用户名: 密码: 验证码:
电压门控型钠通道中介的单核/巨噬细胞免疫调节在心肌缺血再灌注损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:炎症反应在心肌缺血再灌注(ischemia/reperfusion, I/R)损伤后的组织修复和心室重塑中发挥重要作用。抑制过度的炎症反应能够缩小心梗面积,改善心功能。单核/巨噬细胞是心肌组织损伤修复中驻留时间最长的炎症细胞。单核/巨噬细胞具有异质性:具有促炎症表型的细胞主要执行吞噬、趋化等作用:具有抑制炎症表型的细胞则能促进血管新生、胶原沉积和组织重塑。近年来的研究显示,促进单核/巨噬细胞由促炎症表型向分泌表型转化,将有助于加速组织修复。新近有研究显示,单核/巨噬细胞的电压门控型钠通道(voltage-gated sodium channels, VGSCs/NaV)参与其生物表型的转化。本实验室的前期工作发现VGSCs阻断剂苯妥英钠(phenytoin, PHT)可促进巨噬细胞的旁分泌效应,并加速心肌梗死(myocardial infarction, MI)后组织修复进程,提示VGSCs是调节单核,巨噬细胞生物表型的靶点之一。VGSCs在体内分布广泛,如神经系统、心肌细胞和骨骼肌细胞。脂质体是一种在药剂学和分子生物学研究中常用的药物/基因载体。经静脉注射的脂质体进入血液循环后,能在调理素的介导下被单核/巨噬细胞吞噬,且易在炎症区域富集,利用这一作用可以实现单核/巨噬细胞的靶向性给药。本课题的研究目的是探讨VGSCs阻断剂和激动剂对单核/巨噬细胞表型转化的影响,及脂质体包被的PHT对I/R损伤后组织修复和心室重塑的干预作用。
     研究内容与方法:研究内容分为细胞实验和动物实验两部分。细胞实验:以小鼠RAW264.7巨噬细胞系及Wistar大鼠腹腔巨噬细胞为研究对象。利用聚合酶链式反应(polymerase chain reaction, PCR)检测巨噬细胞内VGSCs的表达情况,及将VGSCs阻断剂PHT、河豚毒素(tetrodotoxin, TTX)和激动剂藜芦定(veratridine)作用于不同活化状态的巨噬细胞后表型标志物mRNA水平的表达情况。应用PCR和Western blot方法检测NF-κB信号通路的,mRNA水平及蛋白水平的表达情况。将RNA干扰(RNA interference, RNAi)质粒(pGPU6/Neo-NaV1.9-shRNA)转染进RAW264.7,经G418筛选获得稳定细胞株。对稳定细胞株进行如下检测:PCR鉴定干扰效率;CCK-8法测定增殖活性;流式细胞术检测细胞周期及吞噬能力;trans well小室法检测细胞的迁移功能;PCR检测巨噬细胞标志物的mRNA水平的表达情况。动物实验:以雄性Wistar大鼠为研究对象。薄膜分散法制备PHT脂质体(PHT-lipo),高效液相色谱法(highperformance liquid chromatography, HPLC)测定PHT-lipo在大鼠体内药代动力学。Wistar大鼠随机分为缺血再灌注组(I/R组)和假手术组(Sham组)。每组又分为三个亚组,于手术后即刻、第2、4d经静脉注射给予生理盐水(saline),空白脂质体(Emp-lipo)或PHT-lipo。I/R模型采用左冠状动脉结扎法,缺血45min然后持续再灌注。Sham组为穿线不结扎。于术前、术后1、3、5、7、14、30d抽取大鼠尾静脉血,运用流式细胞术检测大鼠循环中单核细胞CD43+和CD43++两个亚群各时间点的比例。术后第30d采用超声心动图和血流动力学评价心脏功能。随后处死动物,留取心脏标本进行病理染色。Masson染色检测心肌梗死面积、膨展指数、胶原容积分数。麦胚凝集素(wheat germ agglutinin, WGA)检测心肌横断面积。Isolectin B4染色检测毛细血管密度。
     结果:细胞实验:1)RAW264.7中有表达的VGSCs α亚基有:NaV1.1、NaV1.3、 NaV1.4、NaV1.5、NaV1.6、NaV1.7、NaV1.9和NaVX。2)应用PHT之后,能使未诱导RAW264.7的M1型标志物CCL5、TNF-α及NOS2表达明显降低,使经脂多糖(lipopolysaccharide, LPS)诱导RAW264.7的M1型标志物IL-1β、CCL2、 CCL5及TNF-α表达降低。TTX能降低未诱导RAW264.7的M1型标志物IL-1p和CCL5表达,降低经LPS诱导RAW264.7的M1型标志物CCL2、CCL5及TNF-α表达。应用藜芦定之后,能使经白介素-4(interleukin-4, IL-4)诱导RAW264.7的M2型标志物Arg1表达降低。3)LPS激活NF-κB信号通路,VGSCs阻断剂能抑制其激活,激动剂则能促进IL-4诱导后的活化。4)成功建立稳定干扰NaV1.9的细胞株,RT-PCR法鉴定干扰效率约80%。下调NaV1.9的表达使RAW264.7的增殖活性、吞噬能力和迁移功能显著降低,M1型标志物CCL5、NOS2表达降低,M2型标志物Arg1、mannose表达升高,NF-κB的表达也降低。5)大鼠腹腔巨噬细胞中有表达的VGSCs是:NaV1.1、NaV1.3、NaV1.4、NaV1.5、NaV1.6、 NaV1.7、NaVX、Scn1b、Scn3b和Scn4b。 PHT抑制LPS引起的M1型巨噬细胞标志物TNF-α、CCL5表达的升高,促进IL-4诱导的M2型巨噬细胞标志物Arg1、TGF-β1的表达。动物实验:1)大鼠尾静脉注射给药后,大鼠体内的PHT和PHT-lipo的血药浓度-时间曲线均符合二室模型。PHT-lipo组的T1/2a(分布半衰期)及T1/2p(清除半衰期)均短于PHT组,AUC略低于PHT组。2)单核细胞亚群在大鼠心肌缺血再灌注模型中存在动态改变:与基线相比,I/R-Saline组CD43+细胞比例从术后第1d开始升高,在第3d达到高峰,之后逐渐下降,在第7d基本恢复基线水平;Sham-Saline组CD43+细胞比例在术后第1d亦明显升高,但在术后第3d已降至基线水平。与Sham-Saline组相比,I/R-Saline组术后第3d CD43+细胞比例显著性升高,其余时间点则无显著性差异。CD43++单核细胞呈现与CD43+细胞相反的变化趋势。3) PHT-lipo能够抑制心肌损伤早期外周血CD43+单核细胞比例的升高,缩小心肌梗死面积,促进梗死区毛细血管增生,降低梗死区胶原沉积和非梗死区代偿性心肌肥大,抑制心室扩张,并改善左心室功能。
     结论:阻断细胞内VGSCs活性可以促使巨噬细胞向M2型转化。VGSCs阻断剂通过降低I/R损伤早期CD43+单核细胞比例改善心室重塑和心功能。本研究结果有助于深入阐释VGSCs中介的单核/巨噬细胞免疫调节作用在I/R后组织修复过程中的病理生理学作用,为以单核/巨噬细胞为靶点的I/R损伤后心室重塑干预策略提供了新的实验依据。
Objective:Inflammatory response plays an important role in the healing process and ventricular remodeling after myocardial ischemia/reperfusion (I/R) injury. Inhibition of excessive inflammation could limit the infarct area and ameliorate heart function. Monocytes/macrophages are the major inflammatory cells that stay for longest time in the remodeling process after myocardial injury. Monocytes/macrophages are a heterogeneous population:the inflammatory monocytes/macrophages have a strong capacity of phagocytosis and chemotaxis; the anti-inflammatory monocytes/macrophages could promote angiogeness, collage deposition and tissue repairing. Previous studies shown that switching the inflammatory monocytes/macrophages into the anti-inflammatory monocytes/macrophages maybe benefit for the tissue repair and ventricular remodeling. The functional expression of voltage-gated sodium channels (VGSCs/NaV) was demonstrated in the monocytes/macrophages, which participate the phenotypic polariztion of monocytes/macrophages. Our previous work shown that VGSCs antagonist phenytoin (PHT) could regulate the function of macrophage and accelerate the remodeling process after experimental myocardial infarction (MI). All these results suggest that the VGSCs in monocytes/macrophages would be a regulatory target of phenotypic polarization. The expression of VGSCs was documented in many tissues, such as myocardium, skeletal muscle and nervous system. Liposome is a commonly used vehicle in the field of pharmaceutics and molecular biology. Liposome is phagocyted by the monocytes/macrophages via opsonin after intravenous injection and prone to recruit into the sites of inflammation. This effect would accomplish the goal for monocytes/macrophages targeting. The objective of this project is to exploit the effects of VGSCs antagonist and agonist on monocytes/macrophages phenotype polarization, and investigate the role of PHT-loading liposome (PHT-lipo) in the remodeling process after myocardial I/R injury.
     Methods:This research is composed of two parts:cell experiments and animal experiments. Cell experiments:mice macrophage cell line RAW264.7and peritoneal macrophages of male Wistar rat were investigated. The mRNA expression level of VGSCs and phenotypic markers, the protein expression level of NF-κB singnaling in PHT, tetrodotoxin (TTX) and veratridine treated macrophage were quantified by polymerase chain reaction (PCR) or Western blot. RNA interference (RNAi) plasmid (pGPU6/Neo-NaV1.9-shRNA) was transfected into RAW264.7and G418was used to screen the stable cell line. Experiments were performed in NaV1.9knockdown cell line:knockdown efficiency was qualified by PCR; the proliferation was measured by CCK-8; cell cycle and phagocytic ability were analyzed by flow cytometry; migratory ability was detected by transwell chamber migration assay; the mRNA expression level of phenotypic markers was detected by PCR. Animal experiments:PHT-lipo was made by film dispersion method. The estimation of pharmacokinetic characteristics of PHT-lipo was done by high performance liquid chromatography (HPLC). Rats were randomly divided into sham groups and I/R groups. Each group was divided into3subgroups which were intravenous injected with saline, empty liposome (Emp-lipo) or PHT-lipo respectively on0,2,4days after surgery. I/R model was established by left coronary artery ligation, ischemia for45min and sequentially persistent reperfusion. The left coronary artery was not ligated in sham groups. Peripheral blood was extracted from individual rat through the tail vein at base line and1,3,5,7,14,30d after surgery. The proportions of circulating monocyte CD43+and CD43++subsets were analyzed by flow cytometry. At30days after the induction of I/R, the cardiac function was evaluated by echocardiography and invasive left ventricular hemodynamic analysis hemodynamic parameter. Then rats were sacrificed and hearts were harvested for the histology examination. Index of expansion, collagen volume fraction (CVF) and infaret size were analyzed from Masson staining. Cross-sectional area was investigated by wheat germ agglutinin (WGA). The capillary density was calculated by isolectin B4staining.
     Results:1) The a subunits of VGSCs expressed in RAW264.7are:NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.9and NaVX.2) The mRNA expression level of CCL5, TNF-a, NOS2(M1markers) in uninduced cell and IL-1β, CCL2, CCL5, TNF-a in LPS induced cell were declined after the treatment of PHT. The mRNA expression level of IL-1β,CCL5in uninduced cell and CCL2, CCL5, TNF-a in LPS induced cell were declined after the treatment of TTX. The mRNA expression level of Argl (M2marker) was decreased in IL-4induced cell after the treatment of veratridine.3) VGSCs antagonist inhibited the activation of NF-κB signaling in LPS-induced RAW264.7; while VGSCs agonist facilitated the activation in IL-4induced cell.4) NaV1.9-deficient stable cell line was established and the expression of NaV1.9was reduced80%. Decreased proliferative, phagocytic and migratory abilities were observed in NaV1.9knockdown RAW264.7cell line. The mRNA expression level of CCL5and NOS2were down-regulated, and Argl and mannose were up-regulated in the stable cell line.5) The expression of VGSCs were confirmed in rat peirtoneal macrophages:NaV1.1, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaVX, Scnlb, Scn3b and Scn4b. PHT inhibited the enhancement of TNF-a, CCL5in LPS treated cells and promoted the increment of Argl, TGF-β1in IL-4treated cells.2Animal experiments:1) The concentration-time curves of PHT and PHT-lipo fitted two-compartment model in rats. The T1/2a and T1/2β of PHT-lipo were shorter and the AUC was lower than PHT.2) Dynamic changes of monocyte subsets proportions were detected in I/R model. In I/R group, the proportion of CD43+monocyte increased at1d after surgery compared with base line, peaked at3d, and then decreased to the base line at7d. In sham group, the percentage of CD43+monocyte enhanced at1d after surgery compared with base line, declined at3d. The ratio of CD43in I/R group at3d was much higher than sham group at3d. There was no significant difference between the two groups at any other time points. The change of CD43++proportion was contrary to CD43+proportion.3) PHT-lipo significantly decreased circulating CD43+monocytes, which was accompanied by improvement of post-infarction left ventricle (LV) remodeling, as shown by decreased infarct size, enhanced angiogenesis, reduced intersitial fibrosis and cardiomyocyte cross-sectional area, dereased LV expansion index, and improved LV functions.
     Conclusions:Block the VGSCs in macrophages could switch the transition of M1into M2polarization in macrophages. PHT-lipo modified the dynamic changes of monocyte subsets and improved the post-infarction healing in rat myocardial I/R model. The present study demonstrates a novel role of VGSCs mediated monocyte/macrophage immunomodulation following myocardial ischemic insult, and provides the experimental basis for monocytes/macophages targeted therapy for the treatment of post-infarction LV remodeling and heart failure.
引文
[1]Kempf T, Zarbock A, Vestweber D, et al. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing[J]. J Mol Med (Berl), 2012,90 (4):361-369.
    [2]Zhao ZQ, Lefer DJ, Sato H, et al. Monoclonal antibody to ICAM-1 preserves postischemic blood flow and reduces infarct size after ischemia-reperfusion in rabbit[J]. J Leukoc Biol,1997,62 (3):292-300.
    [3]Fujiwara N, Kobayashi K. Macrophages in inflammation [J]. Curr Drug Targets Inflamm Allergy,2005,4 (3):281-286.
    [4]Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts[J]. Curr Med Chem,2006,13 (16):1877-1893.
    [5]Carrithers MD, Dib-Hajj S, Carrithers LM, et al. Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification[J]. J Immunol,2007,178 (12):7822-7832.
    [6]Carrithers MD, Chatterjee G, Carrithers LM, et al. Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A[J]. J Biol Chem,2009,284 (12):8114-8126.
    [7]Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles:nanosized vehicles for drug delivery in cancer[J]. Trends Pharmacol Sci,2009,30 (11): 592-599.
    [8]Catterall WA, Goldin AL, and Waxman SG. International Union of Pharmacology. XLⅦ. Nomenclature and structure-function relationships of voltage-gated sodium channels[J]. Pharmacol Rev,2005,57 (4):397-409.
    [9]Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections[J]. J Immunol,2008,181 (6):3733-3739.
    [10]Mantovani A, Sica A, and Locati M. Macrophage polarization comes of age[J]. Immunity,2005,23 (4):344-346.
    [11]Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci,2008,13:453-461.
    [12]Takeda Y, Costa S, Delamarre E, et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis[J]. Nature, 2011,479(7371):122-126.
    [13]Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol,2004, 25 (12):677-686.
    [14]Huang H, Park CK, Ryu JY, et al. Expression profiling of lipopolysaccharide target genes in RAW264.7 cells by oligonucleotide microarray analyses[J]. Arch Pharm Res,2006,29 (10):890-897.
    [15]Krnonickova E, Melkusova P, Farghali H, et al. Nitric oxide production in mouse and rat macrophages:a rapid and efficient assay for screening of drugs immunostimulatory effects in human cells[J]. Nitric Oxide,2007,17 (3-4): 160-169.
    [16]Liao X, Sharma N, Kapadia F, et al. Kruppel-like factor 4 regulates macrophage polarization[J]. J Clin Invest,2011,121 (7):2736-2749.
    [17]Catterall WA. From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels[J]. Neuron,2000,26 (1):13-25.
    [18]Oh Y, Black JA, Waxman SG. Rat brain Na+ channel mRNAs in non-excitable Schwann cells[J]. FEBS letters,1994,350 (2-3):342-346.
    [19]DeCoursey TE, Chandy KG, Gupta S, et al. Voltage-dependent ion channels in T-lymphocytes[J]. J Neuroimmunol,1985,10 (1):71-95.
    [20]Black JA, Waxman SG. Sodium channel expression:a dynamic process in neurons and non-neuronal cells[J]. Dev Neurosci,1996,18 (3):139-152.
    [21]Gordienko DV, Tsukahara H. Tetrodotoxin-blockable depolarization-activated Na+ currents in a cultured endothelial cell line derived from rat interlobar arter and human umbilical vein[J]. Pflugers Arch,1994,428 (1):91-93.
    [22]Fraser SP, Diss JKJ, Mycielska ME, et al. Voltage-gated sodium channel expression in human breast cancer cells:possible functional role in metastasis[J]. Breast Cancer Res Trends,2002,76:S142.
    [23]Catterall WA. Molecular properties of brain sodium channels:an important target for anticonvulsant drugs[J]. Adv Neurol,1999,79441-79456.
    [24]Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease:clinical potential of neonatal Nav1.5 in breast cancer[J]. Eur J Pharmacol,2009,625 (1-3):206-219.
    [25]Roselli F, Livrea P, Jirillo E. Voltage-gated sodium channel blockers as immunomodulators[J]. Recent Pat CNS Drug Discov,2006,1 (1):83-91.
    [26]Black JA, Liu S, Waxman SG. Sodium channel activity modulates multiple functions in microglia[J]. Glia,2009,57 (10):1072-1081.
    [27]Zsiros E, Kis-Toth K, Hajdu P, et al. Developmental switch of the expression of ion channels in human dendritic cells[J]. J Immunol,2009,183 (7): 4483-4492.
    [28]Dib-Hajj SD, Black JA, Waxman SG. Voltage-gated sodium channels: therapeutic targets for pain[J]. Pain Med,2009,10 (7):1260-1269.
    [29]Amaya F, Wang H, Costigan M, et al. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity[J]. J Neurosci,2006,26 (50):12852-12860.
    [30]Ritter AM, Martin WJ, Thorneloe KS. The voltage-gated sodium channel Nav1.9 is required for inflammation-based urinary bladder dysfunction[J]. Neurosci Lett,2009,452 (1):28-32.
    [31]Maingret F, Coste B, Padilla F, et al. Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism[J]. J Gen Physiol,2008,131 (3):211-225.
    [32]Schmidtmayer J, Jacobsen C, Miksch G, et al. Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes:membrane currents[J]. Glia,1994,12 (4):259-267.
    [33]Hoffmann A, Kann O, Ohlemeyer C, et al. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia):suppression of receptor-evoked calcium signaling and control of release function[J]. J Neurosci,2003,23 (11):4410-4419.
    [34]Bortner CD, Cidlowski JA. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death[J]. J Biol Chem,2003,278 (40):39176-39184.
    [35]Bakhramov A, Boriskin YS, Booth JC, et al. Activation and deactivation of membrane currents in human fibroblasts following infection with human cytomegalovirus[J]. Biochim Biophys Acta,1995,1265 (2-3):143-151.
    [36]Okada K, Sugiura T, Kuroda E, et al. Phenytoin promotes Th2 type immune response in mice[J]. Clin Exp Immunol,2001,124 (3):406-413.
    [37]Kondo N, Takao A, Tomatsu S, et al. Suppression of IgA production by lymphocytes induced by diphenylhydantoin[J]. J Investig Allergol Clin Immunol,1994,4 (5):255-257.
    [38]Wu WK, Li GR, Wong HP, et al. Involvement of Kvl.1 and Nav1.5 in proliferation of gastric epithelial cells[J]. J Cell Physiol,2006,207 (2): 437-444.
    [39]Kohrman DC, Harris JB, Meisler MH. Mutation detection in the med and medJ alleles of the sodium channel Scn8a. Unusual splicing due to a minor class AT-AC intron[J]. J Biol Chem,1996,271 (29):17576-17581.
    [40]Craner MJ, Damarjian TG, Liu S, et al. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS[J]. Glia,2005, 49 (2):220-229.
    [41]Fraser SP, Diss JK, Lloyd LJ, et al. T-lymphocyte invasiveness:control by voltage-gated Na+ channel activity[J]. FEBS lett,2004,569 (1-3):191-194.
    [42]Shikina T, Hiroi T, Iwatani K, et al. IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut[J]. J Immunol,2004,172 (10):6259-6264.
    [43]Diss JK, Archer SN, Hirano J, et al. Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines[J]. Prostate,2001,48 (3):165-178.
    [44]Fraser SP, Salvador V, Manning EA, et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer:I. Lateral motility[J]. J Cell Physiol, 2003,195 (3):479-487.
    [45]高瑞,王静,沈怡,et al.电压门控钠通道亚型Nav1.5在乳腺癌细胞中的表达及与细胞体外转移的关系[J].华中科技大学学报(医学版),2009,38 199-202.
    [46]Roger S, Rollin J, Barascu A, et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines[J]. Int J Biochem Cell Biol,2007,39 (4):774-786.
    [47]Fulgenzi G, Graciotti L, Faronato M, et al. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility[J]. Int J Biochem Cell Biol,2006,38 (7):1146-1159.
    [48]Shishodia S, Koul D, Aggarwal BB. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma:correlation with suppression of COX-2 synthesis[J]. J Immunol, 2004,173 (3):2011-2022.
    [49]Lawrence T, Gilroy DW, Colville-Nash PR, et al. Possible new role for NF-kappaB in the resolution of inflammation[J]. Nat Med,2001,7 (12): 1291-1297.
    [50]陈孝储,周欣,李玉明,et al.高效液相色谱法测定苯妥英钠脂质体包封率[J].武警后勤学院学报(医学版),2012,21(5):313-319.
    [51]Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids[J]. J Mol Biol,1965,13 (1):238-252.
    [52]Ahsan F, Rivas IP, Khan MA, et al. Targeting to macrophages:role of physicochemical properties of particulate carriers--liposomes and microspheres--on the phagocytosis by macrophages[J]. J Control Release, 2002,79 (1-3):29-40.
    [53]Gotfredsen CF, Van Berkel TJ, Kruijt JK, et al. Cellular localization of stable solid liposomes in the liver of rats[J]. Biochem Pharmacol,1983,32 (22): 3389-3396.
    [54]Raz A, Bucana C, Fogler WE, et al. Biochemical, morphological, and ultrastructural studies on the uptake of liposomes by murine macrophages [J]. Cancer Res,1981,41 (2):487-494.
    [55]Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano-and microspheres. Ⅱ:effect of surface charges on in vitro phagocytosis and biodistribution in rats[J]. Eur J Pharm Biopharm,1998,46 (3):255-263.
    [56]Ravichandran KS, Lorenz U. Engulfment of apoptotic cells:signals for a good meal[J]. Nat Rev Immunol,2007,7 (12):964-974.
    [57]Absolom DR. Opsonins and dysopsonins:an overview[J]. Methods Enzymol, 1986,132281-132318.
    [58]Awasthi VD, Garcia D, Goins BA, et al. Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits[J]. Int J Pharm,2003,253 (1-2):121-132.
    [59]Chono S, Tauchi Y, Morimoto K. Pharmacokinetic analysis of the uptake of liposomes by macrophages and foam cells in vitro and their distribution to atherosclerotic lesions in mice[J]. Drug Metab Pharmacokinet,2006,21 (1): 37-44.
    [60]Makabi-Panzu B, Lessard C, Perron S, et al. Comparison of cellular accumulation, tissue distribution, and anti-HIV activity of free and liposomal 2',3'-dideoxycytidine[J]. AIDS Res Hum Retroviruses,1994,10 (11): 1463-1470.
    [61]Moghimi SM. Mechanisms of splenic clearance of blood cells and particles: Towards development of new splenotropic agents[J]. Adv Drug Deliv Rev, 1995,17:103-115.
    [62]Poste G, and Kirsh R. Rapid decay of tumoricidal activity and loss of responsiveness to lymphokines in inflammatory macrophages[J]. Cancer Res, 1979,39 (7):2582-2590.
    [63]Weissig V, Whiteman KR, Torchilin VP. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice[J]. Pharm Res,1998,15 (10):1552-1556.
    [64]Ma Y, and Pope RM. The role of macrophages in rheumatoid arthritis[J]. Curr Pharm Des,2005,11 (5):569-580.
    [65]Nitta Y, Sugita T, Ikuta Y, et al. Inhibitory effect of liposomal MDP-Lys on lung metastasis of transplantable osteosarcoma in hamster [J]. Oncol Res,2000, 12(1):25-31.
    [66]Kitchens WH, Chase CM, Uehara S, et al. Macrophage depletion suppresses cardiac allograft vasculopathy in mice[J]. Am J Transplant,2007,7 (12): 2675-2682.
    [67]Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice[J]. J Clin Invest,2011,121 (3):985-997.
    [68]Harel-Adar T, Ben Mordechai T, Amsalem Y, et al. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair[J]. Proc Natl Acad Sci U S A,2011,108 (5):1827-1832.
    [69]Kim YG, Cho MK, Kwon JW, et al. Effects of cysteine on the pharmacokinetics of intravenous phenytoin in rats with protein-calorie malnutrition[J]. Int J Pharm,2001,229 (1-2):45-55.
    [70]Mori N, Kurokouchi A, Osonoe K, et al. Liposome-entrapped phenytoin locally suppresses amygdaloid epileptogenic focus created by db-cAMP/EDTA in rats[J]. Brain Res,1995,703 (1-2):184-190.
    [71]Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury:a neglected therapeutic target[J]. J Clin Invest,2013,123 (1):92-100.
    [72]Gordon S, Taylor PR. Monocyte and macrophage heterogeneity [J]. Nat Rev Immunol,2005,5 (12):953-964.
    [73]Melgert BN, Spaans F, Borghuis T, et al. Pregnancy and preeclampsia affect monocyte subsets in humans and rats[J]. PloS one,2012,7 (9):e45229.
    [74]Wong KL, Yeap WH, Tai JJ, et al. The three human monocyte subsets: implications for health and disease[J]. Immunol Res,2012,53 (1-3):41-57.
    [75]Ahuja V, Miller SE, Howell DN. Identification of two subpopulations of rat monocytes expressing disparate molecular forms and quantities of CD43[J]. Cell Immunol,1995,163 (1):59-69.
    [76]Auffray C, Sieweke MH, Geissmann F. Blood monocytes:development, heterogeneity, and relationship with dendritic cells[J]. Annu Rev Immunol, 2009,27:669-692.
    [77]Jugdutt BI. Monocytosis and adverse left ventricular remodeling after reperfused myocardial infarction[J]. J Am Coll Cardiol,2002,39 (2): 247-250.
    [78]Liu Y, Thornton JD, Cohen MV, et al. Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction[J]. Circulation,1993,88 (3):1273-1278.
    [79]Lu HK, Rentero C, Raftery MJ, et al. Leukocyte Ig-like receptor B4 (LILRB4) is a potent inhibitor of FcgammaRI-mediated monocyte activation via dephosphorylation of multiple kinases[J]. J Biol Chem,2009,284 (50): 34839-34848.
    [80]Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction ("stunned myocardium")[J]. J Am Coll Cardiol,1988,12 (1): 239-249.
    [81]Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning[J]. Physiol Rev,1999,79 (2):609-634.
    [82]Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction[J]. Cardiovasc Res,2002,53 (1):31-47.
    [83]Lahat N, Rahat MA, Ballan M, et al. Hypoxia reduces CD80 expression on monocytes but enhances their LPS-stimulated TNF-alpha secretion[J]. J Leukoc Biol,2003,74 (2):197-205.
    [84]Libby P, Maroko PR, Bloor CM, et al. Reduction of experimental myocardial infarct size by corticosteroid administration[J]. J Clin Invest,1973,52 (3): 599-607.
    [85]Roberts R, DeMello V, Sobel BE. Deleterious effects of methylprednisolone in patients with myocardial infarction[J]. Circulation,1976,53 (3 Suppl): 1204-206.
    [86]Kloner RA, Fishbein MC, Lew H, et al. Mummification of the infarcted myocardium by high dose corticosteroids[J]. Circulation,1978,57 (1):56-63.
    [87]Nahrendorf M, Pittet MJ, Swirski FK. Monocytes:protagonists of infarct inflammation and repair after myocardial infarction[J]. Circulation,2010,121 (22):2437-2445.
    [88]Rosenstein Y, Santana A, Pedraza-Alva G. CD43, a molecule with multiple functions[J]. Immunol Res,1999,20 (2):89-99.
    [89]Yrlid U, Jenkins CD, MacPherson GG. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions[J]. J Immunol,2006,176 (7):4155-4162.
    [90]Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection[J]. J Leukoc Biol,2007,82 (2): 244-252.
    [91]Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood[J]. Blood,1989,74 (7):2527-2534.
    [92]Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells[J]. Science,2010,327 (5966):656-661.
    [93]Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood[J]. Blood,2010,116 (16):e74-80.
    [94]Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset[J]. Blood,2011,118 (12):e50-61.
    [95]Heine GH, Ulrich C, Seibert E, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients[J]. Kidney Int,2008,73 (5):622-629.
    [96]Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+monocytes and cardiovascular outcome in patients with chronic kidney disease[J]. Eur Heart J, 2011,32(1):84-92.
    [97]Tapp LD, Shantsila E, Wrigley BJ, et al. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction[J]. J Thromb Haemost,2012,10 (7):1231-1241.
    [98]Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites[J]. Science,2009,325 (5940):612-616.
    [99]Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions[J]. J Exp Med,2007,204 (12):3037-3047.
    [100]Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity[J]. Nat Rev Immunol,2011,11 (11):750-761.
    [101]Lin SL, Castano AP, Nowlin BT, et al. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations[J]. J Immunol,2009,183 (10):6733-6743.
    [102]Tsujioka H, Imanishi T, Ikejima H, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction[J]. J Am Coll Cardiol,2009,54 (2): 130-138.
    [103]Leor J, Rozen L, Zuloff-Shani A, et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart[J]. Circulation,2006,114 (1 Suppl):194-100.
    [104]Tsujita K, Kaikita K, Hayasaki T, et al. Targeted deletion of class A macrophage scavenger receptor increases the risk of cardiac rupture after experimental myocardial infarction[J]. Circulation,2007,115 (14): 1904-1911.
    [105]van Amerongen MJ, Harmsen MC, van Rooijen N, et al. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice[J]. Am J Pathol,2007,170 (3):818-829.
    [106]Ono K, Matsumori A, Furukawa Y, et al. Prevention of myocardial reperfusion injury in rats by an antibody against monocyte chemotactic and activating factor/monocyte chemoattractant protein-1[J]. Lab Invest,1999,79 (2): 195-203.
    [107]Yue Tl TL, Chen J, Bao W, et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone[J]. Circulation,2001,104 (21): 2588-2594.
    [108]Panizzi P, Swirski FK, Figueiredo JL, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis[J]. J Am Coll Cardiol,2010, 55(15):1629-1638.
    [109]Leuschner F, Dutta P, Gorbatov R, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice[J]. Nat Biotechnol,2011,29 (11): 1005-1010.
    [110]Meshkibaf MH, Subhash MN, Lakshmana KM, et al. Effect of chronic administration of phenytoin on regional monoamine levels in rat brain[J]. Neurochem Res,1995,20 (7):773-778.
    [111]Andrade-Mena CE, Sardo-Olmedo JA, Ramirez-Lizardo EJ. Effects of phenytoin administration on murine immune function[J]. J Neuroimmunol, 1994,50 (1):3-7.
    [112]Nierkens S, van Helden P, Bol M, et al. Selective requirement for CD40-CD154 in drug-induced type 1 versus type 2 responses to trinitrophenyl-ovalbumin[J]. J Immunol,2002,168 (8):3747-3754.
    [113]Gutting BW, Schomaker SJ, Kaplan AH, et al. A comparison of the direct and reporter antigen popliteal lymph node assay for the detection of immunomodulation by low molecular weight compounds[J]. Toxicol Sci, 1999,51(1):71-79.
    [114]Sullivan-Jones P, Hansen DK, Sheehan DM, et al. The effect of teratogens on maternal corticosterone levels and cleft incidence in A/J mice[J]. J Craniofac Genet Dev Biol,1992,12 (4):183-189.
    [115]Espey MG, and Basile AS. Glutamate augments retrovirus-induced immunodeficiency through chronic stimulation of the hypothalamic-pituitary-adrenal axis[J]. J Immunol,1999,162 (8):4998-5002.
    [116]Marcoli M, Ricevuti G, Fasani F, et al. Assessment of lymphocyte and phagocytic cell function in healthy volunteers undergoing short-term phenytoin administration[J]. Int J Immunopharmacol,1987,9 (8):903-912.
    [117]Naidu MU, Ramesh Kumar T, Anuradha RT, et al. Evaluation of phenytoin in rheumatoid arthritis--an open study[J]. Drugs Exp Clin Res,1991,17 (5): 271-275.
    [118]Basaran N, Hincal F, Kansu E, et al. Humoral and cellular immune parameters in untreated and phenytoin-or carbamazepine-treated epileptic patients [J]. Int J Immunopharmacol,1994,16(12):1071-1077.
    [119]Ranua J, Luoma K, Auvinen A, et al. Serum IgA, IgG, and IgM concentrations in patients with epilepsy and matched controls:a cohort-based cross-sectional study[J]. Epilepsy Behav,2005,6 (2):191-195.
    [120]Aarli JA. Changes in serum immunoglobulin levels during phenytoin treatment of epilepsy[J]. Acta Neurol Scand,1976,54 (5):423-430.
    [121]Seager J, Jamison DL, Wilson J, et al. IgA deficiency, epilepsy, and phenytoin treatment[J]. Lancet,1975,2 (7936):632-635.
    [122]Grindulis KA, Nichol FE, Oldham R. Phenytoin in rheumatoid arthritis[J]. Ann Rheum Dis,1986,13 (6):1035-1039.
    [123]Rao UR, Naidu MU, Kumar TR, et al. Comparison of phenytoin with auranofin and chloroquine in rheumatoid arthritis--a double blind study [J]. J Rheumatol,1995,22(7):1235-1240.
    [124]Yamada M, Ohkawa M, Tamura K, et al. Anticonvulsant-induced suppression of IFN-gamma production by lymphocytes obtained from cervical lymph nodes in glioma-bearing mice[J]. J Neurooncol,2000,47 (2):125-132.
    [125]Yang M, Kozminski DJ, Wold LA, et al. Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer[J]. Breast Cancer Res Treat,2012,134 (2):603-615.
    [126]Abdul M, Hoosein N. Inhibition by anticonvulsants of prostate-specific antigen and interleukin-6 secretion by human prostate cancer cells[J]. Anticancer Res,2001,21 (3B):2045-2048.
    [127]Schweiger FJ, Kelton JG, Messner H, et al. Anticonvulsant-induced marrow suppression and immune thrombocytopenia[J]. Acta Haematol,1988,80 (1): 54-58.
    [128]Leeder JS. Mechanisms of idiosyncratic hypersensitivity reactions to antiepileptic drugs[J]. Epilepsia,1998,39 Suppl 7:S8-16.
    [129]Talas G, Brown RA, McGrouther DA. Role of phenytoin in wound healing--a wound pharmacology perspective [J]. Biochem Pharmacol,1999,57 (10): 1085-1094.
    [130]Brunet L, Miranda J, Roset P, et al. Prevalence and risk of gingival enlargement in patients treated with anticonvulsant drugs [J]. Eur J Clin Invest, 2001,31 (9):781-788.
    [131]Trackman PC, Kantarci A. Connective tissue metabolism and gingival overgrowth[J]. Crit Rev Oral Biol Med,2004,15 (3):165-175.
    [132]Suzuki AM, Yoshimura A, Ozaki Y, et al. Cyclosporin A and phenytoin modulate inflammatory responses[J]. J Dent Res,2009,88 (12):1131-1136.
    [133]Saito K, Mori S, Tanda N, et al. Expression of p53 protein and Ki-67 antigen in gingival hyperplasia induced by nifedipine and phenytoin[J]. J Periodontol, 1999,70 (6):581-586.
    [134]Iacopino AM, Doxey D, Cutler CW, et al. Phenytoin and cyclosporine A specifically regulate macrophage phenotype and expression of platelet-derived growth factor and interleukin-1 in vitro and in vivo:possible molecular mechanism of drug-induced gingival hyperplasia[J]. J Periodontol,1997,68 (1):73-83.
    [135]Uzel MI, Kantarci A, Hong HH, et al. Connective tissue growth factor in drug-induced gingival overgrowth[J]. J Periodontol,2001,72 (7):921-931.
    [136]Wynn TA. Cellular and molecular mechanisms of fibrosis[J]. J Pathol,2008, 214 (2):199-210.
    [137]Zhou X, Li YM, Ji WJ, et al. Phenytoin can accelerate the healing process after experimental myocardial infarction?[J]. Int J Cardiol,2006,107 (1): 21-29.
    [138]Whitelaw DM. The intravascular lifespan of monocytes[J]. Blood,1966,28 (3):455-464.
    [139]Anstead GM, Hart LM, Sunahara JF, et al. Phenytoin in wound healing[J]. Ann Pharmacother,1996,30 (7-8):768-775.
    [140]Kato T, Okahashi N, Kawai S, et al. Impaired degradation of matrix collagen in human gingival fibroblasts by the antiepileptic drug phenytoin[J]. J Periodontol,2005,76 (6):941-950.
    [141]Swamy SM, Tan P, Zhu YZ, et al. Role of phenytoin in wound healing: microarray analysis of early transcriptional responses in human dermal fibroblasts[J]. Biochem Biophys Res Commun,2004,314 (3):661-666.
    [142]Faler BJ, Macsata RA, Plummer D, et al. Transforming growth factor-beta and wound healing[J]. Perspect Vase Surg Endovasc Ther,2006,18 (1):55-62.
    [143]Combadiere C, Feumi C, Raoul W, et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration[J]. J Clin Invest,2007,117 (10):2920-2928.
    [144]De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors [J]. Cancer cell,2005,8 (3): 211-226.
    [145]Turan M, Saraydin SU, Canbay E, et al. Positive effects of phenytoin on experimental colonic anastomoses[J]. Int J Colorectal Dis,2004,19 (3): 250-257.
    [1]Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease[J]. Nat Rev Immunol,2011,11 (11):738-749.
    [2]Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol,2011,11 (11):723-737.
    [3]Buddingh EP, Kuijjer ML, Duim RA, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma:a rationale for treatment with macrophage activating agents [J]. Clin Cancer Res, 2011,17 (8):2110-2119.
    [4]Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells[J]. Science,2010,327 (5966):656-661.
    [5]Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol,2003, 3 (1):23-25.
    [6]Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections[J]. J Immunol,2008,181 (6):3733-3739.
    [7]Fujiwara N, Kobayashi K. Macrophages in inflammation [J]. Curr Drug Targets Inflamm Allergy,2005,4 (3):281-286.
    [8]Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts[J]. Curr Med Chem,2006,13 (16):1877-1893.
    [9]Takeda Y, Costa S, Delamarre E, et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis[J]. Nature, 2011,479(7371):122-126.
    [10]Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity[J]. Nat Rev Immunol,2011,11 (11):750-761.
    [11]Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol,2004, 25 (12):677-686.
    [12]Chan G, Bivins-Smith ER, Smith MS, et al. Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an Ml macrophage[J]. J Immunol, 2008,181 (1):698-711.
    [13]Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol,2008,8 (12):958-969.
    [14]Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization:new molecules and patterns of gene expression[J]. J Immunol,2006,177 (10): 7303-7311.
    [15]Biswas SK, Gangi L, Paul S, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation)[J]. Blood,2006,107 (5):2112-2122.
    [16]Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells[J]. Lab Invest,2006,86 (1):9-22.
    [17]Gordon S, Martinez FO. Alternative activation of macrophages:mechanism and functions[J]. Immunity,2010,32 (5):593-604.
    [18]Foster SL, Hargreaves DC. Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications[J]. Nature,2007,447 (7147):972-978.
    [19]Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution[J]. Nat Immunol.2002.3 (7):667-672.
    [20]Lu YC, Yeh WC, and Ohashi PS. LPS/TLR4 signal transduction pathway [J]. Cytokine,2008,42 (2):145-151.
    [21]Li S, Strelow A, Fontana EJ, et al. IRAK-4:a novel member of the IRAK family with the properties of an IRAK-kinase[J]. Proc Natl Acad Sci U S A. 2002.99 (8):5567-5572.
    [22]Janssens S. Beyaert R. A universal role for MyD88 in TLRIL-lR-mediated signaling[J]. Trends Biochem Sci.2002.27 (9):474-482.
    [23]Rowe DC, McGettrick AF, Latz E, et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction[J]. Proc Natl Acad Sci U S A,2006,103 (16):6299-6304.
    [24]Biswas SK, Lewis CE. NF-kappaB as a central regulator of macrophage function in tumors[J]. J Leukoc Biol,2010,88 (5):877-884.
    [25]McGettrick AF, Brint EK, Palsson-McDermott EM, et al. Trif-related adapter molecule is phosphorylated by PKC{epsilon} during Toll-like receptor 4 signaling[J]. Proc Natl Acad Sci U S A,2006,103 (24):9196-9201.
    [26]O'Neill LA, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling[J]. Nat Rev Immunol,2007,7 (5):353-364.
    [27]Charo IF. Macrophage polarization and insulin resistance:PPARgamma in control[J]. Cell Metab,2007,6 (2):96-98.
    [28]Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity[J]. Curr Pharm Des, 2008,14 (12):1225-1230.
    [29]Dong L, Li H, Wang S, et al. Different doses of lipopolysaccharides regulate the lung inflammation of asthmatic mice via TLR4 pathway in alveolar macrophages[J]. J Asthma,2009,46 (3):229-233.
    [30]Nichols FC, Bajrami B, Clark RB, et al. Free Lipid A Isolated from Porphyromonas gingivalis Lipopolysaccharide Is Contaminated with Phosphorylated Dihydroceramide Lipids:Recovery in Diseased Dental Samples[J]. Infect Immun,2012,80 (2):860-874.
    [31]Frucht DM, Fukao T, Bogdan C, et al. IFN-gamma production by antigen-presenting cells:mechanisms emerge [J]. Trends Immunol,2001,22 (10):556-560.
    [32]Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system[J]. Nat Rev Immunol,2003,3 (11):900-911.
    [33]Nishikawa Y, Tragoolpua K, Inoue N, et al. In the absence of endogenous gamma interferon, mice acutely infected with Neospora caninum succumb to a lethal immune response characterized by inactivation of peritoneal macrophages[J]. Clin Diagn Lab Immunol,2001,8 (4):811-816.
    [34]Duff M, Stapleton PP, Mestre JR, et al. Cyclooxygenase-2 inhibition improves macrophage function in melanoma and increases the antineoplastic activity of interferon gamma[J]. Ann Surg Oncol,2003,10 (3):305-313.
    [35]An G, Wang H, Tang R, et al. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice[J]. Circulation,2008, 117 (25):3227-3237.
    [36]Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity[J]. Nature,2010,464 (7293): 1367-1370.
    [37]Moro K, Yamada T, Tanabe M, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells[J]. Nature,2010, 463 (7280):540-544.
    [38]Madala SK, Dolan MA, Sharma D, et al. Mapping mouse IL-13 binding regions using structure modeling, molecular docking, and high-density peptide microarray analysis[J]. Proteins,2011,79 (1):282-293.
    [39]Heller NM, Qi X, Junttila IS, et al. Type Ⅰ IL-4Rs selectively activate IRS-2 to induce target gene expression in macrophages[J]. Sci Signal,2008,1 (51): ra17.
    [40]LaPorte SL, Juo ZS, Vaclavikova J, et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system[J]. Cell,2008,132 (2):259-272.
    [41]Fichtner-Feigl S, Strober W, Kawakami K, et al. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-betal production and fibrosis[J]. Nat Med,2006,12 (1):99-106.
    [42]Hall B, Nakashima H, Sun ZJ, et al. Targeting of interleukin-13 receptor α2 for treatment of head and neck squamous cell carcinoma induced by conditional deletion of TGF-β and PTEN signaling[J]. J Transl Med,2013, 11:45.
    [43]Roy B, Bhattacharjee A, Xu B, et al. IL-13 signal transduction in human monocytes:phosphorylation of receptor components, association with Jaks, and phosphorylation/activation of Stats [J]. J Leukoc Biol,2002,72 (3): 580-589.
    [44]Pauleau AL, Rutschman R, Lang R, et al. Enhancer-mediated control of macrophage-specific arginase I expression [J]. J Immunol,2004,172 (12): 7565-7573.
    [45]Keegan AD, Johnston JA, Tortolani PJ, et al. Similarities and differences in signal transduction by interleukin 4 and interleukin 13:analysis of Janus kinase activation[J]. Proc Natl Acad Sci U S A,1995,92 (17):7681-7685.
    [46]Ninaber A, Goodfellow JM. The biological implications of damage to DNA incorporating an 8-oxodeoxyguanine:cytosine basepair[J]. J Biomol Struct Dyn,1998,16(3):651-661.
    [47]Obiri NI, Murata T, Debinski W, et al. Modulation of interleukin (IL)-13 binding and signaling by the gammac chain of the IL-2 receptor[J]. J Biol Chem,1997,272 (32):20251-20258.
    [48]Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance[J]. Nature,2007,447 (7148):1116-1120.
    [49]Chawla A. Control of macrophage activation and function by PPARs[J]. Circ Res,2010,106 (10):1559-1569.
    [50]Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection[J]. Nat Immunol,2010,11 (10):936-944.
    [51]Weisser SB, McLarren KW, Voglmaier N, et al. Alternative activation of macrophages by IL-4 requires SHIP degradation[J]. Eur J Immunol,2011,41 (6):1742-1753.
    [52]Wang L, Gordon RA, Huynh L, et al. Indirect inhibition of Toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins[J]. Immunity,2010,32 (4):518-530.
    [53]Zhang Y, Liu S, Liu J, et al. Immune complex/Ig negatively regulate TLR4-triggered inflammatory response in macrophages through Fc gamma RIIb-dependent PGE2 production[J]. J Immunol,2009,182 (1):554-562.
    [54]Qasimi P, Ming-Lum A, Ghanipour A, et al. Divergent mechanisms utilized by SOCS3 to mediate interleukin-10 inhibition of tumor necrosis factor alpha and nitric oxide production by macrophages[J]. J Biol Chem,2006,281 (10): 6316-6324.
    [55]Riley JK, Takeda K, Akira S, et al. Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action[J]. J Biol Chem,1999,274 (23):16513-16521.
    [56]Schreiber T, Ehlers S, Heitmann L, et al. Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity [J]. J Immunol, 2009,183 (2):1301-12.
    [57]Klasen S, Hammermann R, Fuhrmann M, et al. Glucocorticoids inhibit lipopolysaccharide-induced up-regulation of arginase in rat alveolar macrophages[J]. Br J Pharmacol,2001,132 (6):1349-1357.
    [58]Hulsmans M, De Keyzer D, Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis[J]. FASEB J, 2011,25 (8):2515-2527.
    [59]Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation[J]. Circulation, 2012,125 (23):2892-2903.
    [60]Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alphal (IL13Ralphal)[J]. The Journal of biological chemistry,2011,286 (3):1786-1794.
    [61]O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells[J]. Science,2010,327 (5969):1098-1102.
    [62]Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation[J]. J Immunol,2009,183 (10):6469-6477.
    [63]Hazlett LD, McClellan SA, Barrett RP, et al. IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis[J]. Invest Ophthalmol Vis Sci,2010,51 (3):1524-1532.
    [64]Saenz SA, Siracusa MC, Perrigoue JG, et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses[J]. Nature, 2010,464(7293):1362-1366.
    [65]Pesce J,Kaviratne M,Ramalingam TR, et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation [J]. J Biol Chem,2006, 116 (7):2044-5205.
    [66]Liao X, Sharma N, Kapadia F, et al. Kruppel-like factor 4 regulates macrophage polarization [J]. J Clin Invest,2011,121 (7):2736-2749.
    [67]Pello OM, De Pizzol M, Mirolo M, et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology[J]. Blood,2012,119 (2):411-421.
    [68]Gleissner CA, Shaked I, Little KM, et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages[J]. J Immunol,2010, 184 (9):4810-4818.
    [69]Roca H, Varsos ZS, Sud S, et al. CCL2 and interleukin-6 promote survival of human CDllb+peripheral blood mononuclear cells and induce M2-type macrophage polarization[J]. J Biol Chem,2009,284 (49):34342-34354.
    [70]Biswas SK, Lopez-Collazo E. Endotoxin tolerance:new mechanisms, molecules and clinical significance[J]. Trends Immunol,2009,30 (10): 475-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700