Science,1999 (77):437-445.
    7. Kandil H M, Argenzio RA, Chen W, et al.L-Glutamine and L-asparagine stimulate ODC activity and proliferation in a porcine jejunal enterocyte line[J].American Physiology,1995,269:591-599.
    8. Klimberg V S, Salloum R M, Kasper M, et al. Oral glutamine accelerates healing of the small intestine and improves outcome after whole abdominal radiation [J]. Archives of Surgery,1990, 125:1040-1045.
    9. Kuroiwa T,IwanagaM,Kobari K. Preventive effect of Clostridium butyricum M588 against the prolferation of Clostridium difficile during antimicrobial therapy[J]. J.Pn.AInf.d.,1990(64):1425-1 432
    10. Lindemann M D.Effect of age weaning and diet of digestive enzyme level in the piglet[J]. Animal Science,1986(62):19-20.
    11. Pluske J R, Williums I H, Aberne F X. Villous height and crypt depth in piglets in response to increase in the intake of cow's milk after weaning[J]. Anim Sci,1996,62:145-158.
    12. Pluske J R, Hampson D J. Williams I D.Factors influencing the structure and function of small intestine in the weanling pig areviews[J]. Livestock Product Science,1997,51:215-236.
    13. Reeds P J, Burrin D G, Stoll B, et al.Intestinal glutamate metabolism[J]. Nutr,2000,130:978-982.
    14. REN Ya-Fang, WANG Li-Li. Effects of probiotics on intestinal bacterial colonization in premature infants[J]. Chinese Journal of Contemporary Pediatrics,2010,12 (3):192-194
    15. SakaiM,Yoshida T,Atsuta S, et al. Enhancement of resistance to vibriosis in rainbow trout Oncorhynchusmykiss(Walbaum) by Oral administration of Clostridium but gum bacterin[J]. Journal of Fish Diseases,1995,18:2,187-190
    16. Takahashi M, Taguchi H, Yamaguchi H, e effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice[J].FEMS Immunology and Medical Microbiology,2004 Jul 1; 41(3):219-26.
    17. Tang M, Laarveld B, Van Kessel AG. et al. Effect of early weaning on post-weaning small intestinal development in pigs[J]. Journal of Animal Science,1999,77:3191-3200.
    18. Tomotar Mistuoka Ph.D.Clostridium butyricum. A Profile of intestinal bacteria [M].YakultHonsha Co, Ltd,1990,126-129
    19. Wu G Y, Meier S A, Knabe D A.Dietary glutamine supplementation prevents jejunal atrophy in weanling pigs[J].Nutr,1996,126:2578-2584.
    20. Wu G, Knabe D A, Yan W.Glutamine and glucose metabolism in enterocytes of the neonatal pig[J].American Physiology,1995,268:334-342.
    21. Yi G F, Carroll J A, Allee G L, et al.Effect of glutamine and spray-dried plasma on growth performance,small intestinal morphology,and immune responses of Escherichia coli K88-challenged weanling pigs[J].Journal of animal science,2005,83(3):634-643.
    22.陈静,刘显军,边连全,等.谷氨酰胺对早期断奶仔猪生长性能和免疫性能的影响[J].西北农业学报,2006,15(4):58-62.
    23.杜云平,周庆丰,郑泽铭等,毕英佐.丁酸梭菌对肉鸡生产性能的影响[J].饲料广角,2009,(22):34-35.
    24.范志勇,王康宁,周定刚.EGF,Gln和pGRF基因质粒对早期断奶仔猪肠道发育的影响[J].畜牧兽医学报2006,37(5):457-463.
    25.冯君,李宏基,韩立强,等.日粮中添加谷氨酰胺(Gln)对断奶仔猪生产性能的影响.黑龙江畜牧兽医[J],2008,7:43-44.
    26.高春生,王艳玲,杨国宇,等.谷氨酰胺(G1n)对早期断奶仔猪生长性能和腹泻的影响[J].中国农学通报,2006,22(4):12-14.
    27.耿忠诚.仔猪早期断奶与营养管理[J].黑龙江畜牧兽医,2000(04):11-12.
    28.郭荣富.谷氨酰胺对隔离早期断奶仔猪的营养生理效应研究[D].雅安:四川农业大学,2003.
    29.黄俊,韩铭海,陈小娥等.新型微生物饲料添加剂的开发及应用效果研究[J].饲料工 业,2003,24(12):40-43.
    30.蒋宗勇郑卫川林映才等.谷氨酰胺对新生仔猪生长性能、血清激素水平及小肠黏膜酶活性的影响[J].动物营养学报,2010,22(1):125-131
    31.乐军,胡宏.双歧杆菌细胞壁完整肽聚糖的分离和纯化[J].中国微生态学杂志,1997,9(5):10-13
    32.李鹏,武书庚,张海军等.复合酸化剂对断奶仔猪肠黏膜形态和肠道微生物区系及免疫功能的影响[J].中国畜牧杂志,2009,45(9):28-31
    33.李恕,丛宁.微生物饲料添加剂-丁酸梭菌复合酶[J].渔业致富指南,1998,21:23-24
    34.李志军,汤日波,张万祥.肠道屏障功能损害与SIRS/MODS的发生及其防[J].中国危重病急救医学,2000,12(12):766.
    35.刘涛,彭健.在日粮中添加谷氨酰胺和谷氨酸对断奶仔猪生产性能的影响[J].华中农业大学学报,1999,18(5):457-460.
    36.刘涛.谷氨酰胺对早期断奶仔猪肠道营养与免疫功能影响机理的研究[D].武汉:华中农业大学畜牧兽医学院,2002.
    37.陆俭,张雪平,孟筱琦等.丁酸梭菌和婴儿型双歧杆菌对霍乱弧菌的拮抗试验[J].微生物学通报,2000,27(5):338-341
    38.唐宝英,朱晓慧,刘佳.丁酸梭菌对动物肠道致病菌体外拮抗作用的研究[J].生物技术,2005,15(1):37-39
    39.唐宝英,朱晓慧,刘佳.新一代微生态制剂——酪酸菌的研究和开发前景[J].中国微生态学杂志,2000,12(5):297
    40.田亚东,李松梅.仔猪早期断奶日龄探讨[J].河南畜牧兽医,2001,22(4):12-14.
    41.王保正,杨清付,董晓东等.丁酸梭菌对猪生长特性的影响[J].饲料工业,2007,28(16):39-40
    42.王继强,龙强,李志伟,李爱琴等.断奶仔猪的生理特点及优质蛋白原料的选择[J].饲料博览,2008,(2):35-38.
    43.王娟.谷氨酰胺及其对早期断奶仔猪免疫的影响[J].家畜生态学报,2006,27(2):100-102.
    44.王丽娟.早期隔离断乳的影响及相关营养措施[J].饲料搏览,2000(8):9-11.
    45.闻爱友,张玉玲,王中才.中草药对断奶仔猪生长性状的影响[J].安徽农业技术师范学院学报,2000,14(3):21-22.
    46.谢树贵,戴青,赵述淼.丁酸梭菌对动物致病菌的拮抗作用研究.2007,46(3):424-426
    47.许梓荣,邹晓庭,孙庆宇等.谷氨酰胺对断奶仔猪肝脏SOD、GSH-Px基因表达的影响[J].中国兽医学报,2008,28(4):461-464.
    48.扬桂苹.丁酸梭菌的生物功能研究[J].中国微生态学杂志,1998,10(5):306-310
    49.杨彩梅,陈安国.谷氨酰胺对早期断奶仔猪生长性能和小肠消化酶活性的影响[J].畜牧兽药杂志,2005,41(6):21-22.
    50.杨彩梅.谷氨酰胺和甘氨酰-谷氨酰胺对断奶仔猪小肠黏膜的影响[J].中国粮油学报,2006, 21(4):119-122
    51.杨桂苹.丁酸梭菌的生物学功能研究[J].1998,10(5):309-311
    52.张军民,高振川.谷氨酰胺对饲喂生大豆仔猪肠道通透性和消化吸收能力的影响[J].中国兽医学报,2002,22(1):96-98.
    53.张军民,高振川.谷氨酰胺对早期断奶仔猪肠黏膜蛋白质、DNA含量和组织形态的影响[J].中国农业科学,2002,35(10):1264-1268.
    54.张军民.谷氨酰胺对早期断奶仔猪肠道的保护作用及其机理研究[D].北京:中国农业大学动物科学技术学院,2000.
    55.张树波,崔云珑,吴顺娥等.酪酸梭菌的抑制作用研究[J].中国新药杂志,2002,11(4):322-324
    56.张雪平,陆俭,傅恩武.酪酸梭菌与双歧杆菌对肠道致病菌的体外生物拮抗作用[J].中国微生态学杂志,2001,13(5):260-262
    57.赵熙,冉陆,杨宝兰等.丁酸梭菌活菌制剂对肠道菌群影响的研究[J].中国微生态学杂志,1999,11(6):332-338
    58.赵玉蓉,王红权,贺建华.谷氨酰胺对断奶仔猪肠道微生物和小肠黏膜形态的影响[J].湖南农业大学学报(自然科学版).2009,35(2):158-161
    59.周荣,彭健.谷氨酰胺和丙氨酰谷氨酰胺对早期断奶仔猪肠上皮细胞增殖和肠道免疫的影响[A].中国畜牧兽医学会动物营养学分会第九届学术研讨会论文集[C].2004.20.
    60.朱贯全,王重龙.仔猪断奶应激的影响因素及防制措施[J].安徽农业科学,2001,28(5):662.
    61.朱晓慧,唐宝英,刘佳.丁酸梭菌对肠道有益菌的增殖作用和共生关系研究[J].中国微生态学杂志,2004,16(4):193-196
    62.朱晓慧,唐宝英,刘佳.丁酸梭菌制剂活菌检测方法的研究[J].中国微生态学杂志,2000,12(2):108-109
    63.庄志发,贺连智,冯紫慧.简述微生态活菌(酪酸菌)制剂的研究应用[J].山东食品发酵,1999(1):32-35
    64.邹晓庭,郑根华,乔云芳.谷氨酰胺对断奶仔猪免疫功能的影响[A].中国畜牧兽医学会动物营养学分会第九届学术研讨会论文集[C].2004.19.
    65.熊本海 有机酸在断奶仔猪日粮中的作用机理分析2001饲料研究11,19-20
    66.邓跃林,张继,邱质华.1993.仔猪料中添加柠檬酸的效果.中国畜牧杂志,29(3):9-10.
    67.刘胜军;丁宝川;耿忠诚.复合有机酸化剂对断奶仔猪生长性能的影响,四川畜牧兽医,2003,30(2):26
    68.刘桂林等.延胡索酸对仔猪生产性能作用机理的探讨[J].动物科学与动物医学,2000,(69):53-55
    69.王宵燕,杨明君.有机酸在畜禽生产中的应用.畜禽业,2002.(1):36-37.
    70.潘宝海,张建东,石现瑞.仔猪日粮中合生素替代抗生素效果的研究[J].饲料研究,2007(3): 58-60.
    71.夏彩锋,瞿继跃,张有为.益生素对保育仔猪生长性能的影响研究[J]浙江畜牧兽医,2006,(01):1-2
    72.张丽萍,王永生猪源乳酸杆菌对仔猪肠道微生物的影响2007(11):10-12.
    73.李春丽,崔淑贞,惠参军,等.微生态制剂对哺乳仔猪生长及免疫机能的影响[J].中国畜牧兽医,2005,32(5):14-15.
    74.舒会友;猪源乳酸菌益生素的研制及其应用[D];湖南农业大学;2005年
    75.杨林;微生态制剂对仔猪肠道非特异性免疫防御机能的影响[D];东北农业大学;2001年
    76.蔡一鸣,廖梅,赵爱武,杨莉,李密.猪饲用微生物添加剂的研究与应用[J]贵州畜牧兽医,2002,(26)6:2-3.
    77.龚新明;复合酶制剂在断奶仔猪日粮中的饲养效果试验[J];浙江畜牧兽医;2000,(01):6
    78.鲍咏梅鲍文华复合酶在非常规型肉猪饲料中的应用试验[J].饲料工业1998(06):45-46
    79.郭芳彬.有机酸在养禽生产中的应用[J].中国家禽,1996,(5):4243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700