用户名: 密码: 验证码:
稀土掺杂NiAl金属间化合物结构和性能的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属间化合物NiAl因为良好的高温强度、较高的抗氧化性和抗腐蚀性,相对较低的密度以及较高的熔点,可望成为工程应用尤其是在航空航天领域中最有前途的材料。然而,室温下断裂韧性差和延性差限制了它的应用。
     合金化方法是一种简易有效的改性途径,经常被用于提高NiAl的性能。最常用的合金化元素为3d和4d过渡族元素,如Fe、Cr、V、Co、Mo、 Ti、Ga和Mn等。合金化方法操作简单有效,只需选择好所用的合金化元素或合金化元素组合,就可以直接应用于铸造过程中。稀土元素是活性元素,适量的稀土合金化元素可以提高金属的室温压缩延性。
     本文研究了单稀土元素(Sc、Y、La、Ce、Nd、Pr、Pm、Sm、Eu)、不同Y含量以及稀土(La、Ce、Pr)与非稀土(Ti、V、Cr)协同作用三种情况对NiAl结构和性能的影响。CASTEP模块采用密度泛函理论的超软赝势,利用赝势平面波进行量子力学第一性原理计算。所有模型均采用广义梯度近似(GGA)构造交换-关联能泛函。本文通过CASTEP模块计算了合金化NiAl各模型的晶格常数、弹性性质以及电子结构。
     研究表明,单稀土元素Sc、La、Ce、Pr、Pm、Sm、Eu倾向于占据NiAl中Al的位置,而Y和Nd倾向于占据Ni的位置;Sc、Y、La、Nd、Pr、Pm的加入,在不同程度上降低了NiAl的硬度,其中La的加入对NiAl硬度的影响最大,Sm对NiAl的硬度几乎没有影响。所有的9种稀土元素均提高了NiAl的延性,其中只有Ni_8Al_7Ce和Ni_8Al_7Eu模型的硬度和延性相对于Ni_8Al_8而言同时提高。从NiAl掺杂Ce、Eu的态密度图中可以看出,增加的两个尖峰是Al的s、p轨道电子及Ni的d轨道电子分别与稀土杂化作用产生的。从差分电荷密度图和键的布居值来看,Ni_8Al_7La离子性增强,而共价性降低,因此Ni_8Al_7La延性较好而硬度较差。掺Ce以及掺Eu的模型中,Ni_8Al_7Ce离子性比Ni_8Al_7Eu强,因而Ni_8Al_7Ce的延性要高于Ni_8Al_7Eu,而Ni_8Al_7Eu中共价性整体要高于Ni_8Al_7Ce的共价性,因而,Ni_8Al_7Eu的硬度要略高。
     Ni_3YAl_4、Ni_7YA_(l8)、Ni_(11)YAl_(12)和Ni_(15)YAl_(16)分别代表Y的含量分别为12.500at.%、6.250at.%、4.167at.%和3.125at.%的NiAl合金化模型。当NiAl中Y的含量为3.125at.%时,模型的硬度最接近NiAl,当Y的含量为6.250at.%时,模型具有最好的延性,从态密度图中可以看出,与NiAl相比,前者的杂化作用减弱而后者的杂化作用增强。Ni_(15)YAl_(16)中的Ni-Ni键和Al-Al的共价性比Ni_7YA_(l8)强,而Ni_7YA_(l8)中Ni-Al键的共价性比Ni_(15)YAl_(16)强,Y-Al键的离子性也较强。
     在Ti、V、Cr与La的协同作用中,Cr与La的协同作用效果较好,使得NiAl的延性提高,硬度损失降低;在Ti、V、Cr与Ce的协同作用中,Cr与Ce的协同作用效果较好,使得NiAl的延性和硬度同时提高;在Ti、V、Cr与Pr的协同作用中, Ti和Pr的作用效果较好,使得NiAl的延性提高,硬度得以保持。从Ni_8Al_6CrCe和Ni_7TiAl_7Pr的态密度图中可以看出,两种模型中均有赝能隙的存在,使得模型的共价键增强,主要归因于Ce和Pr未饱和的4f轨道电子的贡献。在键的布居值分析中,模型Ni_8Al_6CrCe中Ni-Al键、Al-Al键、Ni-Ni键的共价性相对于Ni_8Al_8而言有所增强,模型Ni_7TiAl_7Pr中各Ni-Al键的共价性均增强,Al-Al键的变化较不明显,Ni-Ni键共价性增强。在模型Ni_8Al_6CrCe中,协同合金化元素Cr和Ce均只与Ni成键,而Ni_7TiAl_7Pr中协同合金化元素Ti和Pr均分别与Ni和Al成键,其引入的离子键更多。因此,Ni_7TiAl_7Pr的离子性要强于Ni_8Al_6CrCe。
     利用放电等离子烧结工艺和激光重熔工艺制备了NiAl、NiAl-1(掺入0.25at.%Ce的NiAl)、NiAl-2(掺入1.15at.%Ce的NiAl)三种试样,并对三种试样进行了显微组织分析和力学性能测试,结论如下:激光重熔的中心区域,由于温度场的分布,处于高温区的元素流动较快,扩散充足,又由于冷却速度快,因此部分Ce元素保留在晶粒内部。激光重熔后,随着Ce含量的增加, NiAl-1以及NiAl-2的硬度、弹性模量和弹性恢复率均有不同程度的提高。这一结论与第三章的计算结果相符。单稀土掺杂以及稀土与非稀土共掺杂的计算结果,与目前已知的试验结果基本吻合。
The intermetallic compound NiAl is one of the most promising engineering materialswith attractive properties including good high-temperature strength, resistance tooxidation and corrosion, relatively low material density and high melting point.However, the application of NiAl is restricted as aerospace materials for its brittlefracture and low tensile ductility at room temperature.
     Alloying as an effective method is usually used to improve the quality of NiAl. Themost common ternary elements are3d and4d transitional elements like Fe, Cr, V, Co,Mo, Ti, Ga and Mn. Because of its simplicity and effectiveness, one only need to selectthe use of the alloying element or a combination of alloying elements, and then toapplied them to the casting process. Rare earth elements (REEs) are active. Appropriateamount of REE addition can improve the room temperature compressive ductility of thealloy.
     This paper focus on the effect of single REE(Sc, Y, La, Ce, Nd, Pr, Pm, Sm, Eu),different amount of Y, combination of REE(La, Ce, Pr) and non-REE(Ti, V, Cr) on thestructures and properties of NiAl. DFT with ultrasoft pseudopotentials is employed inthe CASTEP code, which utilizes plane-wave pseudopotential to performfirst-principles quantum mechanics calculations. Generalized gradient approximation(GGA) is adopted as exchange-correlation functionals for all situations in our models.The lattice parameters, elastic characteristics as well as electronic structures of the NiAlsupercell with additions are investigated.
     The present study shows that Sc, La, Ce, Pr, Pm, Sm, Eu tend to substitute for Alsite, while Y and Nd tend to substitute for Ni site; Sc, Y, La, Nd, Pr, Pm and Sm are allreduce the hardness of NiAl in varying degrees, where the hardness of Ni_8Al_7La is thelowest and the hardness of Ni_8Al_7Sm is more closer to NiAl. All of the9REE elementsimprove the ductility of NiAl, only the hardness and ductility of Ni_8Al_7Ce and Ni_8Al_7Euare enhanced simultaneously comparing with NiAl. DOS of NiAl with Ce and Eudopping add two sharp peaks which allows for hybridization of s (and p) orbitals of Alwith rare earth element and d orbitals of Ni with rare earth element. The charge densitydifference and bond populations of Ni_8Al_7La, Ni_8Al_7Ce and Ni_8Al_7Eu indicate that theincrease of ionicity and decrease of covalency make Ni_8Al_7La higher ductility and lowerhardness; the ionicity of Ni_8Al_7Ce is stronger than that of Ni_8Al_7Eu, the covalency ofNi_8Al_7Eu is stronger than that of Ni_8Al_7Ce, which make the ductility of Ni_8Al_7Ce higherand the hardness of Ni_8Al_7Eu higher.
     Models of Ni_3YAl_4, Ni_7YA_(l8), Ni_(11)YAl_(12)and Ni_(15)YAl_(16)represent12.500,6.250,4.167 and3.125at.%of Y in NiAl. The hardness of NiAl with the amount of Y as3.125at.%is colsest to NiAl, and the ductility of NiAl with the amount of Y as6.250at.%exhibithigher ductility. The hybridization is stronger by adding6.250at.%of Y into NiAl,while3.125at.%of Y just decreases the hybridization. The covalency of Ni-Ni bondsand Al-Al bonds are stronger in Ni_(15)YAl_(16)than that in Ni_7YA_(l8)while the covalency ofNi-Al bonds in Ni_7YA_(l8)are stronger than that in Ni_(15)YAl_(16). The ionicity of Y-Al bondsin Ni_7YA_(l8)is stronger than that in Ni_(15)YAl_(16).
     In the combination of Ti, V, Cr with La, the complexes of Cr and La possess the besteffect, which improve the ductility and reduce the hardness loss of NiAl. In thecombination of Ti, V, Cr with Ce, the complexes of Cr and Ce possess the best effect,which improve the ductility and hardness of NiAl simultaneously. In the combination ofTi, V, Cr with Pr, the complexes of Ti and Pr possess the best effect, which improve theductility and maintain the hardness of NiAl. In the DOS of Ni_8Al_6CrCe and Ni_7TiAl_7Pr,pseudogap make the covalent bonds more stronger which mainly due to the contributionof4f obitals of Ce and Pr. In the bond populations, the covalency of Ni-Ni bonds, Al-Albonds and Ni-Al bonds in Ni_8Al_6CrCe are all increased. The covalency of Ni-Ni bonds,and Ni-Al bonds in Ni_7TiAl_7Pr are increased, while Ni-Al bonds are not changeobviously. In Ni_8Al_6CrCe, Cr and Ce only bond with Ni, while in Ni_7TiAl_7Pr, Ti and Prboth bond with Ni and Al, so the ionicity of Ni_7TiAl_7Pr is stronger than that ofNi_8Al_6CrCe.
     NiAl, NiAl-1(containing0.25at.%Ce in NiAl) and NiAl-2(containing1.15at.%Cein NiAl) are prepared by spark plasma sintering and laser remelting. Microstructure andmechanical properties of the three samples show that: in the Laser remelting centralregion, due to the temperature distribution, elements flow rapidly and diffuse fully inthe high temperature region, part of the Ce elements are retained within the grain. Afterlaser remelting, with the increase of the amount of Ce, the hardness, elastic modulus andelastic recovery rate of NiAl-1and NiAl-2are increased to varying degrees. Theseresults are basically consistant with the results in chapter3. The results of single rareearth doping, rare earth and non-rare earth doping are basically consistant with theknown experimental results. Because of the testing methods or elements concentration,the testing results may be better.
引文
[1]郭建亭.有序金属间化合物镍铝合金[M].北京:科学出版社,2003:15-31.
    [2] Aoki K,Lzumi O. Improvement in room temperature ductility of the L12typeintermetallic compound Ni3Al by boron addition[J]. Journal of the Japan Instituteof Metals,1979,43:1190-1196.
    [3] Stoloff N S, Liu C T, Deevi S C.Emerging applications of intermetallics[J].Intermetallics,2000,8(9-11):1313-1320.
    [4]刘元富,王华明.激光熔敷Ti5Si3增强金属间化合物耐磨复合材料涂层组织及耐磨性研究[J].摩擦学学报,2003,23(1):10-13.
    [5]薛群基,喇培清.燃烧合成熔化制备块体纳米结构材料和金属间化合物基复合材料及其摩擦学性能[J].中国有色金属学报,2004,14:1128-1137.
    [6]庞来学,孙康宁,孙家涛,李明. Fe3Al金属间化合物的价电子结构与其力学性能的关系[J].材料热处理学报,2004,25(2):64-67.
    [7]蒋淑英,李世春. Ni-Al系金属间化合物价电子结构与性能分析[J].材料导报,2010,24(9):72-75.
    [8]颜建辉,马素娟,吴海江,徐红梅,唐思文.金属间化合物NiAl涂层的制备及耐腐蚀性[J].材料热处理技术,2012,41(8):121-124.
    [9] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-basedintermetallics and composites [J]. Electrochimica Acta,1999,45(1-2):31-50.
    [10] Haanappel V A C, Clemens H, Stroosnijder M F. The high temperature oxidationbehaviour of high and low alloyed TiAl-based intermetallics[J]. Intermetallics,2002,10(3):293-305.
    [11] Mücklich F, Lasagni A,Daniel C. Laser interference metallurgy—periodic surfacepatterning and formation of intermetallics[J]. Intermetallics,2005,13(3-4):437-442.
    [12] Klaver T P C, Madsen G K H, Drautz R. A DFT study of formation energies ofFe-Zn-Al intermetallics and solutes[J]. Intermetallics,2012,31:137-144.
    [13] Zhang B W, He C L, Jiang Y X, Chen M H, Li Y Y, Rao L, Sun S G. Highactivity of PtBi intermetallics supported on mesoporous carbon towards HCOOHelectro-oxidation[J]. Electrochemistry Communications,2012,25:105-108.
    [14] Darolia R,Lahrman D,Field R.The Effect of Iron, Gallium and molybdenum onthe room temperature tensile ductility of NiAl[J].Scripta Metallurgica Materialia,1992,26(1):1007-1012.
    [15] Zhang J, Wu Y, Lavernia E J. Kinetics of ceramic particulate penetration intospray atomized metallic droplet at variable penetration depth[J].ActaMetallurgica et Materialia,1994,42:2955-2971.
    [16] Guo J T, Zhou L Z, Jiang D T. Synthesis and mechanical properties ofNiAl-based composites[J].Transations-Nonferrous Metals Society of China,1999,9:21-29.
    [17] Noebe R D, Misra A, Gibala R. Plastic flow and fracture of B2NiAl-baseintermetallic alloys containing a ductile second phase[J]. ISIJ International,199131(10):1172-1185.
    [18] Hamada T, Furuyama M, Sajiki Y, Tomioka T, Endo M. Structures and electricproperties of pitch-based carbon fibers heat-treated at various temperatures[J].Materials Research,1990,5(3):570-577.
    [19] Ponomareva A V, Isaev E I, Vekilov Y K, Abrikosov I A. Site preference andeffect of alloying on elastic properties of ternary B2NiAl-based alloys[J].Physical Review B,2012,85:144117(1-10).
    [20] Chen W X, Hines J R, Wang Y.Significant improvement in room temperatureductility of NiAl by Cr-Ce complexes[J].Advanced Engineering Materials,2004,6(11):876-879.
    [21]梁永纯,郭建亭,周兰章,谢亿,胡壮麒.稀土元素Gd对NiAl合金显微组织和力学性能的影响[J].金属学报,2008,44(5):535-539.
    [22] Ren W L, Guo J T, Li G S, Zhou J Y. The role of Nd solid-solution andgrain-boundary segregation in binary NiAl intermetallic compound[J]. Journal ofMaterials Science and Technology,2004,20(2):163-166.
    [23] Wang Y, Chen W. Microstructures, properties and high-temperaturecarburization resistances of HVOF thermal sprayed NiAl intermetallic-basedalloy coatings[J]. Surface and Coatings Technology,2004,183:18-28.
    [24] Du X H, Gao C, Wu B L, Zhao Y H, Wang J J. Enhanced compression ductilityof stoichiometric NiAl at room temperature by Y and Cu co-addition[J].International Journal of Minerals, Metallurgy and Materials,2012,19(4):348-353.
    [25] Ren W L, Guo J T, Li G S, Zhou J Y. Effect of Nd on microstructure andmechanical properties of NiAl-based intermetallic alloy[J]. Materials Letters,2003,57:1374-1379.
    [26]郭建亭,袁超,候介山.稀土元素在NiAl合金中的作用[J].金属学报,2008,44(5):513-520.
    [27] Gao Q, Guo J T, Huai K W, Zhang J S. The microstructure and compressiveroperties of as-cast NiAl-28Cr-5.8Mo-0.2Hf containing minor Dy[J]. MaterialsLetters,2005,59:2859-2862.
    [28] Liu R, Li D Y, Xie Y S, Llewellyn R, Hawthorne H M. Indentation behavior ofpseudoelastic TiNi alloy[J].Scripta Materialia,1999,41:691-696.
    [29] Bozzolo G, Noebe R D, Honecy F. Modeling of ternary element site substitutionin NiAl[J].Intermetallics,2000,8:7-18.
    [30] Song Y, Guo Z X, Yang R, Li D. First principles study of site substitution ofternary elements in NiAl[J].Acta Materialia,2001,49:1647-1654.
    [31] Parlinski K, Jochym P T, Kozubski R, Oramus P.Atomic modelling of Co, Cr, Fe,antisite atoms and vacancies in B2-NiAl[J].Intermetallics,2003,11:157-160.
    [32] Jiang C. Site preference of transition-metal elements in B2NiAl:Acomprehensive study[J].Acta Materialia,2007,55:4799-4806.
    [33] Lazar P, Podloucky R. Ab initio study of the mechanical properties of NiAlmicroalloyed by X=Cr,Mo,Ti,Ga[J]. Physical Review B,2006,73:104114(1-8).
    [34] Teng Y Y, Zhu S L, Wang W, Wang F H, Wu W T. First-principles study of sitepreference substitution and behaviors of ternary elements in NiAl[J]. Journal ofMaterials Science and Engineering,2008,2(4):26-36.
    [35] Lazar P, Podloucky R. Ductility and magnetism: An ab-initio study of NiAl-Feand NiAl–Mn alloys[J]. Intermetallics,2009,17(9):675-679.
    [36] Zhang C L,Han P D, Li J M, Chi M, Yan L Y, Liu Y P, Liu X G, Xu B S.First-principles study of the mechanic properties of NiAl microalloyed by M (Y,Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd)[J].Journal of PhysicsD:Applied Physics,2008,41:095410(1-5).
    [37] Wu H L, Guo H B, Gong S K. First-principles study on the site preference of Dyin B2NiAl[J].Journal of Alloys and Compounds,2010,492(1-2):295-299.
    [38] Yu X Lu, Guo L Q, Liang C. First-principles calculation for improving roomtemperature ductility of B2-NiAl by Fe[J]. Advances in Materials Science,2011,327(94):94-99.
    [39] Lü B L, Chen G Q, Qu S, Su H, Zhou W L. Effect of alloying elements on<111> dislocation in NiAl: A first-principles study[J].Physica B:CondensedMatter,2013,417(15):9-12.
    [40]单爽,吴晶,谭明乾,马小军.一种水溶性稀土上转换荧光纳米探针及其活体荧光成像研究[J].生物医学工程与临床,2013,3:1-5.
    [41] Liu Q, Chen M, Sun Y, Chen G, Yang T, Gao Y S, Gao Y, Zhang X Z, Li F Y.Multifunctional rare-earth self-assembled nanosystem for tri-modalupconversion luminescence fluorescence positron emission tomographyimaging[J]. Bio-materials,2011,32(32):8243-8253.
    [42]段立珍,汪建飞,邢素芝.喷施稀土肥对辣椒产量和氮磷钾含量的影响[J].土壤通报,2007,38(3):613-615.
    [43]刘连海,薛立,列淦文,叶龙华,黄香兰.叶面喷施稀土对麻楝幼苗抗寒的影响[J].安徽农业大学学报,2012,39(6):1-6.
    [44]延凤平,刘鹏,陶沛琳,李琦,彭万敬,冯亭,谭思宇.双包层稀土掺杂光纤抽运吸收特性的分析[J].物理学报,2012,61(16):164203(1-9).
    [45]郑伟超,李双寿,汤彬,曾大本.混合稀土对AZ91D镁合金组织和力学性能的影响[J].金属学报,2006,42(8):835-842.
    [46]王志峰,丁俭,李永艳,赵维民.稀土元素Ce、Nd对AZ91镁合金显微组织、显微硬度及起燃温度的影响[J].中国铸造装备与技术,2011,(4):8-10.
    [47]李倩倩,郝秋艳,李英,刘国栋.稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究[J].物理学报,2013,62(1):017103.
    [48]邱关明,耿秀娟,陈永杰,孙彦彬,田一光,张明.纳米稀土发光材料的光学特性及软化学制备[J].中国稀土学报,2003,21(2):109-114.
    [49] Sugimoto M, Current status and recent topics of rare-earth permanent magnets[J].Journal of Physics D: Applied Physics,2011,44(6):064001(1-11).
    [50] Tang R Y, Han X Y, Zhou T. Research and multi-physical fields analyses of rareearth permanent magnet electrical machines in China[J]. International Journal ofApplied Electromagnetics and Mechanics,2010,33(1-2):3-23.
    [51] Du X Y, Graedel T E. Global rare earth in-use stocks in NdFeB permanentmagnets[J]. Journal of Industrial Ecology,2011,15(6):836-843.
    [52] Zhang H M,Wang Y H. Computer-aided design of new type rare earth permanentmagnet synchronous motor[J].Chinese Rare Earth,2011,32(1):22-26.
    [53] Zhao L C, Wang H L, Xiao C F. Intelligent optimization design of rare earthlifting permanent magnet[J]. Advanced Materials Research,2012,538-541:3066-3069.
    [54] Liu Y F, Cao Y H, Huang L, Gao M X, Pan H G. Rare earth-Mg-Ni-basedhydrogen storage alloys as negative electrode materials for Ni/MH batteries[J].Journal of Alloys and Compounds,2011,509(3):675-686.
    [55] Yuan F, Gu Q F, Guo Y H, Sun W W, Chen X W, Yu X B. Structure and hydrogenstorage properties of the first rare-earth metal borohydride ammoniate:Y(BH4)3·4NH3[J]. Journal of Materials Chemistry,2012,22:1061-1068.
    [56] Yasuda N, Tsuchiya T, Okinaka N, Akiyama T. Exergy analysis of self-ignitioncombustion synthesis for producing rare-earth-based hydrogen storage alloy[J].International Journal of Hydrogen Energy,2012,37(12):9706-9715.
    [57] Lei H W, Zhang H, Gong M, Wu W D. A Potential Hydrogen-Storage Media:C2H4and C5H5Molecules Doped with Rare Earth Atoms[J]. Chinese PhysicsLetters,2012,29(12):126801(1-4).
    [58] Gao Z J, Kang L, Luo Y C. Microstructure and electrochemical hydrogen storageproperties of La-R-Mg-Ni-based alloy electrodes[J]. New Journal of Chemistry,2013,37:1105-1114.
    [59] Kirsanov D, Legin A, Tkachenko M, Surzhina I, Khaidukova M, Babain V.Development of electronic tongue system for quantification of rare earth metalsin spent nuclear fuel reprocessing[C]. Olfaction and electronic nose: proceedingsof the14thinternational symposium on olfaction and electronic nose,2011,1362:104-106.
    [60] Babailov S P. Intermolecular dynamics and paramagnetic properties ofethylenediaminetetraacetate complexes with the yttrium subgroup rare earthelements using nuclear magnetic resonance[J]. Magnetic Resonance inChemistry,2012,50(12):793-797.
    [61] Mohapatra M, Mishra R K, Kaushik C P, Godbole S V. Photoluminescenceinvestigations of rare earth (Eu and Gd) incorporated nuclear waste glass[J].Physica B: Condensed Matter,2010,405(23):4790-4795.
    [62]张蕙文,毛裕文,孙明华,余宗森.稀土对钢耐大气腐蚀性能的影响[J].北京科技大学学报,1994,16(5):491-495.
    [63]叶文,郭世宝,林勤,陈宁,程廷铣,贺桂英,陈祝清.稀土对钢中碳化铌溶解和析出行为的影响[J].中国稀土学报,1994,12(4):340-343.
    [64]孙永兴,王引真,何艳玲.稀土氧化物添加剂对Al2O3等离子喷涂层的影响[J].材料保护,2001,34(6):8-10.
    [65]田保红,黄金亮,吴磊,张一民,郑世安.稀土氧化物和激光熔敷对复合合金喷涂层耐磨性的影响[J].焊接学报,1996,17(2):88-93.
    [66]陶栋梁,崔玉民,殷榕灿,张文保,李冰,韩廷飞,姜小龙,袁伟,徐怡庄,吴瑾光.配体能级分布对稀土配合物荧光性能的影响[J].中国稀土学报,2010,28(6):693-698.
    [67] Wang D, Li W L, Chu B, Bi D F, Chen Y R. Approximately evaluation of theLUMO level of RE-complexes from their electrolum inescent emissions of theinterfacial exciplex[J].放光学报,2008,29(4):681-683.
    [68]陶栋梁,章婷,徐怡庄,徐征,高新,张月平,吴瑾光,徐叙瑢.稀土配合物发光中的能量传递研究[J].中国稀土学报,2001,19(6):543-547.
    [69]于安池,应立明,赵新生,夏文胜,李琴,黄春辉.稀土配合物的发光特性及其能量传递研究[J].物理化学学报,1998,14(9):811-816.
    [70]叶令,黄美纯,朱梓忠.稀土金属间化合物CeSn3和CeIn3的能带理论[J].物理学报,1987,36(8):981-985.
    [71]刘盛,张琦锋,许北雪,吴锦雷.纳米稀土-介质薄膜光电发射光谱和能带结构[J].物理化学学报,2002,18(3):213-217.
    [72]李咏峰,邝钜炽.稀土的结构特点与4f轨道在成键中的作用[J].稀土,2008,29(2):100-101.
    [73]李桂春,张桂玲.轻稀土的石墨层间化合物成键性的研究[J].哈尔滨师范大学自然科学学报,2000,16(6):73-75.
    [74] Svane A, Christensen N E, Petit L, Szotek Z, Temmerman W M. Electronicstructure of rare-earth impurities in GaAs and GaN[J]. Physical Review B,2006,74:165204.
    [75] Zhang L, Jin Z Z, Zou X W, Cai X J, Huang L G. Study on the polarization effectby Ce doping in MnSb alloy[J]. Wuhan University Journal of Natural Sciences,1996, Volume1(2):184-186.
    [76] Wang Y, He J Q, Yan M F, Li C G,Wang L, Zhou Y. First-principles Study ofNiAl alloyed with rare earth element Ce[J].Journal of Materials Science andTechnology,2011,27(8):719-724.
    [77]朱炜垚,许希武.复合材料层合板低速冲击损伤的有限元模拟[J].复合材料学报,2010,27(6):200-207.
    [78]鲁国富,刘勇,张呈林.含孔复合材料层合板轴向拉伸三维有限元渐进失效分析[J].南京航空航天大学学报,2009,41(1):41-47.
    [79]陈云,康秀红,李殿中.自由枝晶生长相场模型的自适应有限元法模拟[J].物理学报,2009,58(1):390-397.
    [80] Gen C, Liu J, Xi K, Zhang Z G, Gu S, Hou M D, Sun Y M, Duan J L, Yao H J,Mo D. Monte Carlo evaluation of spatial multiple-bit upset sensitivity to obliqueincidence[J]. Chinese Physics B,2013,22(5):059501.
    [81]郭福明,宋阳,陈基根,曾思良,杨玉军.含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为[J].物理学报,2012,61(16):163203.
    [82]张继祥,关小军,孙胜.一种改进的晶粒长大Monte Carlo模拟方法[J].金属学报,2004,40(5):457-461.
    [83]魏兵,葛德彪,王飞.一种处理色散介质问题的通用时域有限差分方法[J].物理学报,2008,57(10):6290-6296.
    [84]黄斌科,胡红,宁日民,蒋延生.分析表面粗糙有耗波导传输特性的频域有限差分方法[J].西安交通大学学报,2009,43(10):85-88.
    [85]杨利霞,葛德彪,赵跃华,王刚,阎述.基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析[J].物理学报,2008,57(5):2936-2940.
    [86]胡文军,李建国,刘占芳,唐录成.介观尺度计算材料学研究进展[J].材料导报,2004,18:12-18.
    [87]高原,柳占立,赵雪川,张朝晖,庄茁,由小川.基于点缺陷扩散理论与离散位错动力学耦合的位错攀移模型研究[J].物理学报,2011,60(9):096103.
    [88]杨继红,李守新,柯伟.边界条件对离散位错动力学模拟疲劳Cu单晶位错花样的影响[J].金属学报,2003,39(7):704-710.
    [89]赵达文,李金富.相场方法模拟动力学各向异性对过冷熔体中晶体生长的影响[J].金属学报,2009,45(10):1237-1241.
    [90]单博炜,林鑫,魏雷,黄卫东.纯物质枝晶凝固的元胞自动机模型[J].物理学报,2009,58(2):1132-1138.
    [91]徐胜利,程耿东.基于自适应网格的结构拓扑优化[J].大连理工大学学报,2009,49(4):469-475.
    [92]周石琳,汤晓安,陈敏,郝建新,孙茂印.基于多边形顶点法矢量的网格模型简化算法[J].中国图象图形学报,2002,7(6):601-605.
    [93]杨萍,孙益民.分子动力学模拟方法及其应用[J].安徽师范大学学报,2009,32(1):51-54.
    [94]蔡文生,Christophe C.高性能大规模分子动力学的前沿进展——近35年生物体系的分子动力学模拟研究回顾[J].化学学报,2013,71:159-168.
    [95]赵磊,孙勇,李玉阁,孟秀凤,宋群玲.微合金化元素对Fe-Al界面结合的第一性原理研究[J].原子与分子物理学报,2007,24(4):853-857.
    [96] Hu X L, Zhang Y, Lu G H, Wang T M, Xiao P H, Yin P G, Xu H B. Effect of Oimpurity on structure and mechanical properties of NiAl intermetallics: Afirst-principles study[J]. Intermetallics,2009,17:358-364.
    [97] Xu Q C, Ven A V, First-principles investigation of migration barriers and pointdefect complexes in B2-NiAl[J]. Intermetallics,2009,17:319-329.
    [98] Wei H, Liang J J, Sun B Z, Zheng Q, Sun X F, Peng P, Yao X, Dargusch M S.Site preference of Re in NiAl and valence band structure of NiAl containing Re:First-principles study and photoelectron spectrum[J].Applied Physics Letters,2009,94:233104.
    [99] Kogita T, Kohyama M, Kido Y. Structure and dynamics of NiAl (110) studied byhigh-resolution ion cattering combined with density functional calculations[J].Physical Review B,2009,80:235414.
    [100] Sundararajan V, Sahu B R, Kanhere D G, Panat P V, Das G P. Cohesive,electronic and magnetic properties of the transition metal aluminides FeAl CoAland NiAl[J]. Journal of Physics: Condensed Matter,1995,7(30):6019-6034.
    [101] Zhao G L, Harmon B N. Phonon anomalies in β-phase NixAl1-xalloys[J]. PhysicalReview B,1992,45:2818-2824.
    [102] Pechter K, Rastl P, Neckel A, Eibler R, Schwarz K. Self-Consistent APW B andStructure Calculations for the Intermetallic Compounds FeA1, CoAl, andNiA1[J]. Mona, tshefte for Chemie,1981,112:317-333.
    [103] Farberovich O V, Vlasov S V, Portnoi K I, Lozovoi A Y.Electronic structure ofNiAl by the FLAPW-method[J]. Physica B: Condensed Matter,1992,182(3):267-277.
    [104] Fu C L, Yoo M H. Deformation behavior of B2type aluminides: FeAl and NiAl[J]. Acta Metallurgica et Materialia,1992,40(4)703-711.
    [105] Lu J M, Hu Q M, Yang R. A comparative study of elastic constants of NiTi andNiAl alloys from First-principle calculations[J]. Journal of Materials Science andTechnology,2009,25(2):215-218.
    [106] Teng Y Y, Zhu S L, Wang W, Wang F H, Wu W T. First-principles study of sitepreference substitution and behaviors of ternary elements in NiAl[J]. Journal ofMaterials Science and Engineering,2008,2(4):26-33.
    [107] Wei H, Liang J J, Sun B Z, Peng P, Zheng Q, Sun X F, Dargusch M S, YaoX.Comparison of valence-band structures of NiAl alloy containing Cr andTi:Photoelectron soectrum and first-principles calculations[J]. Intermetallic,2010,18(5)1062-1066.
    [108]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983,P637.
    [109] Greenberg B F, Anisimov V I, Gornostirev Y N, Taluts G G. Possible factorsaffecting the brittleness of the intermetallic compound TiAl. II. Peierlsmanyvalley relief[J]. Scripta Metallurgica,1988,22(6):859-864.
    [110] Morinaga M, Saito J, Yukawa N, Adachi H. Electronic effect on the ductility ofalloyed TiAl compound[J]. Acta Metallurgica et Materialia,1990,38(1):25-29.
    [111]陈舜麟,王天民.金属间化合物Ni3Al和NiAl晶体中电子杂化态结构和结合能的计算及其脆性[J].兰州大学学报(自然科学版),1997,33(1):58-63.
    [112]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,4:217-224.
    [113] Freeman A.J, Hong T., Lin W, Xu J.H. Phase stability and role of ternary additionson electronic and mechanical properties of aluminum intermetallics[J]. MRSProceedings,1990,213:3(doi:10.1557/proc-213-3).
    [114]张建民,仲增墉,张瑞林,余瑞璜. Fe-Al系金属间化合物本征脆性的电子理论[J].材料研究学报,1996,10(3):230-234.
    [115]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993,1-10.
    [116]徐光宪,王祥云.物质结构[M].北京:高等教育出版社,1987:19-22.
    [117] Born M, Oppenheimer R, Zur quantentheorie der moleküln[J].Annual Physik,1927,84:457-462.
    [118] Fischer F, Charlotte. The Hartree-Fock method for atoms: a numericalapproach[M]. New York:A wiley-interscience publica,1977:1-20.
    [119] Hohenberg P, Kohn W. Inhomogeneous elecyron gas[J]. Physical Review B,1964,136:864-871.
    [120] Kohn W and Sham L J. Self-Consistent equations including exchange andcorrelation effects[J]. Physical Review A1965,140: A1133-A1138.
    [121] Imai Y, Mukaida M, Tsunoda T. Calculation of electronic energy and density ofstate of iron-disilicides using a total-energy pseudopotential method, CASTEP[J].Thin Solid Films,2001,381(2):176-182.
    [122] Zhao J J, Buldum A, Han J, Lu J P. Gas molecule adsorption in carbon nanotubesand nanotube bundles[J]. Nanotechnology,2002,13(2):195-200.
    [123] Xu Q, Ni Z M, Pan G X, Chen L T, Liu T. Super-molecular interaction betweenCl-and H2O within the restricted space of layered double hydroxides[J]. ActaPhysico-Chimica Sinica,2008,24(4):601-606.
    [124] Xu Q, Ni Z M, Mao J H. First principles study of microscopic structures andlayer-anion interactions in layered double hydroxides intercalated variousunivalent anions[J]. Journal of Molecular Structure: Theochm,2009,915(1-3):122-131.
    [125] Ding Y C, Chen M, Gao X Y, Jiang M H. Theoretical investigation on theelectronic structure, elastic properties, and intrinsic hardness of Si2N2O[J].Chinese Physics B,2012,21(6):067101(1-10).
    [126] Segall M D, Lindan P G D, Probert M G, Pickard C G, Hasnip P G, Clark S G,Payne M C. First-principles simulation: ideas, illustrations and the CASTEPcode[J].Journal of Physics: Condensed Matter,2002,11(11):2717-2744.
    [127] Oertzen G U, Jones R T,Gerson A R. Electronic and optical properties of Fe, Znand Pb sulfides[J]. Physics and Chemistry of Minerals,2005,32(4):255-268.
    [128] Wang J F, Wang J N. Structure dependence of optical spectra of ferromagneticHeusler alloy Ni-Mn-Ga[J]. Physica B: Condensed Matter,2005,355(1-4):172-175.
    [129] Gavrilenko A V, Matos T D, Bonner C E, Sun S S, Zhang C, Gavrilenko V I.Optical absorption of poly(thienylene vinylene)-conjugated polymers:experiment and First principle theory[J]. Journal of Physical Chemistry C,2008,112(21):7908-7912.
    [130] Brik M G. First-principles study of the electronic and optical properties of CuXS2(X=Al, Ga, In) and AgGaS2ternary compounds[J]. Journal of Physics:Condensed Matter,2009,21(48):485502(1-8).
    [131] Kotomin E A, Grimes R W, Mastrikov Y, Ashley N J. Atomic scale DFTsimulations of point defects in uranium nitride[J]. Journal of Physics: CondensedMatter,2007,19:106208(1-9).
    [132] Wang Y L, Wu Z H, Deng Z C, Chu L Z, Liu B T, Liang W H, Fu G S.First-principle calculation of elastic compliance coefficients for BiFeO3[J].Ferroelectrics,2009,386(1):133-138.
    [133] Salter E A, Wierzbicki A, Land T. Ab initio studies of stepped {100} surfaces ofKDP crystals[J]. International Journal of Quantum Chemistry,2004,100(5):740-745.
    [134] Vodak D T, Kim K, Iordanidis L, Rasmussen P G, Matzger A G, Yaghi O M.Computation of aromatic C3N4networks and synthesis of the molecularprecursor N(C3N3)3Cl6[J]. Chemistry-A European Journal,2003,9(17):4197-4201.
    [135] Pichierri F, Iitaka T, and Ebisuzaki T, kawai M, Bird D M. First-principlespseudo-potential study of the Pd (110)-c(2×2)-Ethylene adsorption system[J].Journal of Physical Chemistry B,2001,105(34):8149-8154.
    [136]方俊鑫,陆栋.固体物理学上册[M].上海:上海科学技术出版社,1980:259-262.
    [137]黄昆原著,韩汝琦改编.固体物理学[M].北京:高等教育出版社,1988:184-188.
    [138]冯端,金国钧.凝聚态物理学(上卷)[M].北京:高等教育出版社,2003:347-383.
    [139] Sandratskii L M,Bruno P.Exchange interactions and Curie temperature in(Ga,Mn)As[J]. Physical Review B,2002,134435(66):l-7.
    [140]徐婉棠,喀兴林.群论及其在固体物理中的应用[M].北京:高等教育出版社,1999:210-217.
    [141] Beckstein O, Klepeis J E, Hart G L W, Pankratov O. First principles elasticconstants and electronic structure of α-Pt2Si and PtSi[J]. Physical Review B,2001,63:134112(1-12).
    [142] Karki B B, Ackland G J, Crain J, Phys J. Elastic instabilities in crystals from abinitio stress-strain relations[J].Condens Matter,1997,9:8579-8589.
    [143] Rusovi N, Warlimont H. The elastic behaviour of β2-NiAl alloys[J].Phys StatusSolidi (a),1977,44:609-619.
    [144] Mehl M J, Klein B M, Papaconstantopoulos D A. Intermetallic compounds:principles and practice[M].London: John Wiley and Sons,1995:195-210.
    [145] Pettifor D G. Theoretical predictions of structure and related properties ofintermetallics[J].Journal of Materials Science and Technology,1992,8:345-349.
    [146] Aoki M, Kurokawa T. A simple environment-dependent overlap potential andCauchy violation in solid argon[J].Journal of Physics: Condensed Matter,2007,19:236228(1-10).
    [147] Ganeshan S, Shang S L, Zhang H, Wang Y, Mantina M, Liu Z K. Elastic constantsof binary Mg compounds from first-principles calculations[J]. Intermetallics,2009,17:313-318.
    [148] Frantsevich I N, Voronov F F, Bokuta S A. Elastic constants and elastic moduli ofmetals and insulators[M]. ed I N Frantsevich (Kiev: Naukova Dumka),1983:60-180.
    [149] Pugh S F. XCII. Relations between the elastic moduli and the plastic properties ofpolycrystalline pure metals[J].Philosophical Magazine,1954,45:823-843.
    [150]黎明,温诗铸.纳米压痕技术及其应用[J].中国机械工程,2002,16:1437-1439.
    [151] Wang Z G, Bei H, George E P, Pharr G M. Influences of surface preparation onnanoindentation pop-in in single-crystal Mo[J]. Scripta Materialia,2011,65(6):469-472.
    [152] Olivera W C, Pharra G M. Nanoindentation in materials research: past, present,and future[J].MRS Bulletin,2010,35(11):897-907.
    [153] Wigner E, Bardeen J. Theory of the work functions of monovalent metals[J].Physical Review,1935,48(1):84-87.
    [154] Bagus P S, Staemmler V, W ll C. Exchangelike effects for closed-shell adsorbates:interface dipole and work function[J]. Physical Review Letters,2002,89:096104(1-4).
    [155] Wang B, Günther S, Wintterlin J, Bocquet M L. Periodicity, work function andreactivity of graphene on Ru(0001) from first principles[J].New Journal ofPhysics,2010,12:043041(1-14).
    [156] Bieletzki M, Hynninen T, Soini T M, Pivetta M, Henry C R, Foster A S, Esch F,Barth C, Heiz U. Topography and work function measurements of thin MgO(001)films on Ag(001) by nc-AFM and KPFM[J]. Physical Chemistry ChemicalPhysics,2010,12:3203-3209.
    [157] Kim J, Qin S Y, Yao W,Niu Q, Chou M Y, Shih C K. Quantum size effects on thework function of metallic thin film nanostructures[J].Proceedings of the nationalacademy of sciences of the United States of America,2010,107(29):12761-12765.
    [158] Yang C D, Li W, Zhi W.Study on mechanical behavior and electronic structures ofAl-Cu intermetallic compounds based on first-principles calculations[J].Solidstate communications,2011,151(18):1270-1274.
    [159] Li W, Wang Y, Cai M, Wang C W. An electronic criterion for the intrinsicembrittlement of structural intermetallic compounds[J]. Journal of appliedphysics,2005,98:083503(1-4).
    [160] Albiter A, Salazar M, Bedolla E, Drew R J. Improvement of the mechanicalproperties in a nanocrystalline NiAl intermetallic alloy with Fe, Ga and Moadditions[J]. Materials Science and Engineering A,2003,347:154-164.
    [161] Zhou J, Guo J T. Effect of Ag alloying on the microstructure of NiAl[J].MaterialsLetter,2002,56:178-182.
    [162] Wolf W, Podloucky R, Rogl P. Atomic modelling of Nb, V, Cr and Mnsubstitutions in γ-TiAl.2: electronic structure and site preference[J].Intermetallics,1996,4:201-219.
    [163] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation madesimple[J]. Physical Review Letters,1996,77:3865-3868.
    [164] Davenport T, Zhou L, Trivisonno J. Ultrasonic and atomic force studies of themartensitic transformation induced by temperature and uniaxial stress in NiAlalloys[J]. Physical Review B,1999,59:3421-3426.
    [165] Farkas D, Mutasa B,Vailhe C. Interatomic potentials for B2NiAl and martensiticphases[J] Modelling and Simulation Materials Science and Engineering,1995,3:201-214.
    [166] Guo J T, Huai K W, Gao Q, Ren W L, Li G S. Effects of rare earth elements onthe microstructure and mechanical properties of NiAl-based eutectic alloy[J].Intermetallics,2007,15:727-733.
    [167]胡艳军,彭平,李贵发,周惦武,韩绍昌. NiAl力学性质合金化效应的第一原理计算[J].中国有色金属学报,2006,16(1):47-53.
    [168] Kovalev A I, Barskaya R A, Wainstein D L. Effect of alloying on electronicstructure, strength and ductility characteristics of nickel aluminide[J].Surfacescience,2003,532-535:35-40.
    [169] Fu C L, Liu C T, Wang X L. Magnetism-induced solid solution softening in NiAlwith Co, Fe, Mn, and Cr solute atoms: theory and experiment[J]. Intermetallics,2004,12:911-919.
    [170] Hu X L, Zhang Y, Lu G H, Wang T M, Xiao P H, Yin P G, Xu H B. Effect of Oimpurity on structure and mechanical properties of NiAl intermetallics: Afirst-principles study[J].Intermetallics,2009,17:358-364.
    [171] George E P, Liu C T. Brittle fracture and grain boundary chemistry ofmicroalloyed NiAl[J]. Journal of Materials Research,1990,5(4):754-762.
    [172] Munir Z A, Tamburini U A, Ohyanagi M. The effect of electric field and pressureon the synthesis and consolidation of materials: A review of the spark plasmasintering method[J]. Journal of Materials Science,2006,41(3):763-777.
    [173] Shen Z J, Johnsson M, Zhao Z, Nygren M. Spark plasma sintering of alumina[J].Journal of the American Ceramic Society,2002,85(8):1921-1927.
    [174] Nygren M, Shen Z J. On the preparation of bio-, nano-and structural ceramicsand composites by spark plasma sintering[J]. Solid State Sciences,2003,5(1):125-131.
    [175] Chaa S I, Honga S H, Kimb B K. Spark plasma sintering behavior ofnanocrystalline WC-10Co cemented carbide powders[J]. Materials Science andEngineering: A,2003,351(1-2):31-38.
    [176]白玲,葛昌纯,沈卫平.放电等离子烧结技术[J].粉末冶金技术,2007,25(3):217-223.
    [177]杨俊逸,李小强,郭亮,陈维平,李元元.放电等离子烧结(SPS)技术与新材料研究[J].材料导报,2006,20(6):94-97.
    [178]王松,谢明,张吉明,杨有才,刘满门,陈永泰,王塞北.放电等离子烧结技术进展[J].贵金属,2012,33(3):73-76.
    [179] Wang Y, Li C G, Tian W, Yang Y. Laser surface remelting of plasma sprayednanostructured Al2O3-13wt%TiO2coatings on titanium alloy[J].Applied SurfaceScience,2009,255(20):8603-8610.
    [180]花国然,龚晓燕,居志兰,田宗军,赵剑峰,黄因慧.激光重熔WC复合陶瓷涂层组织及耐腐蚀性能[J].航空材料学报,2010,30(6):39-42.
    [181] Bowman R R, Noebe R D, Raj S V, Locci I E.Correlation of deformationmechanisms with the tensile and compressive behavior of NiAl and NiAl(Zr)intermetallic alloy[J].Metallurgical transaction A,1991,23A:1493-1507.
    [182]田宗军,王东生,黄因慧,沈理达,刘志东,陈勇.45钢表面激光重熔温度场数值模拟[J].材料热处理学报,2008, l29(6):173-178.
    [183]李炎,吴逸贵,于宗汉,刘家俊,王铀.稀土对激光重熔合金化层组织与性能的影响[J].材料开发与应用,1992,7(3):10-16.
    [184] Simmons G, Wang H. Single crystal elastic constants and calculated aggregateproperties: A handbook2nd ed.[M]. Cambridge: MIT Press,1971:370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700