用户名: 密码: 验证码:
地黄低聚糖对同种异体脂肪组织来源干细胞移植治疗小型猪急性心肌梗死效应及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:尽管急性心肌梗死(AMI)的治疗取得了一定进步,但仍面临着诸多挑战。干细胞移植治疗AMI是一种很有潜力的方法,但缺血心肌局部恶劣的微环境严重阻碍了其疗效的发挥。
     目的:评价地黄低聚糖(RGOs)对同种异体脂肪组织来源干细胞(ASCs)移植治疗小型猪AMI的疗效,探讨其可能的机制。
     方法:
     第一部分:热水法提取生地黄中的RGOs,经阳离子和阴离子交换树脂洗脱,活性炭柱层析纯化RGOs,以高效液相色谱法(HPLC)检测其水苏糖含量。
     第二部分:酶消化法及贴壁法从小型猪腹股沟脂肪组织中分离、培养ASCs,流式细胞仪鉴定其分子表型;CCK-8法观察不同浓度RGOs对ASCs增殖的影响。
     第三部分:人ASCs(hASCs)经RGOs(0. lmg/ml)预处理12h并继续干预,ELISA法观察不同时间点hASCs培养上清液中血管内皮生长因子(VEGF),肝细胞生长因子(HGF),胰岛素样生长因子-1(IGF-1),碱性成纤维细胞生长因子(bFGF),基质细胞衍生因子-1α(SDF-1α)浓度的变化。
     第四部分:过氧化氢(200μM)联合血清饥饿(H2O2/SD,6h)模拟氧化应激微环境,诱导小型猪ASCs凋亡。观察RGOs(0.01mg/ml,0.1mg/ml、1mg/ml、10mg/ml)预处理12h并继续干预对ASCs凋亡的影响。Annexin V-FITC/PI检测细胞凋亡率,CCK-8法测定细胞活性,酶标仪比色法测定细胞caspase-3的活性,Western-blot法测定细胞Bax、Bcl-2的表达。
     第五部分:17头小型猪随机分为4组:对照组(C组,n=5),单纯RGOs组(R组,n=4),单纯ASCs移植组(A组,n=4),RGOs+ASCs联合治疗组(RA组n=4)。球囊封堵左前降支90分钟构建小型猪AMI模型,造模1周后(7-10天)经冠状动脉移植异体ASCs(0.8×106/kg)。RGOs组造模前3天及造模后1月饲以RGOs粗提物(4g,2/日)。移植后8周,MRI评价各组心脏结构及功能变化,荧光显微镜及激光共聚焦扫描观察ASCs存活及分化,免疫组织化学法观察梗死区域微血管密度,Masson三色染色法评价梗死区纤维化程度,TUNEL法检测梗死边缘区心肌细胞凋亡,Western blot法测定梗死边缘区心肌细胞Bax、Bcl-2的表达。
     结果:
     第一部分:地黄粗提物及提纯物得率分别为地黄原药材的41.64%和35.14%, HPLC法检测RGOs提纯物中水苏糖占31.15%。
     第二部分:成功从小型猪腹股沟脂肪组织中分离并培养了ASCs,第四代ASCs分子表型CD29、CD44、CD90、CD105呈阳性表达,而CD31、CD34、CD45、 HLA-DR均呈阴性表达。RGOs在一定浓度范围(0. Olmg/ml~lmg/ml)内对体外培养的小型猪ASCs具有促增殖作用,最佳浓度为0.lmg/ml。
     第三部分:RGOs(0.1mg/ml)可以促进体外培养的hASCs分泌VEGF、HGF、 IGF-1、SDF-1α,但对于bFGF的分泌无明显影响,其促旁分泌作用具有一定的时效性。
     第四部分:RGOs在一定浓度范围(0.1mg/ml~10mg/ml)可以减轻H2O2/SD引起的ASCs损伤,表现在细胞凋亡率下降,细胞活性增加,caspase-3活性降低,Bax表达下调,Bcl-2表达上调。
     第五部分:与C组比较,仅RA组可以明显改善左心室功能,增加梗死区室壁厚度,减小左心室质量指数及梗死体积(p<0.05);RA组ASCs的存活多于A组(p<0.01);RA组梗死区域微血管密度明显高于其他3组(p<0.01),而3组间无显著差异;与C组比较,A组以及RA组均能明显降低梗死区纤维化程度(p<0.05,p<0.01);与C组比较,R组及RA组均能明显减少心肌细胞凋亡(p<0.05,p<0.01);与C组比较,三组Bax的表达均明显下降(p<0.01),R组及RA组Bcl-2的表达明显升高(p<0.01)。
     结论:RGOs可以提高ASCs移植的效率,其作用机制可能与RGOs改善缺血心肌局部的微环境,促进ASCs增殖、存活,增强ASCs的旁分泌功能及抗凋亡有关。
Background:Treatment of acute myocardial infarction (AMI) remains much challenge, though there have been enormous progresses in ischemic heart disease. Cell-based repair is emerging as a potential novel therapy for AMI. However, the efficacy of cell-based.therapy is hindered by the deleterious local milieu of the myocardium.
     Objective:The study was conducted to evaluate whether Rehmannia Glutinosa Oligosaccharides (RGOs) treatment can increase the efficacy of allogenic adipose tissue-derived stem cells (ASCs) transplantation in Chinese miniswine with AMI and to explore the potential mechanisms.
     Methods and results:
     The first part:Crude extract RGOs was extracted by boiled water from Rehmannia root and was further separated by cation exchange resin and anion exchange resin eluting and by charcoal column chromatography. The stachyose, the main component in the RGOs, was determined by High Performance Liquid Chromatography (HPLC). The outputs of crude extract RGOs and purified product from raw material were41.64%and35.14%, respectively; and purified RGOs contained31.15%stachyose.
     The second part:The ASCs of miniswine were isolated and cultured from adipose tissue harvested from inguinal regions by enzyme digestion and adherent. The molecular phenotypes of ASCs at passages4were examined by flow cytometry, and results showed that ASCs were positive for CD29, CD44, CD90and CD105, but negative for CD31, CD34, CD45and HLA-DR. According to CCK-8colorimetry's results, RGOs could accelerate proliferation of ASCs in vitro in a certain range of concentration (0.01mg/ml-lmg/ml), and the best proliferative effect was observed at concentration of0.1mg/ml.
     The third part:To determine whether RGOs (0.1mg/ml) pretreatment for12hours causes increase of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin-like growth factor-1(IGF-1), basic fibroblast growth factor (bFGF) and stromal cell derived factor-la (SDF-la) release from human ASCs (hASCs) in vitro. The levels of VEGF, HGF, IGF-1, bFGF, SDF-la in the hASCs supernatant were determined by enzyme-linked immunosorbent assay (ELISA). The results indicated that RGOs could promote the secretion of VEGF, HGF, IGF-1and SDF-1a in a time-dependent manner, but the secretion of bFGF did not increase significantly.
     The fourth part:To investigate whether RGOs (0.01mg/ml,0.1mg/ml, lmg/ml,10mg/ml) pretreatment for12hours and continued presence could protect ASCs against apoptosis in a model of oxidative stress consisting of hydrogen peroxide-and serum deprivation-induced in vitro. Apoptosis of ASCs was assessed using an Annexin V-FITC/PI apoptosis kit. Cell activity was determined by CCK-8assay. Caspase-3activity was detected by applying a caspase-3assay kit. Expression of Bax and Bcl-2was investigated using Western blot analysis. We found that RGOs significantly attenuated hydrogen peroxide-and serum deprivation-induced ASCs apoptosis, showing a decreased apoptosis rate, an increase in cell activity, a decreased caspase-3activity, a down-regulated Bax expression and an up-regulated Bcl-2expression.
     The fifth part:Seventeen Chinese miniswine were divided into four groups: control (group C, n=5);RGOs alone (group R, n=4), administration crude extract alone from the3rd day prior to AMI to one month post AMI (4g, two times per day); ASCs transplantation alone (group A, n=4) and RGOs+ASCs (group RA, n=4). AMI models were created by occlusion of the left anterior descending coronary artery for90minutes. One week later (the7th to10th day post AMI), allogenic ASCs (0.8×106/kg) were injected into left anterior descending coronary artery. At8weeks post transplantation, magnetic resonance imaging (MRI) showed that the left ventricular ejection fraction and wall thickness of infarcted regions were increased while the left ventricular mass index, the infarct size were decreased only in group RA compared with group C (P<0.05). ASCs survival was significantly better in group RA than in group A (P<0.01). Microvascular densities both in the infracted zone and the peri-infarct zone also increased significantly in group RA but not in other three groups (P<0.01). Masson trichrome stain showed that there was less fibrosis with more surviving myocardium in group A and group RA than that in group C (P<0.05and P<0.01). TUNEL assay indicated that RGOs administration significantly decreased cell apoptosis in peri-infarct myocardium in group R and group RA (P<0.05and P<0.01). Western blot analysis indicated that the expression levels of Bax in group R, group A and group RA were significantly decreased (P<0.01,versus group C). However, the expression levels of Bcl-2in group R and group RA were significantly increased (P<0.01,versus group C).
     Conclusion:RGOs treatment improves the therapeutic efficacy of ASCs transplantation by improving the local milieu of the ischemic myocardium, promoting ASCs proliferation and survival, enhancing paracrine function and by anti-apoptosis.
引文
1.国家药典委员会编.中华人民共和国药典(2005年版)[M].北京:化学工业出版社,2005:82-83.
    2.郑虎占,董泽宏,余靖.中药现代研究与应用[M].北京:学苑出版社,1999:1752-1753.
    3. Tomoda M, Miyamoto H, Shimizu N, et al. Characterization of two polysaccharides having activity on the reticuloendothelial system from the root of Rehmannia glutinosa[J].Chem Pharm Bull,1994,42(3):625-629.
    4. Tomoda M, Miyamoto H, Shimizu N, et al. Structural features and anti-complementary activity of rehmannan SA, a polysaccharide from the root of Rehmannia glutinosa[J].Chem Pharm Bull,1994,42(8):1666-1668.
    5. Tomoda M, Miyamoto H, Shimizu N, et al. Two acidic polysaccharides having reticuloendothelial system-potentiating activity from the raw root of Rehmannia glutinosa [J].Biol Pharm Bull,1994,17(11):1456-1459.
    6.陈力真.地黄免疫抑瘤活性成分的分离提取与药理作用(简报)[J].中国中药杂志,1993,18(8):502.
    7.狄维,王林,王升启.寡糖及其衍生物的生物活性研究进展[J].中国药物化学杂志,2002,12(4):243-248.
    8.吕秀华,娄维义,党永岩,等.电泳技术的发展和应用[J].农业与技术,2001,21(3):43.
    9. Kitagawa I, Nishimura T, Furubayashi A, et al. On the constituents of rhizome of Rehmannia glutinosa Libosch. forma hueichingensis Hsiao[J].Yakugaku Zasshi 1971,91(5):593-596.
    10. Tomoda M, Kato S, Onuma M, et al. Water-soluble constituents of Rehmanniae Radix.I. Cabohy-drates and acids of Rehmannia glutinosa f. hueichingensis [J].Chem Pharm Bull,1971,19(7):1455-1460.
    11.王太霞,李景原,胡正海.地黄的形态结构与化学成分研究进展[J].中草药,2004,35(5):585-587.
    12.边宝林,王宏洁,倪慕云.地黄及其炮制品中总糖及几种主要糖的含量测定[J].中国中药杂志,1995,20(8):469.
    13. Kubo M, Asano T, Matsuda H, et al. Studies on Rehmanniae Radix.Ⅲ. The relation between changes of constituents and improvable effects on hemorheology with the processing of roots of Rehmannia glutinosa [J].Yakugaku Zasshi,1996,116(2):158-168.
    14.温学森,杨世林,马小军,等.地黄在加工炮制过程中HPLC谱图的变化[J].中草药,2004,35(2):153-156.
    15. Kitagawa I, Fukuda Y, Taniyama T, et al. Chemical studies on crude drug processing.X. On the constituents of Rehmanniae Radixes (4):comparison of the constituents of various Rehmanniae Radixes originating in China, Korea, and Japan [J].Yakugaku Zasshi,1995,115(12):992-1003.
    16. Tomoda M, Tanaka T, Kondo N, et al. Water-soluble constituents of Rehmanniae Radix. Ⅱ.On the Constituents of roots of Rehmannia glutinosa var. purpurea[J].Chem Pharm Bull,1971,19(11):2411-2413.
    17. Kitagawa I, Hori K, Kawanishi T, et al. On the constituents of the root of Fukuchiyama jio, the Hybrid of Remannia glutinosa var. purpurea and R. glutinosa forma hueichingensis [J].Yakugaku Zasshi,1998,118(10):464-475.
    18.刘福君,赵修南,汤建芳,等.地黄低聚糖对快速老化模型小鼠造血功能的影响[J].中国药理学通报,1997,13(6):509-512.
    19.刘福君,赵修南,聂伟,等.地黄低聚糖增强小鼠免疫功能的作用[J].中国药理学通报,1998,14(1):90.
    20.刘福君,赵修南,聂伟,等.地黄低聚糖对小鼠免疫和造血功能作用[J].中 药药理与床,1997,13(5):19-21.
    21.刘副君,赵修南,汤建芳,等.地黄低聚糖对SAMPg小鼠造血祖细胞增殖的作用[J].中国药理学与毒理学杂志,1998,12(2):127.
    22.张汝学,周金黄,张永祥,等.去胸腺对大鼠糖代谢的影响及地黄寡糖对其的调节作用[J].中国药理学通报,2002,18(2):194-197.
    23.张汝学,贾正平,谢景文,等.老年大鼠糖代谢变化及地黄寡糖对其的改善作用[J].中国老年学杂志,2002,22(5):408-409.
    24.张汝学,周金黄,张永祥,等.去胸腺对大鼠糖代谢的影响及地黄寡糖对其的调节作用[J].中国药理学通报,2002,18(2):194-197.
    25.张汝学,周金黄,贾正平,等.地黄寡糖抗糖尿病药理作用及机制研究回顾[J].中药药理与临床,2003,19(2):48-50.
    26.魏小龙,茹祥斌.低分子量地黄多糖对p53基因表达的影响[J].中国药理学报,1997,18(5):471-474.
    27.魏小龙,茹祥斌,刘福君,等.低分子量地黄多糖对癌基因表达的影响[J].中国药理学与毒理学杂志,1998,12(2):159-160.
    28.魏小龙,茹祥斌.低分子量地黄多糖体外对Lewis肺癌细胞p53基因表达的影响[J].中国药理学通报,1998,14(3):245-248
    29.杨菁,石海燕,李莹,等.地黄寡糖对脑缺血再灌注所致痴呆大鼠学习记忆功能的影响[J].中国药理学与毒理学杂志,2008,22(3):165-169.
    30.石海燕,李莹,史佳琳,等.地黄寡糖对血管性痴呆大鼠学习记忆能力及海马乙酰胆碱的影响[J].中药药理与临床,2008,24(2):27-29.
    1. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:Implications for cell-based therapies [J].Tissue Eng,2001,7(2): 211-228.
    2. Mochizuk T, Muneta T, Sakaguchi Y. Higher chondrogenic potential of fibrous synovium and adipose synovium-derived cells compared with subcutaneous fat-derived cells:Distinguishing properties of mesenchymal stem cells in humans [J].Arthritis Rheum,2006,4(3):843-853.
    3. Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives [J].Circulation,2004,109(5):656-663.
    4. Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells [J]. Cell Physiol,2001, 189(1):54-63.
    5. Zuk PA, Zhu M, Aahjian P, et al. Human adipose tissue is a source of multipotent stem cells [J]. Mol Biol Cell,2002,13(12):4279-4295.
    6. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy,2006,8(4):315-317.
    7. Sliva WA Jr, Covas DT, Panepucci RA, et al. The profile of gene expression of human marrow mesenchymal stem cells [J].Stem cells,2003, 21(6):661-669.
    8. Aust L, Devlin B, Foster SJ, et al. Yield of human adipose derived adult stem cells from liposuction aspirates [J]. Cytotherapy,2004,6(1):7214.
    9. PuissantB, Barreau C, Bourin P, et al. Immunomodulatory effects of human adipose tissue-derived stem cells:comparison with bone marrow mesenchymal stem cells[J]. Br Haematol,2005,129(1):118-129.
    10. De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow[J].Immunol Lett,2003,89(2/3):267-270.
    11. Li TS, Ito H, Hayashi M, et al. Cellular expression of integrin-beta(1) is of critical importance for inducing therapeutic angiogenesis by cell implantation[J]. Cardiovasc Res,2005,65(1):64-72.
    12.吴志奎,王蕾,蔡永春,等.糖生物学研究与传统中医药发展[J].深圳中西医结合杂志,2001,12(2):73-75.
    13.尹明.地黄低聚糖对自体骨骼肌成肌细胞移植治疗心肌梗死效应和机制的研究.中国人民解放军军医进修学院(硕士论文集)[M].2006,34-35.
    14.王玉红,陈光辉,张琰琴,等.地黄低聚糖对脂肪间充质干细胞增殖的影响[J].解放军药学学报,2008,24(1):19-22.
    1. Gnecchi M, Zhang Z, Ni A, et al. Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy [J]. Circ Res,2008,103(10):1204-1219.
    2. Gnecchi M, He H, Noiseux N,et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement [J]. FASEB J,2006,20(6):661-669.
    3. Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function [J]. Stem Cells,2007,25(8):2118-2127.
    4. Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression [J]. Circ Res,2009,104(10): 1209-1216.
    5. Niagara MI, Haider HKh, Jiang S, et al. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart[J]. Circ Res,2007,100(4):545-555.
    6. Murry CE, Soonpa MH, Reineeke H, et al. Haematopoietic stem cells do not trandifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature,2004, 428(6983):664-668.
    7. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischemic myocardium [J]. Nature,2004, 428(6983):668-673.
    8. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms [J].Circ Res,2004,94(5):678-685.
    9. Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms[J]. Am J Physiol Renal Physiol,2005,289(1):F31-F42.
    10. Di Camp li C, Zocco MA, Saulnier N, et al. Safety and efficacy profile of G-CSF therapy in patients with acute and chronic liver failure [J]. Dig Liver Dis,2007,39(12):1071-1076.
    11. Neuhuber B, Timothy Himes B, Shumsky JS, et al. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations [J]. Brain Res,2005, 1035(1):73-85.
    12. Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart byprotecting cardiomyocytes from ischemic injury [J]. Am J Physiol Heart Circ Physiol,2006,291(2):H886-H893.
    13. Farhadi J, Jaquiery C, Barbero A, et al. Differentiation-dependent up-regulation of BMP-2, TGF-betal, and VEGF expression by FGF-2 in human bone marrow stromal cells[J]. Plast Reconstr Surg,2005,116(5): 1379-1386.
    14. Jost MM, Ninci E, Meder B,et al. Divergent effects of GM-CSF and TGF bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12:a potential role during arteriogenesis [J]. FASEB J,2003,17(15):2281-2283.
    15. Crisostomo PR, Wang M, Herring CM, et al. Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: role of the 55kDa TNF receptor (TNFR1) [J]. J Mol Cell Cardiol,2007, 42(1):142-149.
    16. Sadat S, Gehmert S, Song YH, et al. The cardioprotective effect of stem cells is mediated by IGF-I and VEGF [J]. Biochem Biophys Res Commun,2007,3 63 (3):674-679.
    17. Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells:a critical role of secretory factors on human dermal fibroblasts [J]. J Dermatol Sci,2007,48(1):15-24.
    18. Kilroy GE, Foster SJ, Wu X, et al. Cytokine profile of human adipose-derived stem cells:expression of angiogenic, hematopoietic, and proinflammatory factors [J]. J Cell Physiol.2007,212(3):702-709.
    19.刘福军,程军平,赵修南,等.地黄多糖对正常小鼠造血干细胞、祖细胞及外周血像的影响[J].中药药理与临床,1996,12(2):12-14.
    20.尹明,王士雯,高磊,等.不同浓度地黄低聚糖对离体培养成年大鼠骨骼肌成肌细胞增殖的影响[J].中国中西医结合急救杂志,2008,15(4):195-197.
    21.尹明,王士雯.地黄低聚糖对自体骨骼肌成肌细胞移植治疗心肌梗死的效应和机制[J].世界急危重病医学杂志,2006,3(4):1364-1365.
    22.王玉红,陈光辉,张琰琴,等.地黄低聚糖对脂肪间充质干细胞增殖的影响[J].解放军药学学报,2008,24(1):19-22.
    23.王新华,王士雯,李泱,等.地黄低聚糖诱导骨髓间充质干细胞向心肌样细胞分化的实验研究[J].解放军医学杂志,2009,34(4):412-414.
    24.王玉红,陈光辉,王舒,等.地黄低聚糖对人脂肪组织源性间充质干细胞分泌血管内皮细胞生长因子的影响[J].心脏杂志,2009,21(3):332-335.
    25. Losordo DW, Vale PR,Symes JM, et al. Gene therapy for myocardial angiogenesis, initial clinical results with direct myocardial injection of phVEGF 165 as sole therapy for myocardial ischemia[J],Circulation,,1998, 98 (25):2800-2804.
    26. Uruno A, Sugawara A, Kanatsuka H, et al. Hepatocyte growth factor stimulates nitric oxide production through endothelial nitric oxide synthase activation by the phosphoinositide 3-kinase/Akt pathway and possibly by mitogen-activated protein kinase kinase in vascular endothelial cells[J]. Hypertens Res,2004,27 (11):887-895.
    27. Kubota T, Namiki A, Fukazawa M, et al. Concentrations of hepatocyte growth factor, basic fibroblast growth factor, and vascular endothelial growth factor in pericardial fluid and plasma[J]. Japanese Heart Journal,2004,45 (6):989-998.
    28. Clanachan AS, J aswal J S, Gandhi M, et al. Effects of inhibition of myocardial extracellular-responsive kinase and P38 mitogen-activated protein kinase on mechanical function of rat heart safter prolonged hypothermic ischemia [J]. Transplantation,2003,75 (2):173-180.
    29. Xu M, Uemura R, Dai Y, et al. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function [J]. J Mol Cell Cardiol,2007, 42(2):441-448.
    30. Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury[J]. Am J Physiol Heart Circ Physiol,2006,291(2):H886-H893.
    1. Lennon SV, Martin SJ, Gotter TG. Dose-dependent induction of apoptosis in human tumor cell lines by widely diverging stiumuli [J]. Cell Prolif,1991, 24(2):203-214.
    2. Cook SA, Sugden PH, Clerk A. Regulation of Bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondria membrance potential [J]. Circ Res, 1999,85(10):940-949.
    3. Von Harsdorf R, Li PF, Dietz R, et al.Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis [J]. Circulation,1999, 99(22):2934-2941.
    4. Chen GG, Sin FL, Leung BC, et al. Glioblastoma cells deficient in DNA-dependent protein kinase are resistant to cell death [J]. J Cell Physiol, 2005,203(1):127-132.
    5. Baxa DM, Luo X, Yoshimura FK. Genistein induces apoptosis in T lymphoma cells via mitochondrial damage [J].Nutr Cancer,2005,51(1):93-101.
    6. Castedo M, Ferri K, Roumier T, et al. Quantitation of mitochondrial alterations associated with apoptosis [J]. J Immunol Methods,2002, 265(1-2):39-47.
    7. Zhivotovsky B. Caspases:the enzymes of death [J]. Essays Biochem,2003, 39:25-40.
    8. Philchenkov AA. Caspases as regulators of apoptosis and other cell functions [J]. Biochemistry (Mosc),2003,68 (4):365-376.
    9. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin:a comprehensive update of caspase substrates [J]. Cell Death Differ,2003,10 (1):76-100.
    10. Hughes PD, Belz GT, Fortner KA, et al. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity [J]. Immunity,2008,28(2):197-205.
    11. Youle RJ, Strasser A. The BCL-2 protein family:opposing activities that mediate cell death [J]. Nat Rev Mol Cell Biol,2008,9(1):47-59.
    12. Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outermembrane permeabilization?[J]. Trends Cell Biol,2008,18(4):157-164.
    13. Jurgensmeier JM, Xie Z, Deveraux Q,et al. Bax directly induces release of cytochrome c from isolated mitochondrial [J]. Proc Natl Acad Sci USA,1998, 95(9):4997-5002.
    14. Desagher S, Osen-Sand A, Nichols A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis[J]. J Cell Biol,1999,144(5):891-901.
    15. Chatterjee S, Stewart AS, Bish LT, et al. Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure[J]. Circulation,2002,106(12 Suppl 1):I212-I217.
    16. Mertens HJ, Heinerman MJ, Evers JL. The expression of apoptosis-related proteins Bcl-2 and Ki67 in endometrium of ovulatory menstrual cycles [J]. Gynecol Obstet Invest,2002,53(4):224-230.
    17.肖卫民,蒋碧梅,石永忠,等.过氧化氢通过线粒体通路和死亡受体通路诱导心肌细胞凋亡[J].中国动脉硬化杂志,2003,11(3):185-188.
    18. Facchinetti F, Furegato S, Terrazzino S, et al. H2O2 induces upregulation of Fas and Fas ligand expression in NGF-differentiated PC 12 cells:modulation by cAMP [J]. J Neurosci Res,2002,69 (2):178-188.
    19.樊淼,,杨菁,白剑,等.地黄寡糖及其主要成分对大鼠脑片氧化应激损伤保护作用研究[J].中药药理与临床,2009,25(5):64-67.
    20. Yu HH, Kim YH, Jung SY, et al. Rehmannia glutinosa activates intracellular antioxidant enzyme systems in mouse auditory cells [J]. Am J Chin Med,2006, 34(6):1083-1093.
    21. Yu HH, Seo SJ, Kim YH, et al. Protective effect of Rehmannia glutinosa on the cisplatin-induced damage of HEI-OCl auditory cells through scavenging free radicals[J]. I Ethnopharmacol,2006,107 (3):383-388.
    22. Li Y, Bao Y, Jiang Bo, et al. Catalpol protects primary cultured astrocytes from in vitro ischemia-induced damage [J]. Int J Dev Neurosci,2008,26(3-4): 309-317.
    23. Hu L, Sun Y, Hu J. Catalpol inhibits apoptosis in hydrogen peroxide-induced endothelium by activating the PI3K/Akt signaling pathway and modulating expression of Bcl-2 and Bax [J]. Eur J Pharmacol,2010,628(1-2):155-163.
    1. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration [J]. Physiol Rev,2005,85(4):1373-1416.
    2. Dimmeler S, Zeiher AM. Cell Therapy of acute myocardial infarction:open questions [J]. Cardiology,2009,113(3):155-160.
    3.武卫红,温学森,赵宇.地黄寡糖及其药理活性研究进展[J].中药材,2006,29(5):507-510.
    4.王玉红,王舒,张琰琴,等.地黄低聚糖抗过氧化氢诱导的脂肪间充质干细胞凋亡的保护作用[J].中国康复理论与实践,2008,14(4):314-315.
    5. 王玉红,陈光辉,张琰琴,等.地黄低聚糖对脂肪间充质干细胞增殖的影响[J].解放军药学学报,2008,24(1):19-22.
    6.尹明,王士雯,高磊,等.不同浓度地黄低聚糖对离体培养成年大鼠骨骼肌成肌细胞增殖的影响[J].中国中西医结合急救杂志,2008,15(4):195-198.
    7. Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration [J]. Cjrc Res 2002,91(12):1092-1102.
    8. Sen A, Lea-Currie YR, Sujkowska D, et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous [J]. J Cell Biochem,2001,81(2):312-319.
    9. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells [J].Mol Biol Cell,2002,13(12):4279-4295.
    10. Wickham MQ, Erickson GR, Gimble JM, et al. Multipotent stromal cells derived from the infrapatellar fat pad of the knee [J]. Clin Orthop Relat Res, 2003,(412):196-212.
    11. Huang JI, Zuk PA, Jones NF, et al. Chondrogenic potential of multipotential cells from human adipose tissue [J]. Plast Reconstr Surg,2004, 113(2):585-594.
    12. Dragoo JL, Samimi B, Zhu M, et al.Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads[J]. J Bone Joint Surg Br, 2003,85(5):740-747.
    13. Lendeckel S, Jodicke A, Christophis P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects:case report [J]. J Craniomaxillo fac Surg,2004,32(6):370-373.
    14. Lawson-Smith MJ, McGeachie JK. The identification of myogenic cells in skeletal muscle, with emphasis on the use of tritiated thymidine autoradiograpgy and desmin antibodies [J]. J Anat,1998,192(Pt 2):161-171.
    15. Rangappa S, Fen C, Lee EH, et al. Transformation of adult rnesenchymal stem cells isolated from the fatty tissue into cardiomyocytes [J]. Ann Thorac Surg,2003,75(3):775-779.
    16. Kang SK, Jun ES, Bae YC, et al. Interactions between human adipose stromal cells and mouse neural stem cells in vitro [J]. Brain Res Dev Brain Res,2003,145(1):141-149.
    17. Yang SX, Xu GY, Zhao NN. Timing-window and therapeutic effects of stem cell transplantation:A Meta-analysis [J]. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu,2007,11(11):2164-2166.
    18. Bartunek J, Wijns W, Heyndrickx GR, et al. Timing of intracoronary bone-marrow-derived stem cell transplantation after ST-elevation myocardial infarction[J]. Nat Clin Pract Cardiovasc Med,2006, (Suppl 1):S52-S56.
    19. Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction [J]. Eur Heart J,2006,27(9):1114-1122.
    20. Hou D, Youssef EA, Brinton TJ, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery:implications for current clinical trials [J]. Circulation,2005,112(9 suppl):I150-1156.
    21. Gnecchi M., Zhang Z., Ni A., et al. Paracrine mechanisms in adult stem cell signaling and therapy [J]. Circ Res,2008,103(10):1204-1219.
    22. Gaustad KG, Boquest AC, Anderson BE, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes [J]. Biochem Biophys Res Commun,2004,314(2):420-427.
    23.裘月,杜冠华,屈志炜,等.常用补益中药抗脂质过氧化作用比较[J].中国药学杂志,1996,31:83-86.
    24. Yu HH, Kim YH, Jung SY, et al. Rehmannia glutinosa activates intracellular antioxidant enzyme systems in mouse auditory cells [J]. Am J Chin Med, 2006,34(6):1083-1093.
    25. Kim SS, Son YO, Chun JC, et al. Antioxidant property of an active component purified from the leaves of paraquat-tolerant Rehmannia glutinosa [J]. Redox Rep.2005,10(6):311-318.
    26. Ohnishi S, Sumiyoshi H, Kitamura S, et al. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions[J]. FEBS Lett,2007,581(21):3961-3966.
    27. Dill T, Schachinger V, Rolf A, et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction:results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy [J]. Am Heart J,2009,157(3):541-547.
    28.夏菁,陈光辉,刘宏斌,等.脂肪间充质干细胞移植对犬心肌梗死后心功能的影响[J].中国临床康复,2006,10(45):33-35.
    29.王磊.地黄低聚糖对脂肪间充质干细胞移植治疗猪心肌梗死后心力衰竭的实验研究(军医进修学院硕士论文)[M].45-47.
    30. Puissant B, Barreau C. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells [J]. Br J Haematol,2005,129 (1):118-129.
    31. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells [J]. Blood,2007,110(10):3499-3506.
    32.国家药典委员会编.中华人民共和国药典(2005年版)[M].北京:化学工业出版社,2005:82-83.
    1. Dimmeler S, Zeiher AM. Cell therapy of acute myocardial infarction:open questions [J]. Cardiology,2009,113(3):155-160.
    2. Gnecchi M., Zhang Z., Ni A., et al. Paracrine mechanisms in adult stem cell signaling and therapy [J]. Circ Res,2008,103(10):1204-1219.
    3. Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration [J]. Physiol Rev,2005,85(4):1373-1416.
    4. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium [J]. Nature,2001,410(6829):701-705.
    5. Murry CE, Soonpaa MH, Reinecke H,et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocyte in myocardial infarcts[J]. Nature,2004, 428(6983):664-668.
    6. Thoelen M, Vandenabeele F, Rummens JL, et al. Ultrastructure of transplanted mesenchymal stem cells after acute myocardial infarction [J]. Heart,2004,90(9):1046.
    7. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J]. Nature,2003,425(6961):968-973.
    8. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms [J]. Circulation,2004,109(12):1543-1549.
    9. Gnecchi M, He H, Liang OD, etal. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells [J]. Nat Med,2005,11(4):367-368.
    10. Gnecchi M, He H, Noiseux N,et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement [J]. FASEB J,2006,20(6):661-669.
    11. Ahmadi H, Baharvand H, Ashtiani SK, et al. Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction[J]. Curr Neurovasc Res,2007,4(3):153-160.
    12. Numaguchi Y, Sone T, Okumura K, et al. The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction [J]. Circulation,2006,114(1 Suppl):I114-I119.
    13. Zhang Z, Deb A, Zhang Z, et al. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a [J]. J Mol Cell Cardiol,2009,46(3):370-377.
    14. Fedak PW, Szmitko PE, Weisel RD, et al. Cell transplantation preserves matrix homeostasis:a novel paracrine mechanism[J]. J Thorac Cardiovasc Surg,2005,130(5):1430-1439.
    15. Ohnishi S, Sumiyoshi H, Kitamura S, et al. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions[J]. FEBS Lett,2007,581(21):3961-3966.
    16. Dill T, Schachinger V, Rolf A, et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction:results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy[J]. Am Heart J,2009,157(3):541-547.
    17. Dhein S, Garbade J, Rouabah D, et al. Effects of autologous bone marrow stem cell transplantation on beta-adrenoceptor density and electrical activation pattern in a rabbit model of nonischemic heart failure [J]. J Cardiothorac Surg,2006,1:17.
    18. Gnecchi M, He H, Melo LG, et al. Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction [J]. Stem Cells,2009,27(4):971-979.
    19. Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function [J]. Proc Natl Acad Sci USA,2005, 102(25):8966-8971.
    20. Hagikura K, Fukuda N, Yokoyama SI,et al. Low invasive angiogenic therapy for myocardial infarction by retrograde transplantation of mononuclear cells expressing the VEGF gene[J]. Int J Cardiol,2009,142(1):56-64.
    21. Chen SY, Wang F, Yan XY,et al.Autologous transplantation of EPCs encoding FGF1 gene promotes neovascularization in a porcine model of chronic myocardial ischemia[J]. Int J Cardiol,2009,135(2):223-232.
    22. Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells,2007,25(8):2118-2127.
    23. Zeng B, Chen H, Zhu C,et al. Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance [J].Eur J Cardiothorac Surg,2008,34(4):850-856.
    24. Wang X, Zhao T, Huang W,et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors [J]. Stem Cells,2009,27(12):3021-3031.
    25. Pernn MS. Importance of the SDF-1:CXCR4 Axis in Myocardial Repair. Circ Res,2009,104(10):1133-1135.
    26. Unzek S, Zhang M, Mal N,et al. SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo [J]. Cell Transplant,2007,16(9):879-886.
    27. Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis [J]. J Thorac Cardiovasc Surg, 2008,135(4):799-808.
    28. Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression [J]. Circ Res,2009,104(10): 1209-1216.
    29. Niagara MI, Haider HKh, Jiang S, et al. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart[J]. Circ Res,2007,100(4):545-555.
    30. Wisel S, Khan M, Kuppusamy ML, et al. Pharmacological Preconditioning of Mesenchymal Stem Cells with Trimetazidine (1-[2,3,4-Trimethoxybenzyl] piperazine) Protects Hypoxic Cells against Oxidative Stress and Enhances Recovery of Myocardial Function in Infarcted Heart through Bcl-2 Expression[J]. J Pharmacol Exp Ther,2009,329(2):543-550.
    31. Bartunek J, Croissant JD, Wijns W, et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium [J]. Am J Physiol Heart Circ Physiol, 2007,292(2):H1095-H1104.
    32. Pasha Z, Wang Y, Sheikh R,et al. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium [J]. Cardiovasc Res,2008,77(1):134-142.
    33. Lu G, Haider HK, Jiang S, et al. Sca-1+ stem cell survival and engraftment in the infarcted heart:dual role for preconditioning-induced connexin-43[J]. Circulation,2009,119(19):2587-2596.
    34. Hou JF, Zhang H, Yuan X, et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells:proliferation, growth factors secretion and myogenic differentiation[J]. Lasers Surg Med,2008, 40(10):726-733.
    35. Kang S, Yang Y, Li CJ,et al. Effectiveness and tolerability of administration of granulocyte colony-stimulating factor on left ventricular function in patients with myocardial infarction:a meta-analysis of randomized controlled trials [J]. Clin Ther,2007,29(11):2406-2418.
    36. Zohlnhofer D, Dibra A, Koppara T,et al. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction:a meta-analysis [J]. J Am Coll Cardiol,2008, 51(15):1429-1437.
    37. Katritsis DG, Sotiropoulou PA, Karvouni E,et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium [J]. Catheter Cardiovasc Interv, 2005,65(3):321-329.
    38. Bonaros N, Rauf R, Werner E,et al. Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure [J]. Interact Cardiovasc Thorac Surg,2008,7(2):249-255.
    39. Shiba Y, Hauch KD, Laflamme MA. Cardiac applications for human pluripotent stem cells [J]. Curr Pharm Des,2009,15(24):2791-2806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700