用户名: 密码: 验证码:
妊娠期缺氧对子代大鼠胰岛素抵抗的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本项目旨在研究妊娠期缺氧对出生后子代大鼠胰岛素抵抗的影响,并初步探索脂肪因子分泌型卷曲相关蛋白5(secreted frizzled-related protein5,Sfrp5)与子代胰岛素抵抗可能机制。
     方法:Sprague-Dawley (SD)孕鼠16只,于妊娠第7天随机均分为常氧对照组[control]和妊娠期缺氧组[maternal hypoxia, MH]以建立妊娠期SD孕鼠缺氧模型。孕鼠分娩后,选取子代雄性大鼠作为研究对象,予母乳喂养至3周龄断奶给予高脂饮食[high-fat diet,HFD],将子代雄性大鼠分为4个实验组:常氧对照+正常饮食组[control];妊娠期缺氧+正常饮食组[MH];常氧对照+高脂饮食组[HFD];妊娠期缺氧+高脂饮食组[MH+HFD],各组继续喂养12周。子代大鼠于3周龄及15周龄分批处死,留取标本进行实验指标检测。留取血液指标进行总胆固醇(total cholesterol, TC),甘油三酯(triglyceride, TG),游离脂肪酸(free fatty acid, FFA),低密度脂蛋白胆固醇(low-density lipoprotein cholesterin, LDL-C),高密度脂蛋白胆固醇(high-densitylipoprotein cholesterin, HDL-C),空腹血糖(fasting blood glucose, FBG)及空腹血清胰岛素(fasting insulin, FINS)测定,并以稳态模型评估其胰岛素抵抗指数(homeostasismodel assessment insulin resistance index,HOMA-IR);观察15周龄子代雄性大鼠肝脏组织病理形态学表现;免疫组织化学检测脂肪组织中巨噬细胞标志物F4/80蛋白表达情况;采用蛋白印迹法(Western Blot, WB)及实时荧光定量聚合酶链反应(quantitativereal-time polymerase chain reaction, QRT-PCR)方法检测3周龄及15周龄子代雄性SD大鼠脂肪组织中脂肪因子Sfrp5及Wnt5a(Wingless-type MMTV integration site familymembers5a, Wnt5a)mRNA及蛋白表达情况;再采用WB方法对Wnt5a/JNK信号传导通路中主要效应分子c-Jun氨基末端激酶1(c-Jun N-terminal kinase1,JNK-1)、c-Jun及胰岛素受体底物1(insulin receptor substrate1, IRS-1)蛋白表达情况进行检测。
     结果:妊娠期缺氧可引起子代雄性SD大鼠血清TC, TG, FFA, LDL-C, FINS及HOMA-IR增高,同时其HDL-C降低,差异具有统计学意义(均P<0.05)。病理标本提示妊娠期缺氧组子代大鼠中脂肪含量增加,高脂饮食组肝脏组织中脂肪含量增加,差异有统计学意义(均P<0.05)。免疫组化结果提示妊娠期缺氧组大鼠脂肪组织巨噬细胞标志物F4/80蛋白表达上调(P<0.05)。WB及QRT-PCR检测结果显示3周龄及15周龄妊娠期缺氧组子代雄性SD大鼠脂肪组织Sfrp5的mRNA及蛋白表达水平显著降低,而Wnt5a的mRNA及蛋白表达呈增加现象,Wnt5a与Sfrp5表达比例失衡(均P<0.05)。妊娠期缺氧组子代雄性SD大鼠脂肪组织中P-JNK-1(Thr183/Tyr185), P-c-Jun(Ser63)和P-IRS-1(Ser307)蛋白磷酸化表达显著上调(均P<0.05)。高脂饮食所致高脂血症可协同促进上述各个观察指标的变化(均P<0.05)。
     结论:妊娠期缺氧子代雄性SD大鼠呈现胰岛素抵抗现象,妊娠期缺氧子代大鼠存在胎儿程序控制。妊娠期缺氧对子代大鼠脂肪组织Sfrp5及其配体Wnt5a表达存在影响,进而通过Wnt5a/JNK信号通路影响胰岛素信号转导通路,可能是其致子代发生胰岛素抵抗的分子机制之一。妊娠期缺氧与高脂血症具有协同促进子代雄性SD大鼠胰岛素抵抗作用。
Objective: To explore the effects of maternal hypoxia (MH) during pregnancy on insulinresistance in rat offspring and adipocytokine secreted frizzled-related protein5(Sfrp5) itspossible molecular mechanism contribute to insulin signaling pathway.
     Mehtods: According to factorial normal oxygen and maternal under hypoxia environment,Sprague-Dawley (SD) rats were randomly divided into two groups as normal oxygen group(control group,21%O2) and maternal hypoxia during pregnancy group (MH group,10%O2).After delivery, two male offspring of each mother rat were taken out and breast-fed for threeweeks. After weaning, according to a2×2factorial design, consisting of two factors[maternal hypoxia (MH) and postnatal high-fat diet (HFD)], each with two levels, maleoffspring were randomly assigned into four groups (each containing12animals) as follows:maternal hypoxia offspring with postnatal high-fat diet [MH+HFD]; maternal hypoxiaoffspring with postnatal normal diet [MH]; maternal normoxia offspring with postnatalhigh-fat diet [HFD]; maternal normoxia offspring with normal diet [Control]. At Week3andWeek15, blood fat, fasting plasma glucose (FPG), serum total cholesterol (TC), triglyceride(TG), free fatty acid (FFA), low-density lipoprotein cholesterin (LDL-C), high-densitylipoprotein cholesterin (HDL-C) were measured by biochemical methods, and insulin wasmeasured by radioimmunoassay, and then the homeostasis model assessment-insulinresistance index (HOMA-IR) was calculated. HOMA-IR was used for insulin resistancemeasurement, the formula for HOMA-IR was: FPG (mmol/L)×FINS (mIU/L)/22.5.Observed The structural changes of rat adipose tissue and liver tissue; determined theprotein expression of a specific marker of activated macrophage (F4/80) in all the treated rats;meanwhile, the expression of Sfrp5, as well as Wnt5a and the molecular mechanismsinvolved in Wnt5a/JNK(P-JNK-1(Thr183/Tyr185), P-c-Jun(Ser63), P-IRS-1(Ser307) andinsulin signaling pathway were measured by Western Blot (WB)and quantitative real-time polymerase chain reaction(QRT-PCR)in Sprague-Dawley rat offspring adipose tissue.
     Results: Maternal hypoxia caused a relative increased insulin levels and P-IRS-1proteinexpression in offspring compared to the normoxic counterparts(all P<0.05). In addition, asignificantly decreased Sfrp5mRNA and protein concentrations in adipose tissue couple withincreased Wnt5a protein was found in the same maternal hypoxia offspring (all P<0.05); andthose changes were accompanied by increased P-JNK-1(Thr183/Tyr185), P-c-Jun(Ser63) andP-IRS-1(Ser307) in hypoxia offspring (all P<0.05). Moreover, a positive interaction effectbetween prenatal hypoxia and hyperlipidemia was found (P<0.05).
     Conclusions:Our study results suggested that a maternal hypoxic environment could modifythe expression of adipocytokine Sfrp5and modulate the insulin sensitivity through Wnt/JNKsignaling pathway. Thus, prenatal hypoxia may provide an underlying mechanism for thedevelopment of insulin resistance, therefore serve as a novel risk factor for metabolicsyndrome. Furthermore, the effects of prenatal hypoxia were augmented by hyperlipidemiainduced by a high-fat diet. Therefore, it is necessary to pay more attention to the fetalnutrition and oxygen supply in utero, so as to prevent chronic disease during adulthood, forexample, the early onset of insulin resistance.
引文
[1] Stern MP. Type II diabetes mellitus. Interface between clinical and epidemiologicalinvestigation. Diabetes Care.1988.11(2):119-26.
    [2] Utzschneider KM, Van de Lagemaat A, Faulenbach MV, et al. Insulin resistance is thebest predictor of the metabolic syndrome in subjects with a first-degree relative withtype2diabetes. Obesity (Silver Spring).2010.18(9):1781-1787.
    [3] Gallagher EJ, Leroith D, Karnieli E. Insulin resistance in obesity as the underlyingcause for the metabolic syndrome. Mt Sinai J Med.2010.77(5):511-523.
    [4] Medeiros CC, Ramos AT, Cardoso MA, Franca IS, Cardoso AS, Gonzaga NC. Insulinresistance and its association with metabolic syndrome components. Arq Bras Cardiol.2011.97(5):380-389.
    [5] Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolicdisease. Nat Rev Immunol.2011.11(2):85-97.
    [6] Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int JObes (Lond).2009.33(1):54-66.
    [7] Athyros VG, Tziomalos K, Karagiannis A, Anagnostis P, Mikhailidis DP. Shouldadipokines be considered in the choice of the treatment of obesity-related healthproblems. Curr Drug Targets.2010.11(1):122-135.
    [8] Zhuang XF, Zhao MM, Weng CL, Sun NL. Adipocytokines: a bridge connectingobesity and insulin resistance. Med Hypotheses.2009.73(6):981-985.
    [9] Gao Z, Zhang X, Zuberi A, et al. Inhibition of insulin sensitivity by free fatty acidsrequires activation of multiple serine kinases in3T3-L1adipocytes. Mol Endocrinol.2004.18(8):2024-2034.
    [10] Wajchenberg BL, Nery M, Cunha MR, Silva ME. Adipose tissue at the crossroads inthe development of the metabolic syndrome, inflammation and atherosclerosis. ArqBras Endocrinol Metabol.2009.53(2):145-150.
    [11] Ouwens DM, Sell H, Greulich S, Eckel J. The role of epicardial and perivascularadipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med.2010.14(9):2223-2234.
    [12] Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, bloodpressure in childhood and adult life, and mortality from cardiovascular disease. BMJ.1989.298(6673):564-567.
    [13] Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue: aculprit underlying the metabolic syndrome and atherosclerosis. Arterioscler ThrombVasc Biol.2007.27(11):2276-2283.
    [14] Madeira IR, Bordallo MA, Carvalho CN, et al. The role of metabolic syndromecomponents and adipokines in insulin resistance in prepubertal children. J PediatrEndocrinol Metab.2011.24(5-6):289-295.
    [15] Kim E. Insulin resistance at the crossroads of metabolic syndrome: systemic analysisusing microarrays. Biotechnol J.2010.5(9):919-929.
    [16] Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenicnutrient implicated in insulin resistance, hepatic steatosis, and the metabolicsyndrome. Am J Physiol Endocrinol Metab.2010.299(5): E685-694.
    [17] Winer S, Winer DA. The adaptive immune system as a fundamental regulator ofadipose tissue inflammation and insulin resistance. Immunol Cell Biol.2012.
    [18] Ouchi N, Higuchi A, Ohashi K, et al. Sfrp5is an anti-inflammatory adipokine thatmodulates metabolic dysfunction in obesity. Science.2010.329(5990):454-457.
    [19] Oh DY, Olefsky JM. Medicine. Wnt fans the flames in obesity. Science.2010.329(5990):397-398.
    [20] Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNTsignalling. Trends Endocrinol Metab.2009.20(1):16-24.
    [21] Heltemes A GA, Soldner EL ea. Chronic placental ischemia alters amniotic fluidmilieu and results in impaired glucose tolerance, insulin resistance andhyperleptinemia in young rats. Exp Biol Med.2010.235:892-899.
    [22] Baker DJ. The wellcome foundation lecture:the fetal origins of adult disease. Proc RSoc Lond B Biol.1995.262(1363):37-43.
    [23] Krochik AG, Chaler EA, Maceiras M, Aspres N, Mazza CS. Presence of early riskmarkers of metabolic syndrome in prepubertal children with a history of intrauterinegrowth restriction. Arch Argent Pediatr.2010.108(1):10-6.
    [24] Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strengthof effects and biological basis. Int J Epidemiol.2002.31(6):1235-1239.
    [25] Alexander BT. Divergent origins of slow fetal growth: relevance to adultcardiovascular disease. Hypertension.2007.50(3):465-466.
    [26] Gillman MW. Epidemiological challenges in studying the fetal origins of adultchronic disease. Int J Epidemiol.2002.31(2):294-299.
    [27] Morton JS, Rueda-Clausen CF, Davidge ST. Mechanisms of endothelium-dependentvasodilation in male and female, young and aged offspring born growth restricted.Am J Physiol Regul Integr Comp Physiol.2010.298(4): R930-938.
    [28] Wang Z, Huang Z, Lu G, Lin L, Ferrari M. Hypoxia during pregnancy in rats leads toearly morphological changes of atherosclerosis in adult offspring. Am J Physiol HeartCirc Physiol.2009.296(5): H1321-1328.
    [29] Wang L, Cai R, Lv G, Huang Z, Wang Z. Hypoxia during pregnancy in rats leads tothe changes of the cerebral white matter in adult offspring. Biochem Biophys ResCommun.2010.396(2):445-450.
    [30] Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucosehomeostasis. Nature.2006.444(7121):847-853.
    [31] Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol.2007.2:31-56.
    [32] Kiess W, Petzold S, Topfer M, et al. Adipocytes and adipose tissue. Best Pract ResClin Endocrinol Metab.2008.22(1):135-153.
    [33] Myers DA, Hanson K, Mlynarczyk M, Kaushal KM, Ducsay CA. Long-term hypoxiamodulates expression of key genes regulating adipose function in the late-gestationovine fetus. Am J Physiol Regul Integr Comp Physiol.2008.294(4): R1312-1318.
    [34] Ducsay CA, Hyatt K, Mlynarczyk M, Kaushal KM, Myers DA. Long-term hypoxiaincreases leptin receptors and plasma leptin concentrations in the late-gestationovine fetus. Am J Physiol Regul Integr Comp Physiol.2006.291(5): R1406-1413.
    [35] Trayhurn P, Wang B, Wood IS. Hypoxia and the endocrine and signalling role ofwhite adipose tissue. Arch Physiol Biochem.2008.114(4):267-276.
    [36] Meas T. Fetal origins of insulin resistance and the metabolic syndrome: a key role foradipose tissue. Diabetes Metab.2010.36(1):11-20.
    [37] Garnett SP, Cowell CT, Baur LA, et al. Abdominal fat and birth size in healthyprepubertal children. Int J Obes Relat Metab Disord.2001.25(11):1667-1673.
    [38] Meas T. Fetal origins of insulin resistance and the metabolic syndrome: a key role foradipose tissue. Diabetes Metab.2010.36(1):11-20.
    [39] Zhang L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig.2005.12:2-13.
    [40] Giussani DA, Riquelme RA, Moraga FA, et al. Chemoreflex and endocrinecomponents of cardiovascular responses to acute hypoxemia in the llama fetus. Am JPhysiol.1996.271: R73-83.
    [41] Moore LG. Fetal growth restriction and maternal oxygen transport during hig altitudepregnancy. High Alt Med Biol.2003.4:141-56.
    [42] Julian CG, Galan HL, Wilson MJ, et al. Lower uterine artery blood flow and higherendothelin relative to nitric oxide metabolite levels are associated with reductions inbirth weight at high altitude. Am J Physiol Regul Integr Comp Physiol.2008.295:R906-15.
    [43] Jensen GM, Moore LG. The effect of high altitude and other risk factors onbirthweight:independent or interactive effects? Am J Public Health.1997.87:1003-7.
    [44] Giussani DA, Phillips PS, Anstee S, et al. Effects of altitude versus economic status onbirth weight and body shape at birth. Pediatr Res.2001.49:490-4.
    [45] Wang Z, Huang Z, Lu G, et al. Hypoxia during pregnancy in rats leads to earlymorphological changes of atherosclerosis in adult offspring.Am J Physiol HeartCirc Physiol,2009,296:H1321-8.
    [46] Li G, Xiao Y, Estrella JL, et al. Effect of fetal hypoxia on heart susceptibility toischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig.2003.10:265-74.
    [47] Mamet J, Peyronnet J, Roux JC, et al. Long-term prenatal hypoxia alters maturation ofadrenal medulla in rat. Pediatr Res.2002.51:207-14.
    [48] Ream M, Ray AM, Chandra R, et al. Early fetal hypoxia leads to growth restrictionand myocardial thinning. Am J Physiol Regul Integr Comp Physiol.2008.295:R583-95.
    [49] Rouwet EV, Tintu AN, Schellings MW, et al. Hypoxia induces aortichypertrophicgrowth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheralarteries in the chick embryo. Circulation.2002.105:2791-6.
    [50] Ruijtenbeek K, le Noble FA, Janssen GM, et al. Chronic hypoxia stimulatesperiarterial sympathetic nerve development in chicken embryo. Circulation.2000.102:2892-7.
    [51] Tintu AN, Noble FA,Rouwet EV. Hypoxia disturbs fetal hemodynamics and growth.Endothelium.2007.14:353-60.
    [52] Vickers MH. Developmental programming and adult obesity: the role of leptin. CurrOpin Endocrinol Diabetes Obes.2007.14(1):17-22.
    [53] Heltemes A, Gingery A, Soldner EL, et al. Chronic placental ischemia alters amnioticfluid milieu and results in impaired glucose tolerance, insulin resistance andhyperleptinemia in young rats. Exp Biol Med (Maywood).2010.235(7):892-899.
    [54] Dolinsky VW, Rueda-Clausen CF, Morton JS, Davidge ST, Dyck JR. Continuedpostnatal administration of resveratrol prevents diet-induced metabolic syndrome in ratoffspring born growth restricted. Diabetes.2011.60:2274-2284.
    [1] Yajnik CS, Fall CH, Vaidya U, et al. Fetal growth and glucose and insulin metabolismin four-year-old Indian children. Diabet Med.1995.12(4):330-6.
    [2] Pankov YA. Adipose tissue as an endocrine organ regulating growth, puberty, andother physiological functions. Biochemistry (Mosc).1999.64(6):601-9.
    [3] Stock MJ. Endocrine functions of adipose tissue: view from the chair. Int J ObesRelat Metab Disord.2000.24Suppl4: S45-6.
    [4] Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucosehomeostasis. Nature.2006.444(7121):847-53.
    [5] Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol.2007.2:31-56.
    [6] Sowers JR. Endocrine functions of adipose tissue: focus on adiponectin. ClinCornerstone.2008.9(1):32-8; discussion39-40.
    [7] Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolicdisease. Nat Rev Immunol.2011.11(2):85-97.
    [8] Madeira IR, Bordallo MA, Carvalho CN, et al. The role of metabolic syndromecomponents and adipokines in insulin resistance in prepubertal children. J PediatrEndocrinol Metab.2011.24(5-6):289-95.
    [9] Symonds ME, Pope M, Sharkey D, Budge H. Adipose tissue and fetal programming.Diabetologia.2012.55(6):1597-606.
    [10] D'Ippolito S, Tersigni C, Scambia G, Di SN. Adipokines, an adipose tissue andplacental product with biological functions during pregnancy. Biofactors.2012.38(1):14-23.
    [11] Mlinar B, Marc J. New insights into adipose tissue dysfunction in insulin resistance.Clin Chem Lab Med.2011.49(12):1925-35.
    [12] Ouchi N, Higuchi A, Ohashi K, et al. Sfrp5is an anti-inflammatory adipokine thatmodulates metabolic dysfunction in obesity. Science.2010.329(5990):454-7.
    [13] Oh DY, Olefsky JM. Medicine. Wnt fans the flames in obesity. Science.2010.329(5990):397-8.
    [14] Lv C, Jiang Y, Wang H, Chen B. Sfrp5expression and secretion in adipocyte areupregulated during the differentiation and are negatively correlated with insulinresistance. Cell Biol Int.2012.
    [15] Mori H, Prestwich TC, Reid MA, et al. Secreted frizzled-related protein5suppressesadipocyte mitochondrial metabolism through WNT inhibition. J Clin Invest.2012.122(7):2405-16.
    [16] Hu W, Li L, Yang M, et al. Circulating Sfrp5is a signature of obesity-relatedmetabolic disorders and is regulated by glucose and liraglutide in humans. J ClinEndocrinol Metab.2013.98(1):290-8.
    [17] Wang Z, Huang Z, Lu G, Lin L, Ferrari M. Hypoxia during pregnancy in rats leads toearly morphological changes of atherosclerosis in adult offspring. Am J Physiol HeartCirc Physiol.2009.296(5): H1321-8.
    [18] Trayhurn P, Wang B, Wood IS. Hypoxia and the endocrine and signalling role ofwhite adipose tissue. Arch Physiol Biochem.2008.114(4):267-76.
    [19] Regazzetti C, Peraldi P, Gremeaux T, et al. Hypoxia decreases insulin signalingpathways in adipocytes. Diabetes.2009.58(1):95-103.
    [20] Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. PhysiolRev.2013.93(1):1-21.
    [21] Poulos SP, Hausman DB, Hausman GJ. The development and endocrine functions ofadipose tissue. Mol Cell Endocrinol.2010.323(1):20-34.
    [22] Drager LF, Li J, Shin MK, et al. Intermittent hypoxia inhibits clearance oftriglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mousemodel of sleep apnoea. Eur Heart J.2012.33(6):783-90.
    [23] Quintero P, Gonzalez-Muniesa P, Martinez JA. Influence of different oxygen supplyon metabolic markers and gene response in murine adipocytes. J Biol Regul HomeostAgents.2012.26(3):379-88.
    [24] Julian CG. High altitude during pregnancy. Clin Chest Med.2011.32(1):21-31.
    [25] Wang L, Cai R, Lv G, Huang Z, Wang Z. Hypoxia during pregnancy in rats leads tothe changes of the cerebral white matter in adult offspring. Biochem Biophys ResCommun.2010.396(2):445-50.
    [26] Myers DA, Hanson K, Mlynarczyk M, Kaushal KM, Ducsay CA. Long-term hypoxiamodulates expression of key genes regulating adipose function in the late-gestationovine fetus. Am J Physiol Regul Integr Comp Physiol.2008.294(4): R1312-8.
    [27] Barker DJ. The fetal and infant origins of adult disease. BMJ.1990.301(6761):1111.
    [28] Fall CH. The fetal and early life origins of adult disease. Indian Pediatr.2003.40(5):480-502.
    [29] Barker DJ. The fetal and infant origins of disease. Eur J Clin Invest.1995.25(7):457-63.
    [30] Phillips D. Endocrine programming and fetal origins of adult disease. TrendsEndocrinol Metab.2002.13(9):363.
    [31] Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNTsignalling. Trends Endocrinol Metab.2009.20(1):16-24.
    [32] Pecina-Slaus N. Wnt signal transduction pathway and apoptosis: a review. CancerCell Int.2010.10:22.
    [33] Zhang B, Ma JX. Wnt pathway antagonists and angiogenesis. Protein Cell.2010.1(10):898-906.
    [34] Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?:regulation of transcription by the Wnt/beta-catenin pathway. Acta Physiol (Oxf).2012.204(1):74-109.
    [35] De A. Wnt/Ca2+signaling pathway: a brief overview. Acta Biochim Biophys Sin(Shanghai).2011.43(10):745-56.
    [1] Zhang B, Ma JX. Wnt pathway antagonists and angiogenesis. Protein Cell.2010.1(10):898-906.
    [2] Pecina-Slaus N. Wnt signal transduction pathway and apoptosis: a review. CancerCell Int.2010.10:22.
    [3] Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNTsignalling. Trends Endocrinol Metab.2009.20(1):16-24.
    [4] Pandur P, Maurus D, Kuhl M. Increasingly complex: new players enter the Wntsignaling network. Bioessays.2002.24(10):881-4.
    [5] Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNTsignalling. Trends Endocrinol Metab.2009.20(1):16-24.
    [6] Ouchi N, Higuchi A, Ohashi K, et al. Sfrp5is an anti-inflammatory adipokine thatmodulates metabolic dysfunction in obesity. Science.2010.329(5990):454-7.
    [7] Oh DY, Olefsky JM. Medicine. Wnt fans the flames in obesity. Science.2010.329(5990):397-8.
    [8] Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM.IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science.1996.271(5249):665-8.
    [9] Folli F, Saad MJ, Kahn CR. Insulin receptor/IRS-1/PI3-kinase signaling system incorticosteroid-induced insulin resistance. Acta Diabetol.1996.33(3):185-92.
    [10] Yoshikawa T, Noguchi Y, Satoh S. Inhibition of IRS-1phosphorylation and thealterations of GLUT4in isolated adipocytes from cachectic tumor-bearing rats.Biochem Biophys Res Commun.1999.256(3):676-81.
    [11] Lima MH, Ueno M, Thirone AC, Rocha EM, Carvalho CR, Saad MJ. Regulation ofIRS-1/SHP2interaction and AKT phosphorylation in animal models of insulinresistance. Endocrine.2002.18(1):1-12.
    [12] White MF. IRS proteins and the common path to diabetes. Am J Physiol EndocrinolMetab.2002.283(3): E413-22.
    [13] Schmitz-Peiffer C, Whitehead JP. IRS-1regulation in health and disease. IUBMBLife.2003.55(7):367-74.
    [14] Terauchi Y.[Insulin receptor substrate (IRS)]. Nihon Rinsho.2005.63Suppl8:548-50.
    [15] White MF. Regulating insulin signaling and beta-cell function through IRS proteins.Can J Physiol Pharmacol.2006.84(7):725-37.
    [16] Murata Y, Tsuruzoe K, Kawashima J, et al. IRS-1transgenic mice show increasedepididymal fat mass and insulin resistance. Biochem Biophys Res Commun.2007.364(2):301-7.
    [17] Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulinresistance. Nature.2002.420(6913):333-6.
    [18] Kim T, Wayne LJ, Adochio R, Draznin B. Knockdown of JNK rescues3T3-L1adipocytes from insulin resistance induced by mitochondrial dysfunction. BiochemBiophys Res Commun.2009.378(4):772-6.
    [19] Masharani UB, Maddux BA, Li X, et al. Insulin resistance in non-obese subjects isassociated with activation of the JNK pathway and impaired insulin signaling inskeletal muscle. PLOS ONE.2011.6(5): e19878.
    [20] Han MS, Jung DY, Morel C, et al. JNK expression by macrophages promotesobesity-induced insulin resistance and inflammation. Science.2013.339(6116):218-22.
    [21] Nakatani Y, Kaneto H, Kawamori D, et al. Modulation of the JNK pathway in liveraffects insulin resistance status. J Biol Chem.2004.279(44):45803-9.
    [22] Nguyen MT, Satoh H, Favelyukis S, et al. JNK and tumor necrosis factor-alphamediate free fatty acid-induced insulin resistance in3T3-L1adipocytes. J Biol Chem.2005.280(42):35361-71.
    [23] Santos FR, Diamond-Stanic MK, Prasannarong M, Henriksen EJ. Contribution of theserine kinase c-Jun N-terminal kinase (JNK) to oxidant-induced insulin resistance inisolated rat skeletal muscle. Arch Physiol Biochem.2012.118(5):231-6.
    [24] Pal M, Wunderlich CM, Spohn G, Bronneke HS, Schmidt-Supprian M, WunderlichFT. Alteration of JNK-1Signaling in Skeletal Muscle Fails to Affect GlucoseHomeostasis and Obesity-Associated Insulin Resistance in Mice. PLOS ONE.2013.8(1): e54247.
    [25] Ouchi N, Higuchi A, Ohashi K, et al. Sfrp5is an anti-inflammatory adipokine thatmodulates metabolic dysfunction in obesity. Science.2010.329(5990):454-7.
    [26] Oh DY, Olefsky JM. Medicine. Wnt fans the flames in obesity. Science.2010.329(5990):397-8.
    [27] Schulte DM, Muller N, Neumann K, et al. Pro-inflammatory wnt5a andanti-inflammatory Sfrp5are differentially regulated by nutritional factors in obesehuman subjects. PLOS ONE.2012.7(2): e32437.
    [28] Hu Z, Deng H, Qu H. Plasma SFRP5levels are decreased in Chinese subjects withobesity and type2diabetes and negatively correlated with parameters of insulinresistance. Diabetes Res Clin Pract.2013.
    [29] Mori H, Prestwich TC, Reid MA, et al. Secreted frizzled-related protein5suppressesadipocyte mitochondrial metabolism through WNT inhibition. J Clin Invest.2012.122(7):2405-16.
    [30] Dolinsky VW, Rueda-Clausen CF, Morton JS, Davidge ST, Dyck JR. Continuedpostnatal administration of resveratrol prevents diet-induced metabolic syndrome inrat offspring born growth restricted. Diabetes.2011.60(9):2274-84.
    [31] Rueda-Clausen CF, Dolinsky VW, Morton JS, Proctor SD, Dyck JR, Davidge ST.Hypoxia-induced intrauterine growth restriction increases the susceptibility of rats tohigh-fat diet-induced metabolic syndrome. Diabetes.2011.60(2):507-16.
    [32] Koza RA, Nikonova L, Hogan J, et al. Changes in gene expression foreshadowdiet-induced obesity in genetically identical mice. PLoS Genet.2006.2(5): e81.
    [1] YamauehiT, KamonJ, Ito Y, et al. Cloning of adiponect in receptors that mediateantidiabetic metabolic effeets. Nature.2003.423(6941):762-769.
    [2] Tsuchida A, Yamauchi T, Ito Y, et al. Insulin/Foxol pathway regulates expressionlevels of adiponect in receptors and adiponectin sensitivity. Biol Chem.2004.279:30817-30221.
    [3] Norseen J, Hosooka T, Hammarstedt A, et al. RBP4inhibits insulin signaling inadipocytes by inducing pro-inflammatory cytokines in macrophages through a JNK-andTLR4-dependent and retinol-independent mechanism. Mol Cell Biol.2012.32:2010-2019.
    [4] Cekmez F, Canpolat FE, Pirgon O, et al. Apelin, vaspin, visfatin and adiponectin inlarge for gestational age infants with insulin resistance. Cytokine.2011.56(2):387-91.
    [5] Zhuang XF, Zhao MM, Weng CL, et al. Adipocytokines: a bridge connecting obesityand insulin resistance. Med Hypotheses.2009.73(6):981-985.
    [6] Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link betweenobesity and insulin resistance. Mol Aspects Med.2012.33(1):26-34.
    [7] Winer S, Winer DA. The adaptive immune system as a fundamental regulator ofadipose tissue inflammation and insulin resistance. Immunol Cell Biol.2012.90:755-62.
    [8] Mu H, Ohashi R, Yan S, et a1. Adipokine resistin promotes in vitro angiogenesis ofhuman endothelial cells. Cardiovasc Res.2006.70:146-157.
    [9] Palou M, Konieczna J, Torrens JM, et al. Impaired insulin and leptin sensitivity in theoffspring of moderate caloric-restricted dams during gestation is early programmed. JNutr Biochem.2012.23:1627-39.
    [10] Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation andmetabolic syndrome. Mol Cell Endocrinol.2010.314(1):1-16.
    [11] Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated Protein (MAP) kinasePathways: regulation and Physiological functions. Endocr Rev.2001.22(2):153-183.
    [12] Shao J, Yamashita H, Qiao L, et al. Phosphatidylinositol3-Kinase redistribution isassociated with skeletalmuscle insulin resistance in gestational diabetes mellitus.Diabetes.2002.51(1):19-29.
    [13] Rui L, Fisher TL, Thomas J, et al. Regulation of insulin/insulin-like growth factor-1signaling by proteasome-mediated degradation of insulin receptor substrate-2. J BiolChem.2001.276(43):40362-40367.
    [14] Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulinactivation of insulin receptor substrate-1(IRS-1)-associated phosphatidylinositol3-kinase activity in muscle. J Biol Chem.2002.277(52):50230-50236.
    [15] Morno K, Petersen K F, Dufour S, et al. Reduced mitochondrial density and increasedIRS-1serine phosphorylation in muscle of insulin-resistant offspring of type2diabeticparents. J Clin Invest.2005.115(12):3587-3593.
    [16] Gao Z, Zhang X, Zuberi A, et al. Inhibition of insulin sensitivity by free fatty acidsrequires activation of multiple serine kinases in3T3-L1adipocytes. Mol Endocrinol.2004.18(8):2024-2034.
    [17] Goldstein BJ. Protein-tyrosine phosphatase1B (PTP1B): a novel therapeutic target fortype2diabetesmellitus, obesity and related states of insulin resistance. Curr DrugTargets Immune Endocr Metab Disorders.2001.1(3):265-275.
    [18] Oh DY, Morinaga H, Talukdar S, et al. Increased macrophage migration into adiposetissue in obese mice. Diabetes.2012.61(2):346-354.
    [19] Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene andits human homologue. Nature.1994.372:425-432.
    [20] Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucosehomeostasis. Nature.2006.444:847-853.
    [21] Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol.2007.2:31-56.
    [22] Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev.2005.26(3):439-451.
    [23] Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors ininsulin resistance, diabetes, and the metabolic syndrome. J Clin Invest.2006.116(7):1784-1792.
    [24] Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translationalresearch. Am J Clin Nutr.2010.91(1):258S-261S.
    [25] Hivert MF, Sullivan LM, Fox CS, et al. Associations of adiponectin, resistin, andtumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab.2008.93(8):3165-3172.
    [26] Matsuzawa Y, Funahashi T, Kihara S, et al. Adiponectin and metabolic syndrome.Arterioscler Thromb Vasc Biol.2004.24(1):29-33.
    [27] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilizationand fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med.2002.8:1288-1295.
    [28] Efstathiou SP, Tsioulos DI, Tsiakou AG, et a1. Plasma ediponectin levels and five-yearsurvival after frist-ever ischemic stroke. Stroke.2005.36:1915-1919.
    [29] Dieplinger B, Poelz W, Hahmayer M, et a1. Hypoadipenectinemia is associated withsymptomatic atherozelerotic peripheral arterial disease. Clin Chem Lab Med.2006.44:830-833.
    [30] Shibata R, Ouchi N, Kihara S, et a1. Adiponectin stimulates angiogenesis in responseto tissue izehemia through stimulation of amp-activated protein kinase sighting. J BidChem.2004.279:28670-28674.
    [31] Chen H, Montagnani M, Funahashi T, et a1. Adiponectin stimulates production ofnitric oxide in vascular endothelial cells. J Biol Chem.2003.278:45021-45026.
    [32] Ouchi N, Kobayashi H, Kiharu S, et a1. Adiponectin stimulates angiogenesis bypromoting cross-talk between AMP-activated protein kinase and Akt signaling inendothelial cells. J Biol Chem.2004.279:1304-1309.
    [33] Li CJ, Sun HW, Zhu FL, et a1. Local adiponectin treatment reduces atherosclereticplaque size in rabbits. J Endocrinol.2007.193:137-145.
    [34] Dietze-Schroeder D, Sell H, Uhlig M, et a1. Autocfine action of adiponectin onhuman fat cells prevents the release of insulin resistance-inducing factors. Diabetes.2005.54:2003-2011.
    [35] Fukuhara A, Matguda M, Nishizawa M, et a1. Visfatin: a protein secreted by visceralfat that mimics the effects of insulin. Science.2005.307:426-430.
    [36] Takeboyashi K, Suetsugu M, Wakabayashi S, et a1. Association between plasmavisfatin and vascular endothelial function in patients with type2diabetes mellitus[J].Metabolism.2007.56:451-458.
    [37] Moschen AR, Kaser A, Enrich B, et a1. Visfatin, an adipocytokine withproinflammatory and immunomodufating properties. J Immunol.2007.178:1748-1758.
    [38] Kim SR, Bac SK, Choi KS, et a1. Visfatin promotes angiogenesis by activation ofextracellular signal-regulated kinase1/2. Bioehem Biophys Res Commun.2007.357:150-156.
    [39] Noriyuki Ouchi, Akiko Higuchi, Koji Ohashi, et al. Sfrp5Is an Anti-InflammatoryAdipokine That Modulates Metabolic Dysfunction in Obesity. Science.2010.329:454-457.
    [40] Oh DY, Olefsky JM. Wnt Fans the Flames in Obesity. Science.2010.329(5990):397-398.
    [41] Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolicdisease. Nat Rev Immunol.2011.11(2):85-97.
    [42] Yang R Z, Xu A, Pray J. Cloning of omentin: a mew adipocytokine from omental fattissue in human. Diabetes.2005.52(suppl1):A1.
    [43] Yang R Z, Lee M J, Hu H, et al. Identification of omentin as a novel depot-specificadipokine in human adipose tissue: possible role in modulating insulin action. Am JPhysiol Endocrinol Metab.2006.290:E1253-1261.
    [44] Goralski K B, Mccarthy T C, Hannima E A, et al. Chemerin, a novel adipokine thatregulates adipogenesis and adipocyte metabolism. J Biol Chem.2007.282:28175-28188.
    [45] Steppan CM, Bailey ST, Bhat S, et a1. The hormone resistin links obesity to diabetes.Nature.2001.409:307-312.
    [46] Efsmthiou SP, Tsiakou AG, Tsioulos DI, et a1. Prognostic significance of plasmaresistin levels in patients with atherothrombotic ischemic stroke. Clin Chim Acts.2007.378(1-2):78-85.
    [47] Takahashi K, Totsune K, Kikuchi K, et a1. Expression of endothelin-1andadrenomedullin was not altered by leptin or rasistin in bovine brain microvascularendothelial cells. Hypertens Res.2006.29:443-448.
    [48] Hector J, Sehwarzloh B, Goehring J, et a1. TNF-alpha alters visfatin and adiponectinlevels in human fat. Horm Metab Res.2007.39:250-255.
    [49] Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, et al. Insulin resistance associatedto obesity: the link TNF-α.Arch Physiol Biochem.2008.114(3):183-194.
    [50] Klover PJ, Clementi AH, Mooney RA. Interleukin-6depletion selectively improveshepafic insulin action in obesity. Endocrinology.2005.146:3417-3427.
    [51Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance.Mol Med.2008.14(3/4):222-231.
    [52] Kanda H, Tateya S, Tamori Y, et al. MCP-1contributes to macrophage infiltration intoadipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest.2006.116(6):1494-1505.
    [53] Kouyama K, Miyake K, Zenibayashi M, et al. Association of serum MCP-1concentration and MCP-1polymorphism with insulin resistance in Japaneseindividuals with obese type2diabetes. Kobe J Med Sci.2008.53(6):345-354.
    [54] Takahashi K, Mizuarai S, Araki H, et al. Adiposity elevates plasma MCP-1levelsleading to the increased CD11b-positive monocytes in mice. J Boil Chem.2003.278(47):46654-44660.
    [55] Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein4contributes toinsulin resistance in obesity and type2diabetes. Nature.2005.436(7049):356-362.
    [56] Kloting N, Graham TE, Berndt J, et al. Serum retinol-binding protein is more highlyexpressed in visceral than in subcutaneous adipose tissue and is a marker ofintra-abdominal fat mass. Cell Metab.2007.6(1):79-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700