用户名: 密码: 验证码:
积雪表面偏振特性及其与积雪性质之间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积雪是地球表面最为活跃的地物类型之一,而且积雪一些特征的改变能反映出环境的变化。积雪反照率同时也是气候研究与积雪范围确定所需要重要的量化指标。因此,积雪的监测对全球气候变化研究以及水资源管理与预测研究具有重要的意义。对高山地区、极地地区和不易通行区域的积雪进行监测的一个有效的方法是利用遥感技术获取的信息来反演积雪表面的特征参数。遥感技术应用在积雪监测上主要是利用传感器获得的积雪表面的反射与辐射信息,分析出对应的积雪特征参数。遥感技术可以根据不同时间序列与空间尺度的信息来反演出积雪的特征信息,这也为不同尺度的气候模型与水文模型提供了必要而精确的输入参数。
     被动遥感技术当中,积雪在反射与辐射过程中会由于自身性质改变而使传感器获得对应的特征信息发生变化,遥感技术也正是利用这些变化来区分积雪表的不同特征。而在积雪表面与电磁波相互作用的过程当中,偏振现象往往被忽视。积雪表面的反射信息中包含着丰富的偏振信号,尤其是在极地与高山地区,太阳入射天顶角会变得较大,这就使得探测器在较大的探测天顶角方向获取的反射信息中包含更多的偏振信息。而伴随着大的入射天顶角和探测天顶角的出现,利用现有遥感模型反演积雪性质会引起较大的误差。因此,无论是为了更完整、详细的了解积雪表面与电磁波的辐射过程还是探索在较大入射天顶角和探测天顶角利用偏振信息反映积雪性质的可能,对积雪偏振特性的研究应该是积雪遥感中不可或缺的一部分。
     本文的研究重点主要围绕两个方面着重进行研究,首先研究过程中以辐射传输理论、斯托克斯参数与积雪表面反射和发射偏振特征之间的关系为理论基础,系统、全面的分析了积雪表偏振信息的方向特征和偏振光谱特性,即积雪在可见光近红外波段的反射特性与热红外波段的发射偏振特性;其次通过可见光近红外偏振反射信息反映出积雪的一些性质,试图建立积雪的偏振特性与积雪性质之间的关系。研究结果表明:
     在对积雪表反射信息全部偏振信息测量过程中发现,积雪表面反射信息中在可见光近红外波段范围内包含有较丰富的偏振信息,而且存在着明显的方向性特征。在前向散射方向反射光中的偏振信息最强烈,尤其是在入射主平面内;而后向散射方向出现了负偏振。积雪在热红外波段的发射辐射信息也存在偏振特性,但是主要与探测天顶角有关,而且各向异性特征随着探测方位角度的变化比较明显,同时在热红外波段的发射偏振也与波段有关。
     偏振度作为偏振信息与积雪特性参数之间关系研究过程中的指标,发现偏振度对积雪粒径是非常敏感的,尤其在可见光近红外波段,可以利用偏振度很好的区分出积雪粒径的大小;而在研究中含水湿积雪的偏振度会比干积雪的偏振度小;同样,除了以上两种积雪性质外,积雪中污染物的含量也影响积雪的偏振反射特性。
     总之,对积雪的偏振特性的研究以可以完整的了解积雪与电磁波之间的相互作用;偏振特性与积雪性质关系的探索也为遥感技术中利用偏振信息获得新的有科学依据的认识提供理论与方法上的支持。本研究中将角度信息、偏振信息与积雪性质信息结合在一起,不仅分析了由于角度变化对偏振信息影响,偏振反射与双向反射之间的定量化关系,而且结合了积雪特性参数对偏振信息的影响。力求在对积雪偏振特性详细了解的基础上,利用偏振信息反映出积雪性质特征。这对于实现偏振遥感对积雪的监测具有理论与实践意义。同时也为遥感技术在积雪监测的理论基础研究开辟了新的思路和方向,使遥感方法获取的信息领域更广泛,从而可以获得更多反演积雪性质的遥感信息。
The snow cover is one of the most active particulate surfaces on the Earth, andthe changes of snow property relates to the environment condition. Snow albedo isalso the indicators of climate research and snow cover. Therefore, monitoring thesnow is important for the application to global climate change and water resourcesmanagement and prediction. Remote sensing technology is a valid method forobtaining information to invert the characteristic parameters of snow surface fromalpine areas, polar region and hard access area. The applications of remote sensingtechnoloty in snow monitoring mainly take advantange of the snow surface reflectionand radiation using sensers, and analysising the snow parameters from theseinformation. Remote sensing technology can be anti-the performances snowcharacteristics according to the different time series and spatial scales, climate modelsand hydrological models for different scales, which also provides the necessary andaccurate input parameters.
     For passive remeote sensing, in which snow will be in the process of reflectionand radiation due to the change of itself, the sensor detects these information todistinguish the different characteristics of the snow table. Among the snow surfaceelectromagnetic wave interactions, polarization is ofter ignored The light reflected bythe snow surface contains rich polarized signals, especially in the polar and alpineregions. With Sun incident angles increasing, this makes the detector obtain morepolarized information and with incident zenith angle and detection zenith angle, theemergence of the use of the existing remote sensing model inversion of snowparameters causes large errors. Therefore, whether it is for a more complete anddetailed understanding of the snow surface with electromagnetic radiation process orexplore possible use of polarization information reflects the snow parameters in largeincident zenith angle and viewing zenith angle, the study of the polarization propertiesof snow should is an integral part of snow in remote sensing.
     In this study, we mainly focused on two aspects, a theoretical basis for therelationship between the processes of radiation transfer theory, the Stokes parameterswith the snow surface reflection and emission polarization characteristics, systematicand comprehensive analysis of the first study for the snow surface in the direction ofthe polarization information characteristics and polarization spectral characteristics.The reflective properties of snow in visible and near-infrared bands and emissionpolarization properties of the thermal infrared band; followed through the snow in thevisible and near infrared polarized reflectance information reflects the characteristic parameters, trying to establish between the polarization properties of snow and snowparameters relationship. The results show that:
     The reflected information of snow surface in the range of visible andnear-infrared wavelength range contains polarization information, and there is a cleardirectional characteristics found in the snow surface reflection for all the informationpolarization measurement process. The polarization information of the first reflectedlight to the scattering direction is most intense, especially in the principle plane; thenappears to the scattering direction of negative polarization Polarization properties ofsnow emitted radiation in the thermal infrared band information is also found, butmainly relate to viewing zenith angle, and anisotropic features is more obvious withthe viewing angle increasing. At the same time, the wavelength dependence isappeared for thermal polarization.
     The degree of polarization as an indicator in the course of the study of therelationship between the polarization information and snow parameters, we find thatthe degree of polarization of snow is sensitive to grain size, especially in the visibleand near-infrared band; we can take advantage of the degree of polarization todistinguish snow grain size The degree of polarization of wet snow is smaller than thedegree of dry old snow. Contaminants in the snow also affect the polarized property ofsnow.
     In short, the polarization properties of snow can be important for understandingthe interaction between snow surface and electromagnetic waves; the exploration ofthe polarization properties of snow parameters relations to the remote sensingtechnology provide a new understanding of the use of polarization information on thetheory and methods. In this study we combine angle information, polarization with thesnow parameter information, not only analyze the effect of varied angle on thepolarization, the relationship between the polarized reflectance and bidirectionalreflectance, but also consider the influence of snow parameters. Strive to learn moreabout snow polarization properties based on the use of polarization informationreflects the snow parameters characteristics. This is useful for the theoretical andpartical significance for the realization of polarization remote sensing monitoring ofsnow. Also in the snow monitoring the theoretical basis of remote sensing technologyhas opened up new ideas and the direction of the broader areas of remote sensingmethods to obtain information, which can get more information for the inversion ofsnow parameters using remote sensing.
引文
[1] Wiscombe W J, Warren S G. A model for the spectral albedo of snow I: Pure snow [J]. JAtmos Sci,1980,37(12):2712–2733.
    [2] Warren S G, Wiscombe W J. A model for the spectral albedo of snow II: Snow containingatmospheric aerosols [J]. J Atmos Sci,1980,37(12):2734–2745.
    [3] Leroux C, Lenoble J, Brogniez G, et al. A model for the bidirectional polarized reflectance ofsnow [J]. J Quant Spectrosc Radiat Transfer,1999:61(3):273–285.
    [4] Warren S G. Optical properties of snow [J]. Rev Geophys Space Phys,1982,20(1):67–89.
    [5] Bicheron P, Leroy M, Hautecoeur O, et al. Enhanced discrimination of boreal forest coverswith directional reflectances from the airborne polarization and directionality of Earth reflectances(POLDER) instrument [J]. J Geophys Res,1997,102(24):29517-29528.
    [6] Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of a conifer forestcanopy [J]. IEEE Trans Geosci Remote Sens,1986,24(6):906-919.
    [7] Li X, Strahler A H. Geometric-optical modeling of a conifer forest canopy [J]. IEEE TransGeoseci Remote Sens,1985,23(5):705-721.
    [8] Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of the discrete crownvegetation canopy: effect of crown shape and mutal shadowing [J]. IEEE Trans Geosci RemoteSens,1992,30:279-292.
    [9] Labed J, Stoll M P. Angular variation of land surface spectral emissivity in the thermal infrared:laboratory investigations on bare soils [J]. Int J Remote Sens,1991,12(11):2299-2310.
    [10] Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectances of natural surfaces: Spacebornemeasurements and analytical modeling [J]. Remote Sens Environ,2009,113:2642-2650.
    [11] Colbeck S C. Ice crystal morphology and growth rates at low supersaturations and hightemperatures [J]. J Appl Phys,1983,54(5):1903-27.
    [12] O'Brien H W, Munis R H. Red and near-infrared spectral reflectance of snow [J]. Cprel ResRep332,1975, AD-A007732:5-6.
    [13] Gow A J, Williamson T. Volcanic ash in the Antarctic ice sheet and its possible climaticimplications [J]. Earth Planet Sci Lett,1971,13:210-218.
    [14] Griggs M. Emissivities of natural surfaces in the8to14micron spectral region [J]. JGeophys Res,1968,73:7545-7551.
    [15] Metsamaki S, Vepsalainen J, Pulliainen J, et al. Improved linear interpolation method for theestimation of snow-covered area from optical data [J]. Remote Sens Environ,2002,82:64-78.
    [16] Painter T H, Dozier J, Roberts D A, et al. Retrieval of subpixel snow-covered area and grainsize from imaging spectrometer data [J]. Remote Sens Environ,2003,85(1):64-77.
    [17] Metsamaki S J, Anttila S T, Markus H J, et al. A feasible method for fractional snow covermapping in boreal zone based on a reflectance model [J]. Remote Sens Environ,2005,95:77-95.
    [18] Greuell W, De Ruyter De Wildt M. Anisotropic reflection by melting glacier ice:Measurements and parametrizations in Landsat TM bands2and4[J]. Remote Sens Environ,1999,70(3):265-277.
    [19] Nolin A W, Stroeve J. The changing albedo of the Greenland ice sheet: Implications forclimate change [J]. Ann Glaciol,1997,25:51-57.
    [20] Knap W H, Oerlemans J. The surface albedo of the Greenland ice sheet: satellite-derived andin situ measurements in the Sondre Stromfjord area during the1991melt season [J]. J Glaciol,1996,42:364-374.
    [21] Molotch N P, Bales R C. Comparison of ground-based and airborne snow surface albedoparameterizations in an alpine watershed: Impact on snowpack mass balance [J]. Water ResourRes,2006,42(4): W05410.
    [22] Flanner M G, Zender C S. Linking snowpack microphysics and albedo evolution [J]. JGeophys Res,2006,111: D12208.
    [23] Painter T H, Dozier J. The effect of anisotropic reflectance on imaging spectroscopy of snowproperties [J]. Remote Sens Environ,2004,89(4),409–422.
    [24] Lucht W, Schaaf C B, Strahler A H. An algorithm for the retrieval of albedo from space usingsemiempirical BRDF models [J]. IEEE Trans Geosci Remote Sens,2000,38:977-998.
    [25] Schaaf C B, Gao F, Strahler A H, et al. First operational BRDF, albedo nadir reflectanceproducts from MODIS [J]. Remote Sens Environ,2002,83(1-2):287-302.
    [26] Painter T H, Roberts D A, Green R O, et al. The effect of grain size on spectral mixtureanalysis of snow-covered area from AVIRIS data [J]. Remote Sens Environ,1998,65(3),320-332.
    [27] Dozier J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper [J].Remote Sens Environ,1989,28:9-22.
    [28] Nolin A W, Dozier J. Estimating snow grain size using AVIRIS data [J]. Remote SensEnviron,1993,44(2-3):231-238.
    [29] Nolin A W, Dozier J. A hyperspectral method for remotely sensing the grain size of snow[J].Remote Sens Environ,2000,74(2):207-216.
    [30] Green R O, Dozier J, Roberts DA, et al. Spectral snow reflectance models for grain size andliquid water fraction in melting snow for the solar reflected spectrum [J]. Ann Glaciol,2002,34:71-73.
    [31] Key J, Haefliger M. Arctic ice surface temperature retrieval from AVHRR thermal channels[J]. J Geophys Res,1992,97(D5):5885-5893.
    [32] Rees W G. Infrared emissivities of Arctic land cover types [J]. Int J Remote Sens,1993,14(5):1013-1017.
    [33] Key J R, Collins J B, Fowler C, et al. High-latitude surface temperature estimates fromthermal satellite data [J]. Remote Sens Environ,1997,63:302-309.
    [34] Stroeve J, Steffen K. Variability of AVHRR-derived clear-sky surface temperature over theGreenland ice sheet [J]. J Appl Meteorol,1998,37:23-31.
    [35] Hall D K, Williams Jr R S, Steffen K, et al. Analysis of summer2002melt extent on theGreenland Ice Sheet using MODIS and SSM/I data [J]. Int Geosc Remote Sens Sympos,2004,5:3029-3032.
    [36] Hall D K, Williams Jr R S, Casey K A, et al. Satellite-derived, melt-season surfacetemperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance [J].Geophys Res Lett,2006,33(11): L11501.
    [37] Hall D K, Williams Jr R S, Luthcke S B, et al. Greenland Ice Sheet surface temperature, meltand mass loss:2000-2006[J]. J Glaciol,2008,54(184):81-93.
    [38] Nghiem S V, Steffen K, Kwok R, et al. Detection of snowmelt regions on the Greenland icesheet using diurnal backscatter change [J]. J Glaciol,2001,47(159):539-547.
    [39]曹梅盛,冯学智,金德洪.积雪的若干光谱反射特征[J].科学通报,1982,27(20):1295-1261.
    [40]曹梅盛,冯学智,金德洪.积雪反射光谱特性的初步研究[J].冰川冻土,1984,6(3):15-26.
    [41]李培基,米德生.中国积雪的分布[J].冰川冻土,1983,5(4):9-18.
    [42]张顺英.利用诺阿-5号卫星影响研究积雪和融雪径流[J].科学通报,1980,25(15):700-702..
    [43]金亚秋,韦剑,肖平.冰雪散射和热辐射的定量研究[J].电子科学学刊,1992,14(5):537-540.
    [44]张建奇,方小平,张海兴,等.雪面辐射温度预测模型[J].红外与毫米波学包,1997,16(3):206-210.
    [45]蒋玲梅,施建成,张立新.积雪辐射模型验证[J].遥感学报,2006,10(4):516-522.
    [46]冯学智,鲁安新,曾群柱.中国主要牧区雪灾遥感检测评估模型研究[J].遥感学报,1997,1(2):129-134.
    [47]王建.卫星遥感雪盖制图方法对比与分析[J].遥感技术与应用,1999,14(4):29-36.
    [48]梁继,张新焕,王建.基于NDVI背景场的雪盖制图算法探索[J].遥感学报,2007,11(1):85-93.
    [49]李三姝,闫华,刘诚. FY-2C积雪判识方法研究[J].遥感学报,2007,11(3):406-413.
    [50]黄慰军,黄镇,崔彩霞,等.新疆雪密度时空分布及其影响特征研究[J].冰川冻土,2007,29(1):66-72.
    [51] Painter T H, Rittger K, McKenzie, et al. Retrieval of subpixel snow covered area, grain size,and albedo from MODIS [J]. Remote Sens Environ,2009,113(4):868-870.
    [52] Herman M, Vanderbilt V. Polarimetric observations in the solar spectrum for remote sensingpurposes [J]. Remote Sens Rev,1997,15:35-57.
    [53] Curran P J. Remote sensing: the use of polarized visible light (PVL) to estimate surface soilmoisture [J]. Appl Geogr,1981,1(11):41-53.
    [54] Curran P J. The relationship between polarized visible light and vegetation amount [J].Remote Sens Environ,1981,11(C):87-92.
    [55] Vanderbilt V C, Grant L. Plant canopy specular reflectance model [J]. IEEE Trans GeosciRemote Sens,1985, GE-23(5):722-730.
    [56] Vanderbilt V C, Grant L, Daughtry C S T. Polarization of light scattered by vegetation [J].Proc IEEE,1985,73(6):1012-1024.
    [57] Vanderbilt V C, De Venicia K J. Specular, diffuse, and polarized imagery of an oat canopy[J]. IEEE Trans Geosci Remote Sensing,1988, GRS-26:451-462.
    [58] Vanderbilt V C, Grant L, Biehl LL, et al. Specular, diffuse and polarized light scattered bytwo wheat eanpies [J]. Appl Opt,1985,24:2408-2418.
    [59] Grant L. Diffuse and specular characteristics of leaf reflectance [J]. Remote Sens Environ,1987,22:309-322.
    [60] Grant L, Daughtry C S T, Vanderbiit V C. Polarized and non-polarized leaf reflectances ofColeus blumei [J]. Environ Exp Bot,1987,27:139-145.
    [61] Grant L, Daughtry C S T, Vanderbiit V C. Variations in the polarized leaf reflectance ofSorghum bicolar [J]. Remote Sens Environ,1987,21:333-339.
    [62] Woessner P, Hapke B. Polarization of light scattered by clover [J]. Remote Sens Environ,1987,21:243-261.
    [63] Coulson K L. Effects of reflection properties of natural surfaces in aerial reconnaissance [J].Appl Opt,1966,5(6):905-917.
    [64] Curran P J. A photographic method for the recording of polarized visible light for soil surfacemoisture indications [J]. Remote Sens Environ,1978,7:305-322.
    [65] Genda H, Okayama H. Simulator for remote sensing and its application to soil moisturemeasurements [J]. Appl Opt,1978,17(5):807-813.
    [66] Genda H, Okayama H. Estimation of soil moisture and components by measuring the degreeof spectral polarization with a remote sensing simulator [J]. Appl Opt,1978,17(21):3439-3443.
    [67] Curran P J. The use of polarized panchromatic and false colour infrared film in themonitoring of soil surface moisture [J]. Remote Sens Environ,1979,8(3):249-266.
    [68] Curran P J. Preliminary investigation into the application of oblique multispectralphotography for the monitoring of sewage outfalls [J]. J Environ Manage,1979,9(1):41-48.
    [69] Henderson B G, Theiler J, Villeneuve P. The polarized emissivity of wind-roughened seasurface: A Monte Carlo model [J]. Remote Sens Environ,2003,88(4):453-467.
    [70] Cunningham A, Wood P, McKee D. Brewster-angle measurements of sea-surface reflectanceusing a high resolution spectroradiometer [J]. J Opt A: Pur Appl Opti,2002,4: S29-33.
    [71] Gal J, Horvath G, Meyer-Rochow B V. Measurement of the reflection-polarization pattern ofthe flat water surface under a clear sky at sunset [J]. Remote Sens Environ,2001,76:103-111.
    [72] Shaw J A. Polarimetric measurements of long-wave infrared spectral radiance from water [J].Appl Opt,200140(33):5985–5990.
    [73] Shaw J A. Degree of linear polarization in spectral radiances from water-viewing infraredradiometers [J]. Appl Opt,1999,38(15):3157–3165.
    [74] Mishchenko M I, Luck J M, Nieuwenhuizen T M. Full angular profile of the coherentpolarization opposition effect [J]. J Opt Soc Am A,2000,17:888–891.
    [75] Mishchenko M I. Multiple scattering, radiative transfer, and weak localization in discreterandom media: unified microphysical approach [J]. Rev Geophys,2008,46(2):(RG2003).
    [76] Bréon F M, Tanre D, Lecome P, et al. Polarized reflectance of bare soils and vegetation:measurements and models [J]. IEEE Trans Geosci Remote Sens,1995,33(2):487-499.
    [77] Deuzé J L, Bréon F M, Deschamps P Y, et al. Analysis of the POLDER (POLarization andDirectionality of Earth's Reflectances) Airborne Instrument Observations over Land Surfaces [J].Remote Sens Environ,1993,45:137-154.
    [78] Deschamps P Y, Bréon F M, Leroy M, et al. The POLDER mission: Instrumentcharacteristics and scientific objectives [J]. IEEE Trans Geosci Remote Sens,1993,32:598-615.
    [79] Nadal F, Bréon F M. Parameterization of surface polarized reflectance derived fromPOLDER spaceborne measurements [J]. IEEE Trans Geosci Remote Sens,1999,37(3):1709-1718.
    [80] Hibbitts C A, Gillespie A R. Polarization of visible light by desert pavements [J]. RemoteSens Environ,2008,112:1808-1819.
    [81] Peltoniemi J I. Spectropolarised ray-tracing simulations in densely packed particulatemedium [J]. J Quant Spectrosc Radiat Transf,2007,108(2):180-196.
    [82] Litvinov P, Hasekamp O, Cairns B, et al. Reflection models for soil and vegetation surfacesfrom multiple-viewing angle photopolarimetric measurements [J]. J Quant Spectrosc RadiatTransf,2010,111:529-539.
    [83] Suomalainen J, Hakala T, Puttonen E, et al. Polarised bidirectional reflectance factormeasurements from vegetated land surfaces [J]. J Quant Spectrosc Radiat Transf,2009,110:1044-1056.
    [84] Peltoniemi J, Hakala T, Suomalainen J, et al. Polarised bidirection factor measurement fromsoil, stones and snow [J]. J Quant Spectrosc Radiat Transf,2009,110:1940-1953.
    [85] Puttonen E, Suomalainen J, Hakala T, et al. Measurement of reflectance properties of asphaltsurfaces and their usability as reference targets for aerial photos [J]. IEEE Trans Geosci RemoteSens,2009,47(7):2330-2339.
    [86] Waquet F, Goloub P, Deuze J L, et al. Aerosol retrieval over land using a multibandpolarimeter and comparison with path radiance method [J]. J Geophys Res,2007,112: D11214.
    [87] Waquet F, Leon J F, Cairns B, et al. Analysis of the spectral and angular response of thevegetated surface polarization for the purpose of aerosol remote sensing over land [J]. Appl Opt,2009,48:1228-1236.
    [88] Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectances of natural surfaces: Spacebornemeasurements and analytical modeling [J]. Remote Sens Environ,2009,113:2642-2650.
    [89] Litvinov P, Hasekamp O, Cairns B. Models for surface reflection of radiance and polarizedradiance: Comparison with airborne muti-angle photopolarimetric measurements and implicationsfor modeling top-of-atmosphere measurements [J]. Remote Sens Environ,2011,115:781-792.
    [90]顾行发,陈兴峰,程天海,等.多角度遥感相机DPC在轨偏振定标[J].物理学报,2011,60:070702.
    [91]杨之文,高胜钢,王培纲.几种地物反射光的偏振特性[J].光学学报,2005,25(2):241-245.
    [92]周冠华,刘志刚,柳钦火,等.水色遥感中偏振信息的研究进展[J].遥感学报,2008,12(2):322-330.
    [93]乔延利,杨世植,罗睿智,等.对地遥感中的光谱偏振探测方法研究[J].高技术通讯,2001,7:36-39.
    [94]刘志刚,周冠华.太阳耀光的偏振分析[J].红外与毫米波学报,2007,26(5):362-365.
    [95]张朝阳,程海峰,陈朝辉,等.偏振遥感的研究现状及发展趋势[J].激光与红外,2007,37(12):1237-1240.
    [96]张朝阳,程海峰,陈朝辉,等.偏振遥感识别低反射率伪装网研究[J].红外与毫米波学报,2009,28(2):137-140.
    [97]程天海,顾行发,余涛,等.地表双向反射对天基矢量辐射探测的影响分析[J].物理学报,2009,58:7368-7375.
    [98]晏磊,相云,李宇波,等.偏振遥感研究进展[J].大气与环境光学学报,2010,5(3):162-174.
    [99]曹汉军,乔延利,杨伟锋,等.偏振遥感图像特性表征及分析[J].量子电子学报,2002,19(4):373-378.
    [100]孙晓兵,洪津,乔延利.一种基于偏振角参数图像的特征提取方法研究[J].遥感技术与应用,2005,20(2):256-260.
    [101]陈立刚,洪津,乔延利,等.新型偏振特性因子及其传递关系的研究[J].光电工程,2007,34(9):66-69.
    [102]陈立刚,孟凡刚,袁银麟,等.航空偏振相机的光学偏振特性实验室研究[J].光电子激光2011,22(11):1629-1632.
    [103]张颖,赵慧洁,程宣,等.偏振测量技术及其在遥感中的应用分析[J].电子测量技术,2009,32(4):1-4.
    [104]王霞,邹晓风,金伟其.粗糙表面反射辐射偏振特性研究[J].北京理工大学学报,2011,31(11):1327-1331.
    [105]高军,王舒鹏,顾行发,等.海洋遥感偏振特性分布与偏振误差补偿方法[J].光谱学与光谱分析,2012,32(6):1633-1638.
    [106]邵卫东,王培纲,郑亲波,等.机载偏振遥感仪的偏振定标[J].红外与毫米波学报,2003,22(2):137-140.
    [107]冯巍巍,魏庆农,汪世美,等.涂层表面偏振双向反射分布函数的模型研究[J].光学学报,2008,8(2):290-294.
    [108]吴太夏,晏磊,相云,等.垂直观测时水平粗糙地表偏振反射作用研究[J].红外与毫米波学报,2009,28(2):151-155.
    [109]赵云升,金锡锋,金伦.植物单叶偏振反射特性研究[J].遥感学报,2000,5,2(4):131-135.
    [110]赵云升,金伦,宋开山,等.液体表面偏振反射特征研究[J].东北师大学报,2000,32(4):103-106.
    [111]赵云升,金伦,张洪波,等.土壤的偏振反射特征研究[J].东北师大学报,2000,32(4):93-97.
    [112]赵云升,吴太夏,宋开山,等.橄榄岩的多角度偏振与二向反射定量关系研究[J].矿业研究与开发,2005,25(3):63-66.
    [113] Perovich D K. Observation of polarisation of light from sea ice [J]. J Geophys Res,1998,103(C3):5563–75.
    [114] Ottaviani M, Cairns B, Ferrare R, et al. Iterative atmospheric correction scheme and thepolarization color of alpine snow [J]. J Quant Spectrosc Radiat Transf,2012,113(10):789-804.
    [115] Siegel R, Howell J R. Thermal Radiation Heat Transfer [M]. McGraw-Hill, New York,1972,47-88.
    [116]徐希孺.遥感物理[M].北京大学出版社,2006,20-24.
    [117] Painter T H, Dozier J. Measurements of the hemispherical–directional reflectance of snow atfine spectral and angular resolution [J]. J Geophys Res,2004,109.
    [118] Schaepman-Strub G, Schaepman M E, Painter T H, et al. Reflectance quantities in opticalremote sensing-definitions and case studies [J]. Remote Sens Environ,2006,103:27-42.
    [119] Dozier J, Warren S G. Effect of viewing angle on the infrared brightness temperature ofsnow [J]. Water Resour Res,1982,18(5):1424-1434.
    [120] Joseph J H, Wiscombe W J, Weinman J A. The delta-Eddington approximation for radiativeflux transfer [J]. J Atmos Sci1976,33:2452-2459.
    [121] Hori M, Aoki T, Tanikawa T, et al. In-situ measured spectral directional emissivity of snowand ice in the8-14μm atmospheric window [J]. Remote Sens Environ,2006,100:486-502.
    [122] Talmage D A, Curran P J. Remote sensing using patially polarized light [J]. Int J RemoteSens Environ,1986,7(1):47–64.
    [123] Perovich D K, Grenfell T C. Laboratory studies of the optical properties of yong sea ice [J].J Glaciol,1981,27(96):331-346.
    [124] Mullen P C, Warren S G. Theory of the optical properties of lake ice [J]. J Geophys Res,1988,97, D7:8403-8414.
    [125] Perovich D K. Light reflection from sea ice during the onset of melt [J]. J Geophys Res,1994,99, C2:3351-3359.
    [126] Miller D, Quinby-Hunt M S, Hunt A J. Laboratory studies of angle-andpolarization-dependent light scattering in sea ice [J]. Appl Opt,1997,36(6):1278-1288.
    [127] Miller D, Quinby-Hunt M S, Hunt A J. Novel bistatic polarization nephelometer for probingscattering through a planar interface [J]. Rev Sci Instrum,1996,67(6):2089-2095.
    [128] Perovich D K. Theoretical estimates of light reflection and transmission275by spatiallycomplex and temporally varying sea ice covers [J]. J Geophys Res,1990,95, C6:9557–9567.
    [129] Perovich D K. Seasonal changes in sea ice optical properties during fall freeze up [J]. ColdReg Sci Technol,1991,19(3):261–273.
    [130] Grenfell T C, Perovich D K. Radiation absorption coefficients polycrystalline ice from400–1400nm [J]. J Geophys Res,1981,86, C8:7447–7450.
    [131] Nolin A W, Liang S. Progress in bidirectional reflectance modeling and applications forsurface particulate media: snow and soils [J]. Remote Sens Rev,2000,18:307-342.
    [132] Painter T H, Paden B, Dozier J. Automated spectro-goniometer: A spherical robot for thefield measurement of the directional reflectance of snow [J]. Rev Sci Instrum,2003,74(12):5179-5188.
    [133] Salminen M, Pulliainen J, Metsamaki S. The behaviour of snow and snow-free surfacereflectance in boreal forests: Implications to the performance of snow covered area monitoring [J].Remote Sens Environ2009;113:907–918.
    [134] Colbeck S C. Ice crystal morphology and growth rates at low supersaturations and hightemperatures [J]. J Appl Phys,1983;54(5):1903–1927.
    [135] Sidran M. Broadband reflectance and emissivity of specular and rough water surfaces [J].Appl Opt,1981;20:3176-3183.
    [136] Takano Y, Liou K N. Infrared polarization signature from cirrus clouds [J]. Appl Opt,1992;31:1916-1919.
    [137] Jordan D L, Lewis G D, Jakeman E. Emission polarization of roughened glass andaluminum surfaces [J]. Appl Opt,1996;35:3583-3590.
    [138]吴太夏.偏振遥感中的地物性质及地-气分离方法研究[D]:[博士学位论文]北京:北京大学地球与空间科学学院,2010.
    [139] Rosenbush V K, Avramchuk V V, Rosenbush A E, et al. Polarization properties of Galileansatellites of Jupiter: Observations and preliminary analysis [J]. Astrophys J,1997;487:402-414.
    [140] Kaasalainen S, Muinonen K, Piironen J. Comparative study on opposition effect of icy solarsystem objects [J]. J Quant Spectrosc Radiat Transf,2001;70(4-6):529-543.
    [141] Kaasalainen S, Karttunen H, Piironen J, et al. Backscattering from snow and ice: Laboratoryand field measurements [J]. Can J Phys,2003;81:135-143.
    [142] Kaasalainen S, Kaasalainen M, Mielonen T, et al. Optical properties of snow in backscatter[J]. J Glaciol,2006;52(179):574-584.
    [143] Peltoniemi J I, Kaasalainen S, Naranen J, et al. Measurement of directional and spectralsignatures of light reflectance by snow [J]. IEEE Trans Geosci Remote Sens,2005,43(10):2294-2304.
    [144] Shkuratov Yu, Ovcharenko A, Zubko E, et al. The opposition effect and negativepolarization of structurally simulated planetary regoliths [J]. Icarus,2002,159:396-416.
    [145] Mishchenko M I. Enhanced backscattering of polarized light from discrete random media [J].J Opt Soc Am A,1992,9:978-982.
    [146] Mishchenko M I. On the nature of the polarization opposition effect exhibited by Saturn’srings [J]. Astrophys J,1993,411:351-61.
    [147] Tishkovets V P, Litvinov P V, Lyubchenko M V. Coherent opposition effects forsemi-infinite discrete random medium in the double-scattering approximation [J]. J QuantSpectrosc Radiat Transf,2002,72:803–811.
    [148] Liang S, Mishchenko M I. Calculations of the soil hot-spot effect using the coherentbackscattering theory [J]. Remote Sensing Environ,1997,60(2):163-173.
    [149] Videen G. Polarization opposition effect and second-order ray-tracing: Cloud of dipoles [J] JQuant Spectrosc Radiat Transf,2003,79-80:1103-1109.
    [150] Kolokolova L, Liu L, Buratti B, et al. Modeling variations in near-infrared spectra caused bythe coherent backscattering effect [J]. J Quant Spectrosc Radiat Transf,2011,112:2175-2181
    [151] Dozier J, Green R O, Nolin A W, et al. Interperation of snow properties from imagingspectrometry [J]. Remote Sensing Environ,2009,113: S25-S37.
    [152] Green R O, Painter T H, Roberts D A, et al. Measuring the expressed abundance of the threephases of water with an imaging spectrometer over melting snow [J]. Water Resour Res,2006,42(10): W10402.
    [153] Painter T H, Duval B, Thomas W H, et al. Detection and quantification of snow algae withan airborne imaging spectrometer [J]. Appl Environ Micr,2001,67(11):5267-5272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700