用户名: 密码: 验证码:
太行山脉对华北暴雨影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于中国台站逐日降水观测资料及再分析资料,对华北地区夏季降水的时空分布及平均环流特征进行了分析,对比了太行山脉两侧暴雨量级、频次及水汽收支等的差异。根据太行山暴雨落区、强度及移动等特征,结合暴雨天气预报经验,对太行山影响下华北地区暴雨过程进行了分型和典型个例挑选。对分型典型暴雨个例进行了诊断,分析了不同型态下暴雨过程中环流形势及演变特征,找出了主要的影响天气系统,建立了不同分型暴雨的天气学模型,为不同分型暴雨预报提供了预报着眼点。利用中尺度模式(wRF)和区域气候模式(RegCM3),对不同分型下典型暴雨个例进行了数值模拟,设计了多种地形敏感性试验方案,分析了地形变化后天气系统物理量场的变化以及降水强度、落区、移动等特征。得到的主要结论如下:
     (1)华北地区夏季降水经历了相对湿润期、过渡期和干旱期,太行山脉以西地区降水量明显小于山脉以东地区,暴雨发生频次也明显低于山脉以东。
     (2)根据太行山暴雨落区、强度及移动等特征,将华北夏季暴雨分为太行山以东暴雨型、太行山以西暴雨型、太行山区暴雨型、太行山两侧暴雨型、暴雨过山时减弱型五种型态。典型个例排查表明,太行山以东暴雨型出现概率最高。
     (3)不同暴雨分型下天气形势配置各不相同:太行山以东暴雨型A类一般发生在副热带高压偏东偏南,西北地区有冷槽或低涡东移的背景下,且低层切变线、急流等系统在过太行山后明显增强,由于偏东气流向西流动的过程中受太行山的阻挡,在地面形成中尺度辐合线或切变线;太行山以东暴雨型B类暴雨发生在块状副高控制华北东部的背景下,副高脊线位置偏北,副高底部的中低层有东南急流向华北输送水汽并沿太行山东坡强迫抬升而形成暴雨;太行山以西型暴雨发生在副高位置偏西偏北,而西风槽东移受阻的背景下,山西大部分地区不稳定能量大,受地面中尺度系统和地形的强迫抬升而产生暴雨天气;太行山区型暴雨发生在副高非常强大,我国西北到东南均受高压控制,华北处于高压北侧,西风带有槽东移的情况下,以山区局地对流性暴雨为主;太行山两侧型暴雨过程一般发生在东西带状的副高较强,中高纬西风槽多波动,中低层西南或东南急流强盛且太行山东坡对东南急流强迫抬升的背景下;过山时减弱型暴雨发生在副高位置偏强、偏西,并且不断向西向北移动,而西风槽在东移时减弱北收的背景下。
     (4)数值试验表明,太行山等地形在暴雨天气过程中起着非常重要作用,改变了
     天气系统中各种物理量场,从而影响暴雨的落区、强度和移动等。对于不同型态暴雨过程,地形的作用有不同的体现,在太行山以东型A型和B型暴雨过程中,山脉的抬升
     作用导致垂直环流发生变化,上升运动及低层辐合的强度发生变化,从而影响了降水的强度,山脉的阻挡作用减慢了降水系统的移动速度,从而改变了暴雨中心的落区。太行山地形是山区型暴雨形成的主要原因。
Using daily precipitation observations and their reanalysis data from weather stations around China, this paper analyzes the spatial-temporal distribution and average circulation of the summer precipitation from1951to2007in North China, comparing the differences of rainstorms on the two sides of the Taihang Mountains in magnitude, frequency and water vapor budget. Taking into account the location, intensity and movement of heavy rains in the Taihang Mountains as well as forecasters' experience with such weather, the rainstorm processes subject to the Taihang Mountains in North China have been classified with cases selected. A diagnoses and analysis of these cases has led to the identification of patterns of evolving circulations in rainstorm processes of different types, the identification of synoptically driven systems and the development of synoptic models for different types of torrential rains, providing a focus for type based rainstorm forecasting. In addition, the mesoscale model WRF and regional climate model RegCM3were employed to numerically simulate selected rainstorm cases of different types, design programs on terrain sensitivity experiments and analyze the changing physical field of a synoptic system over a changed terrain as well as the precipitation in terms of intensity, location and movement of precipitation. The findings are as follows:
     (1) Summer precipitation in North China experiences relatively wet, transitional and dry periods, with the rainfall in areas to the west of the Mountains being significantly less than that in areas to the east of the Mountains, and the frequency of torrential rains being significantly lower.
     (2) In accordance with the location, intensity and movement of rainstorms in the Taihang Mountains, the summer torrential rains in North China are divided into five types:rainstorm to the east of Taihang, rainstorm to the west of Taihang, rainstorm over Taihang, rainstorm on the two sides of Taihang, and rainstorm weakening when crossing Taihang. The case review shows that the 'rainstorm to the east of Taihang' occurs most frequently.
     (3) Weather patterns differ under different rainstorm types:Class A under the 'rainstorm to the east of Tainhang' usually occurs when the subtropical high is found to the south and the east, and the cold trough or low vortex moves eastward in the northwestern region. Moreover, low-level shear lines and jet streams get strengthened obviously after crossing the Taihang Mountains. The easterly airstream flowing westward and being blocked by Taihang makes a mesoscale convergence line or shear line on the ground surface. Class B under the 'rainstorm to the east of Taihang' occurs when the eastern North China is controlled by a tuberous subtropical high. The subtropical high ridge line lies to the north. The southeast jet stream in the middle-low level of the subtropical high, which conveys moisture to North China, is lifted along the east slope of Taihang, developing into torrential rains. The'rainstorm to the west of Taihang' occurs when the subtropical high is found to the west and the north, the westerly trough moving eastward being blocked. The massive energy built up by the instability in most of the west of Taihang is lifted by the surface mesoscale system and the terrain, creating extremely heavy rains. The 'rainstorm over Taihang' occurs when the subtropical high is very intense, the Northwest to Southeast China is under the high, the North China is to the north of the high, and a trough in the westerly belt moves eastward. This type features mountainous local convective rainstorms. The'rainstorm on the two sides of Taihang'occurs when the west-east ribbon-shaped subtropical high is intense, the westerly trough over middle-high latitudes fluctuates, the south-west or south-east jet streams in the middle and low levels are strong, and the east slope of Taihang contributes to the rising east-south jet stream. The'rainstorm weakening when crossing Taihang'occurs when the subtropical high is intense and found to the west, continuously moving westward and northward, and the westerly trough moving eastward is weakened.
     (4) Numerical simulations indicate that the topography of Taihang, which is of great importance to rainstorm processes, alters physical fields of a synoptic system, making a difference to the location, intensity and movement of a rainstorm. A terrain affects different types of heavy rain processes differently. In the processes of Classes A and B under the'rainstorm to the east of Taihang', the uplift of a mountain leads to the changing vertical circulation, the changing ascension and the changing intensity of low-level convergence and finally precipitation. A mountain blocks and slows down the movement of a precipitation system, thus relocating a storm centre. The topography of the Taihang Mountains accounts for the formation of the'rainstorm over Taihang'.
引文
1.毕宝贵,刘月巍,李泽椿.2002年6月8-9日陕南大暴雨数值模拟研究,大气科学,2005,29(5):815-826.
    2.毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究,高原气象,2006,25(3):486-494.
    3.陈明,付抱璞,于强.山区地形对暴雨的影响,地理学报,1995,50(3):256-262.
    4.陈善炳.泰山暴雨气候统计特征,山东气象,2000,20(79):31-33.
    5.崔春光,闵爱荣,胡伯威,等.中尺度地形对“98.7”鄂东特大暴雨的动力作用,气象学报,2002,60(5):603-723.
    6.崔粉娥,王咏青,狄利华.山西一次低涡暴雨过程的成因分析,暴雨灾害,2009,28(3):242-245.
    7.董佩明,等.下垫面强迫对京津大暴雨作用的数值模拟,地形对降水影响的研究,气象出版社,2001.
    8.丁仁海,王龙学.九华山暴雨地形增幅作用的观测分析,暴雨灾害,2010,28(4): 377-380.
    9.丁一汇.高等天气学,气象出版社,2005.
    10.范广洲,吕世华.地形对华北地区夏季降水影响的数值模拟研究,高原气象,1999,18(4):659-667.
    11.方钟,毛冬艳,张小雯,等.2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析,气象,2012,38(10):1278-1287.
    12.高洁,刘仙婵,刘刚.陕西南部中尺度对流系统特征分析,山西气象,2009(5):5-9.
    13.郭金兰,刘凤辉,杜辉,等.一次地形作用产生的强降雨过程分析,气象,2004,30(7):12-17.
    14.顾欣.黔东南暴雨气候特征及其地形影响,气象科技,2006,34(4)
    15.何光碧.高原东侧陡峭地形对一次盆地中尺度涡旋及暴雨的数值试验,高原气象,2006,25(3):430-441.
    16.候建忠.陕西区域性暴雨和大暴雨的特征分析,陕西气象,2009,140-145.
    17.侯瑞钦,景华,陈小雷,等.太行山迎风坡降水云微物理结构数值模拟分析,气象科学,2010,30(3):351-357.
    18.侯瑞钦,景华,王丛梅,等.太行山地形对一次河北暴雨过程影响的数值研究,气象科学,2009,29(5):687-693.
    19.黄世松,等.华南前汛期暴雨,广州科技出版社,1986.
    20.矫梅燕,毕宝贵.夏季北京地区强地形雨中尺度结构分析,气象,2005,31(6):9-14.
    21.江吉喜,项续康.“96.8”河北特大暴雨成因的中尺度分析,应用气象学报,1998,9(3):304-313.
    22.姜勇强,王元.地形对1998年7月鄂东特大暴雨鞍型场的影响,高原气象,2010,29(2):297-308.
    23.景丽,陆汉城,朱民.复杂地形与锋面系统共同作用对台湾岛暴雨影响的数值分析,气象科学,2004,24(1):35-44.
    24.康岚,沈桐立,蔡新玲,等.青藏高原东侧一次典型暴雨过程的数值模拟试验,高原气象,2004,23(增刊):37-45.
    25.李川,陈静,何光碧.青藏高原东侧陡峭地形对一次强降水天气过程的影响,高原气象,2006,25(3):442-450.
    26.李青春,苗世光,郑祚芳,等.北京局地暴雨过程中近地层辐合线的形成与作用, 高原气象,2011,30(5):1232-1242.
    27.李真光,梁必琪,包澄澜.华南前汛期暴雨的成因与预报问题,华南前汛期暴雨文集,北京气象出版社,1981.
    28.廖菲,胡娅敏,洪延超.地形动力作用对华北暴雨和云系影响的数值研究,高原气象,2009,28(1):115-126.
    29.廖移山,冯新,石燕,等.2008年“7.22”襄樊特大暴雨的天气学机理分析及地形的影响,气象学报,2012,69(6):945-955.
    30.刘卫国,刘奇俊.祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅰ):模式云物理方案和地形云结构,高原气象,2007,26(1):1-15.
    31.孟英杰,李丽平,王珊珊,等.中尺度暴雨过程中地形抬升作用分析,安徽农业科学,2010,38(12)
    32.苗爱梅,武健,赵海英,等.低空急流与山西大暴雨的统计关系及流型配置,高原气象,2010,29(4):940-946.
    33.齐琳琳,赵思雄.局地地形、地表特征对上海暴雨过程影响的研究,气候与环境研究,2006,11(1):33-48.
    34.任静兰,田霞.四川省暴雨统计参数的特性分析,四川水利,2003,3:7-10.
    35.盛春岩,高守亭,史玉光.地形对门头沟一次大暴雨动力作用的数值研究,气象学2012,70(1):65-77.
    36.谌芸、孙军,徐裙,等,北京7.21特大暴雨极端性分析及思考:(一)观测分析及思考,气象,2012,38(10):1256-1266.
    37.孙健,赵平,周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响,气象学报,2002,48(6):333-342.
    38.孙建华,齐琳琳,赵思雄.“9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究,气象学报,2006,64(1):57-71.
    39.孙建华,赵思雄.华南946特大暴雨的中尺度对流系统及其环境场研究:物理过程环境场以及地形对中尺度对流的作用,大气科学,2002,26(5):633-646.
    40.孙继松.气流的垂直分布对地形雨落区的影响,高原气象,2005,24(1):62-69.
    41.孙继松,何娜,王国荣,等.“7.21”北京大暴雨系统的结构演变特征及成因初探,暴雨灾害,2012,31(3):218-225.
    42.孙军,谌芸,杨舒楠,等.北京721特大暴雨极端性分析及思考:(二)极端性降水成 因初探及思考,气象,2012,38(10):1268-1277.
    43.谈哲敏,伍荣生.地形上空边界层流中低层锋面结构的理论研究Ⅰ:冷锋、均匀地转流,气象学报,2000,58(2):137-150.
    44.谈哲敏,伍荣生.地形上空边界层流中低层锋面结构的理论研究Ⅱ:暖锋、均匀地转流,气象学报,2000,58(3):265-277.
    45.陶诗言,等.中国之暴雨,北京,科学出版社,1980.
    46.王春红,蒋全荣.一次华南暴雨过程的数值模拟,热带气象学报,1997,13(2):318-325.
    47.王建捷,李泽椿.1998年一次梅雨锋暴雨中尺度对流系统的模拟与诊断分析,气象学报,2002,60(2):146-155.
    48.王珏.河南省2004-07-16暴雨特殊落区成因分析,河南气象,2006(1):21-22.
    49.王珏,沈新勇,寿绍文.06.6福建大暴雨的数值模拟及复杂地形影响试验,南京气象学院学报,2008,3(4):546-554.
    50.王维佳.地形积层混合云模式数值试验研究,四川气象,2007,27(1):29-32.
    51.王文,刘佳,蔡晓军.重力波对青藏高原东侧一次暴雨过程的影响,大气科学学报,2011,34(6):737-747.
    52.吴乃康,林良勋,曾沁,等.广东高空槽后暴雨的多尺度天气特征及概念模型,热带气象学报,2012,28(4):506-516.
    53.伍荣生,高守亭,谈哲敏.锋面过程与中尺度扰动,气象出版社,2004.
    54.徐国强,胡欣,苏华.太行山地形对“96.8”暴雨影响的数值试验研究,气象,1999,25(7):3-7.
    55.俞小鼎,2012年7月21日北京特大暴雨成因分析,气象,2012,38(11):1313-1329.
    56.于玉斌,姚秀萍.“96.8”暴雨过程的尺度分离动能方程的诊断,应用气象学报,1999,10(1):49-58.
    57.余志明.福建省暴雨统计参数有关特性分析,水文,2001,21(增):39-43.
    58.翟武全,李国杰,孙斌,等.海南岛附近四季风场的中尺度环流,热带气象学报,1997,13(4):315-322.
    59.张朝林,季崇萍,Ying-Hwa Kuo,等.地形对“00.7”北京特大暴雨过程影响的数值研究,自然科学进展,2005,15(5):572-578.
    60.章名立.地形对暴雨的影响,暴雨文集,吉林人民出版社,1978.
    61.张玉峰,中Y尺度大暴雨的生成与特征,气象与环境科学,2009,32(增刊):70-73.
    62.赵桂香.一次阻高背景下地形对晋南特大暴雨的作用分析,高原气象,2009,28(4):897-906.
    63.赵桂香,范卫东,刘志斌,等.“8.18-19”山西中南部暴雨天气特征分析,高原气象,2012,31(5):1309-1319.
    64.赵桂香,韩龙,任璞,等.“7·30”区域暴雨的中尺度特征分析,山西气象,2008年3月.
    65.赵思雄,陶祖钰,孙建华,等.长江流域梅雨锋暴雨机理的分析研究,气象出版社,2004,239-247.
    66.赵玉春,王叶红.风垂直切变对中尺度地形对流降水影响的研究,地球物理学报,2012,55(10):3214-3229.
    67.周军,闫冠华,康镭.梅雨锋强暴雨中低层系统物理图像研究Ⅰ:特大暴雨的雨团活动与地面流型,南京气象学院学报,2000,23(2):175-181.
    68. Anderson C J,Arritt R W. Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon Wea Rev,1998,126(3):578-599.
    69. Barr,S. and M.M.Orgill. Influence of external meteorology on nocturnal valley drainage winds. J.Appl.Meteor.,1989,28:497-517.
    70. Benjamin, T.B.and M.J. Lighthill.On sinusoidal waves and boers. Proc.Roy.Soc.,1954, 224:478-460.
    71. Browning K A. Airflow and precipitation trajectories within severe local storm which travel to the right of the winds. J Atmos Sci,1964,21(11):634-639.
    72. Browning K A. The evolution of tornadic storms. J Atmos Sci,1964,22(11):664-668.
    73. Browing,K A,Donaldson R J. Airflow and structure of a tornadic storm. J Atmos Sci,1963,20:533-545.
    74. Browing,K A,Collier C G,Larke P R et al. On the forecasting of frontal rain using a weather radar network.Mon.Weather Rev.,1986,110 (6):534-552.
    75. Bruintjes R T, Clark T L,Hall W D. Interactions betwwen topographic arifolw and cloud/precipitation development during the passage of a winter storm in Arizona, J Atmos Sci,1994,51(1):48-67.
    76. Charba J. Application of gravity current model to analysis of squall-line gust front. Mon Wea Rev,1974,102(2):140-156.
    77. Convective and Orographically-induced Precipitation Study, COPS Field Report 2.1, December 20,2007.
    78. Cotton W R. Numerical simulation of precipitation development in supercooled cumuli-Part Ⅱ. Mon Wea Rev,1972,100(11):764-784.
    79. Contton W R,M-S,Lin R L.,et al. A composite model of mesoscale convective complexes. Mon Wea Rev,1989,117:765-783.
    80. Durran,D.R. Another look at downslope windstorms.Part Ⅰ:On the development of an logs to supercritical flow in an infinitely deep, continuously stratified fluid. J.Atmos.Sci, 1986,43:2527-2543.
    81. Flores A,Ruffini G,Rius A.4D tropospheric tomography using GPS slant wet deyays. Annal of Geophysicae,2000,18:223-234.
    82. Fovell R G,Ogura Y. Effect of vertical wind shear on numerically simulated muticell storm structure. J Atmos Sci,1989,46:3144-3176.
    83. Galewsky J,Sobel A. Moist dynamics and orographic precipitation in morthern and central California during the New Year's flood of 1997. Mon Wea Rev,2005,133:1594-1612.
    84. Goff R C. Vertical structure of thunderstorm outflows. Mon Wea Rev,1976,104(11): 1429-1440.
    85. Houze R A,J R,Locatelli J D,et al. Dynamics and cloud microphysics of the rainbands in an occluded frontal system. J Atmos Sci,1976,33:1921-1936.
    86. Jiang Q F. Moist dynamics and orographic precipitation.Tellus,2003,55(A):301-316.
    87. Jonas P R. Turbulence and cloud microphysics.Atmos Res,1996,40:283-306.
    88. Klimowski B A,Becker R,Betterton E A,et al. The 1995 Arizona program:Toward a better understanding of winter storm precipitation development in mountainous terrain. Bull Amer Meteor Soc,1998,79(5):799-813.
    89. Laing A G,Fritsch J M. The global population of mesoscale convective complexes. Quart J Roy Meteor Soc,1997,123:389-405.
    90. Lin C,Zipser E J. The dynamic influence of microphysics in tropical squall lines:A numerical study.Mon Wea Rev,1997,125:2193-2210.
    91. Mapes B E. Sensitivities of cumulus-ensemble rainfall in a cloud-resolving model with parameterized large-scale dynamics. J Atmos Sci,2004,61:2308-2317.
    92. Marwitz J D. The kinematics of orographic airflow during sierra storms. J Atmos sci,1983,40:1218-1227.
    93. McIntyre, M. On Long's hypothesis of no upstream influence in uniformly stratified or rotating flow. J.Fluid Mech.,1972,52:202-243.
    94. Murray F W,Koenig L R. Numerical experiments on the relation between microphysics and dynamics in cumulus convection. Mon Wea Rev,1972,100(10):717-732.
    95. Nair. Numerical simulation of the 9-10 June 1972 Black Hill Storm using CSU RAMS. Mon Wea.Rev.,1997,125.
    96. Pierrhumbert, R.T. Linear results on the barrier effects of mesoscale mountains. J. Atmos.Sci.,1984,41:1346-1367.
    97. Queney, P.Theory of perturbation in stratified currents with application to airflow over mountain barriers.Department of Meteorology,University of Chicago, Misc.Rep.,1947, 25-67.
    98. Scoerr,R.Theory of waves in the lee of mountains. Quart.J.Roy.Meteor.Soc,1949,75:41-56.
    99. Tao,S Y and Ding,Y H. Observationnal evidence of the influence of the Qinghai-xizang(Tibet)Plateau on the occourrence of heavy rain and servere convective storms in China.Wea. Forecasting,1981,2:89-112.
    100. Yoshiharu Suzuki, Numerical study of rainfall-topography relationships in mountainous regions of Japan using a mesoscale meteorological model,2003.
    101. ZhaoYuchun, Xiao Ziniu.A Diagnostic and Numerical Study on a Rainstorm in South Chian Induced a Northward-propagating Tropical System. Acta Meteorological Sinica, 2008,22(3):284-302.
    1.毕慕莹,丁一汇.1980年夏季华北干旱时期东亚阻塞形势的位涡分析,应用气象学报,1992,3:145-155.
    2.边清河,丁治英,吴明月,等.华北地区台风暴雨的统计特征分析,气象,31(3):61-65.
    3.鲍名,黄荣辉.近40年我国暴雨的年代际变化特征,大气科学,2006,30(6):1057-1067.
    4. 陈烈庭.华北各区夏季降水年际和年代际变化的地域性特征,高原气象,1999,18(4):477-485.
    5. 陈隆勋,朱文琴.中国近45年来气候变化的研究,气象学报,1998,56(3):257-271.
    6.丁一汇.天气动力学中的诊断分析方法,北京:科学出版社,1989.293pp.
    7.龚道溢,韩晖.华北农牧交错带夏季极端气候的趋势分析,地理学报,2004,230-237.
    8.樊增全,刘春蓁.1980-1987年华北地区上空水汽输送特征,大气科学,1992,16(5):548-555.
    9.黄荣辉,梁幼林,宋连春.近几年我国夏季旱涝变化及其成因初探,见:李崇银主编.气候变化若干问题研究(大气科学和地球流体力学国家重点实验室研究专集(二)),北京:科学出版社,1992.14-29.
    10.黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势,高原气象,1999,18(4):467-476.
    11.李崇银,李桂龙,龙振夏.中国气候年代际变化的大气环流形式对比分析,应用气象学报,1999,10(增刊):1-8.
    12.梁萍,何金海,陈隆勋,等.华北夏季强降水的水汽来源.高原气象,2007,26(3):460--465.
    13.陆日宇.华北夏季不同月份降水的年代际变化,高原气象,1999,18(4):509-519.
    14.陆日宇,黄荣辉.夏季西风带定常扰动对东北亚阻塞高压的影响,大气科学,1999,23(5):533-542.
    15.马京津,高晓清.华北地区夏季平均水汽输送通量和轨迹的分析,高源气象,2006,25(5):893-899.
    16.马京津,高晓清,曲迎乐.华北地区春季和夏季降水特征及与气候相关的分析,气候与环境研究,2006,11(3):321-329.
    17.任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征,气象学报,2005,63(6):942-956.
    18.任国玉,吴虹,陈正洪.中国降水变化趋势的空间特征,应用气象学报,2000,11(3):322-330.
    19.王遵娅,丁一汇.中国雨季的气候学特征,大气科学,2008,32(1):1-13.
    20.王遵娅,丁一汇,何金海,等.近50年来中国气候变化特征的再分析,气象学报,2004,62(2):228-236.
    21.吴志伟,江志红,何金海.近50年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析,大气科学,2006,30(3):391-401.
    22.闫冠华,李巧萍.北方农牧交错带气候变化特征及未来趋势分析,南京气象学报,2008,31(5):671-678.
    23.闫冠华,吴浩,颜鹏程,等.一种基于logistic模型的过程性突变分析方法及其应用,物理学报,2013,62(7),079202.
    24.翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化,地理学报,2003,58:1-10.
    25.翟盘茂,任福民,张强.中国降水极端值变化趋势检测,气象学报,1999,57(2):208-216.
    26.翟盘茂,王萃萃,李威.极端降水事件变化的观测研究,气候变化研究进展,2007,3(3):144-148.
    27.张文君,周天军,宇如聪.中国东部水分收支的初步分析,大气科学,2007,31(2): 331-345.
    28.周晓霞,丁一汇,王盘兴.夏季亚洲季风区的水汽输送及其对中国降水的影响,气象学报,2008,66(1):59-70.
    29.周晓霞,丁一汇,王盘兴.影响华北汛期降水的水汽输送过程,大气科学,2008,32(2):345-357.
    30. Zhai, P.M., Ren. F.M., Zhang, Q..Detection of trends in China's precipitation extremes. Acta Meteorologica Sinica,1999.57(2):208-216.
    31. Zhai, P.M., Sun, A.J., Ren, F.M., Liu, X.N., Gao, B., Zhang, Q., Changes of climate extremes in China. ClimaticChange 1999b,42:203-218.Journal of Arid Environments,2004,59:771-784.
    1.毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究,高原气象,2006,25(3):486-494.
    2.陈明,付抱璞,于强.山区地形对暴雨的影响,地理学报,1995,50(3):256-262.
    3.崔春光,闵爱荣,胡伯威,等,中尺度地形对“98.7”鄂东特大暴雨的动力作用,气象学报,2002,60(5):603-723.
    4.范广洲,吕世华.地形对华北地区夏季降水影响的数值模拟研究,高原气象,18(4):659-667.
    5.郭金兰,刘凤辉,杜辉,等.一次地形作用产生的强降雨过程分析,气象,30(7):12-17.
    6.何光碧.高原东侧陡峭地形对一次盆地中尺度涡旋及暴雨的数值试验,高原气象,2006,25(3):430-441.
    7.矫梅燕,毕宝贵.夏季北京地区强地形雨中尺度结构分析,气象,31(6):9-14.
    8.侯瑞钦,景华,陈小雷,等.太行山迎风坡降水云微物理结构数值模拟分析,气象科学,2010,30(3):351-357.
    9.廖菲,胡娅敏,洪延超.地形动力作用对华北暴雨和云系影响的数值研究,高原气象,2009,28(1):115-126.
    10.齐琳琳,赵思雄.局地地形、地表特征对上海暴雨过程影响的研究,气候与环境研究,2006,11(1):33-48.
    11.孙健,赵平,周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响,气象学报,2002,60(3):333-342.
    12.徐国强,胡欣,苏华.太行山地形“96.08”暴雨影响的数值试验研究,气象,25(7):3-7.
    13.王珏,沈新勇,寿绍文.06.6福建大暴雨的数值模拟及复杂地形影响试验,南京气象学院学报,2008,3(4):546-554.
    14.章名立,地形对暴雨的影响,暴雨文集,吉林人民出版社,1978,58-64.
    15.张守保、张迎新、郭品文.华北回流强降水天气过程的中尺度分析,高原气象,2009,28(5):1068-1074.
    1.丁一汇,李吉顺,孙淑清,等.影响华北夏季暴雨的几类天气尺度系统分析.中国科学院大气物理研究所集刊(第9号),暴雨及强对流天气的研究.北京:科学出版社,1980.
    2.崔春光,闵爱荣,胡伯威,等.中尺度地形对“98.7”鄂东特大暴雨的动力作用,气象学报,2002,60(5):603-723.
    3.崔粉娥,王咏青,狄利华.山西一次低涡暴雨过程的成因分析,暴雨灾害,2009,28(3):242-245.
    4.董佩明等.下垫面强迫对京津大暴雨作用的数值模拟,地形对降水影响的研究,2001,气象出版社.
    5. 《华北暴雨》编写组.华北暴雨[M],北京,气象出版社,1992:1-182.
    6.侯瑞钦,景华,张迎新,等.05.7.23河北暴雨中尺度分析,气象,2006,32(7):88-94.
    7.江吉喜,项续康.“96·8”河北特大暴雨成因初探,气象,1997,23(7):19-23.
    8.江吉喜,项续康.“96.8”河北特大暴雨成因的中尺度分析,应用气象学报,1998,9(3):304-313.
    9.矫梅燕,毕宝贵.夏季北京地区强地形雨中尺度结构分析,气象,31(6):9-14.
    10.李云,缪启龙,江吉喜.2005年8月16日天津大暴雨成因分析,气象,2007,33(5):83-88.
    11.廖菲,胡娅敏,洪延超.地形动力作用对华北暴雨和云系影响的数值研究,高原气象,2009,28(1):115-126.
    12.孙健,赵平,周秀骥.一次华南暴雨的中尺度结构及复杂地形的影响,气象学报,2002, 60(3):333-342.
    13.孙建华,齐琳琳,赵思雄.“9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究,气象学报,2006,64(1):57-71.
    14.孙建华,张小玲,卫捷,等.20世纪90年代华北大暴雨过程特征的分析研究,气候与环境研究,2005,10(3):492-506.
    15.孙建华,赵思雄.华南946特大暴雨的中尺度对流系统及其环境场研究,物理过程环境场以及地形对中尺度对流的作用,大气科学,2002,26(5):633-646.
    16.孙继松.气流的垂直分布对地形雨落区的影响,高原气象,2005,24(1):62-69.
    17.陶诗言,中国之暴雨,北京,科学出版社,1980:1-225.
    18.王珏.河南省2004-07-16暴雨特殊落区成因分析,河南气象,2006(1):21-22.
    19.王珏,沈新勇,寿绍文.06.6福建大暴雨的数值模拟及复杂地形影响试验,南京气象学院学报,2008,3(4):546-554.
    20.伍荣生,高守亭,谈哲敏.锋面过程与中尺度扰动,气象出版社,2004.
    21.熊秋芬,胡江林,张耀存.梅雨锋降水带中不同地域大暴雨成因的对比分析,气象,2006,32(7):72-80.
    22.于玉斌,姚秀萍.“96.8”暴雨过程的尺度分离动能方程的诊断,应用气象学报,1999,10(1):49-58.
    23.张守保,张迎新,杜青文,等.华北平原回流天气综合形势特征分析,气象科技,2008,36(1):25-30.
    24.张迎新,张守保,华北平原回流天气的结构特征,南京气象学院学报,2006,29(1):107-113
    25.张守保,张迎新,郭品文.华北回流强降水天气过程的中尺度分析,高原气象,2009,28(5):1067-1074.
    26.张雪金.华北暴雨个例的数值研究,中国气象科学研究院硕士毕业论文,1996.
    27.赵桂香.一次阻高背景下地形对晋南特大暴雨的作用分析,高原气象,2009,28(4):897-906.
    28.赵思雄,陶祖钰,孙建华,等.长江流域梅雨锋暴雨机理的分析研究,气象出版社,2004,239-247.
    29.周军,闫冠华,康镭.梅雨锋强暴雨中低层系统物理图像研究Ⅰ:特大暴雨的雨团活动与地面流型,南京气象学院学报,2000,23(2):175-181.
    30. Browing,K A,Collier C G,Larke P R et al.On the forecasting of frontal rain using a weather radar network.Mon.Weather Rev.,1986.
    1.贝耐芳,赵思雄,高守亭.1998年“二度梅”期间武汉黄石突发性暴雨的模拟研究,大气科学,2003,27(5):399-417.
    2.范水勇,郭永润,陈敏,等.高分辨率WRF三维变分同化在北京地区降水预报中的应用,高原气象,2008,27(6):1181-1188.
    3.邓莲堂,王建捷.新一代中尺度天气预报模式-WRF模式简介,天气与气候,2003.
    4.马旭林,刘还珠,薛纪善,等.江淮梅雨锋强暴雨低涡系统发生发展的数值研究,南京气象学报学报,2004.
    5.倪允琪,周秀骥.我国重大天气灾害形成机理与预测理论研究,北京,气象出版社,2004:245-247.
    6.孙健,赵平.WRF与MM5对1998年三次暴雨过程的对比分析,气象学报,2003,61(6):692-701.
    7.宋巧云,魏凤英,许晨海,等.淮河流域暴雨过程的数值模拟和诊断分析,2006,南京气象学院学报,29(3):342-347.
    8.陶诗言,倪允琪.1998年夏季中国暴雨的形成机理与预报研究,北京,气象出版社,2001.
    9.熊秋芬,胡江林,张耀存.梅雨锋暴雨数值模拟中地形的作用,气象科学,2007,27(6):591-596.
    10.熊秋芬,胡江林,张耀存,梅雨降水带中不同地域大暴雨成因的对比分析,气象,2006,32(7):72-80.
    11.宇如聪.REM对1994年中国汛期降水的实时预报试验-台风、暴雨数值预报新技术的研究,北京,气象出版社,1996:87-93.
    12.臧增亮,张铭,沈洪卫,等.江淮地区中尺度地形对一次梅雨锋暴雨的敏感性试验,气象科学,2004,24(1):27-34.
    13.章国材.美国WRF模式的进展和应用前景,气象,2004,30(12):27-31.
    14.赵思雄,陶祖玉,孙建华,等.长江流域梅雨锋暴雨机理的分析研究.
    15.周晓平,赵思雄,张可苏.一个东亚季风区的暴雨数值预报模式,大气科学,1988,特刊:60-78.
    1.边清河,丁治英,吴明月,等.华北地区台风暴雨的统计特征分析,气象,2005,31(3):61-65.
    2.陈烈庭.华北各区夏季降水年际和年代际的地域特征,高原气象,1999,18(4):477-4851.
    3.丁一汇,钱永甫,颜宏,等.高分辨率区域气候模式的改进及其在东亚持续性暴雨事件模拟中的应用,国家“九五”重中之重项目执行专家组编,短期气候预测业务动力模式的研制,北京,气象出版社,2000.
    4.范广洲,吕世华.地形对华北地区夏季降水影响的数值模拟研究,高原气象,1999, 18(4):659-667.
    5.高庆九,郝立生,闵锦忠.华北夏季降水年代际变化与东亚夏季风、大气环流异常,南京大学学报(自然科学版),2006,42(6):591-601.
    6.郝立生,陆维松.热带海温异常影响华北夏季降水的机制研究,干旱气象,2006,24:5-11.
    7.李巧萍,丁一汇.区域气候模式对东亚季风和中国降水的多年模拟与性能检验,气象学报,2004,62(1):140-153.
    8.吕世华,陈玉春.区域气候模式对华北夏季降水的气候模拟,高原气象,1999,18(4):632-640.
    9.马晓波.华北地区水资源的气候特征,高原气象,1999,18(4):520-524.
    10.刘晓东,江志红,罗树如,等.RegCM3模式对中国东部夏季降水的模拟试验,南京气象学院学报,2005,28(3):351-359.
    11.史学丽,丁一汇,刘一鸣.区域气候模式对中国东部夏季气候的模拟试验,气候与环境研究,2001,6(2):249-254.
    12.石英,高学杰.温室效应对我国东部地区气候影响的高分辨率数值试验,大气科学,2008,32(5):1-13.
    13.孙建华,张小玲,卫捷,等.20世纪90年代华北大暴雨过程特征的分析研究,气候与环境研究,2005,10(3):492-506.
    14.王劲峰.人地关系演进及其调控—全球变化、自然灾害、人类活动中国典型区研究,北京:科学出版社,1995.
    15.韦志刚,董文杰,范丽军.80年代以来华北地区气候和水量变化的分析研究,高原气象,1999,18(4):525-534.
    16.徐桂玉,杨修群,孙旭光.华北降水年代际、年际变化特征与北半球大气环流的联系.地球物理学报,2005,48:511-518.
    17.张冬峰,高学杰,赵宗慈,等.RegCM3及其对中国气候的模拟,气候变化研究进展,2005,1(3):119-121.
    18.张楠,苗春生,邵海燕.1951-2007年华北地区夏季气温变化特征,气候与环境学报,2009,25(6):23-28.
    19.张庆云.1880年以来华北降水及水资源的变化,高原气象,1999,18(4):486-4951.
    20.张庆云,卫捷,陶诗言.近50年华北干旱的年代际和年际变化及大气环流特征,气 候与环境研究,2003,8(3):307-318.
    21.赵宗慈,罗勇.二十世纪九十年代区域气候模拟研究进展,气象学报,1998,56(2):225-246.
    22.周建玮,王咏青.区域气候模式RegCM3应用综述,气象科学,2007,27(6):703-708.
    23. Giorgi F, Marinucci M R, Bates G T. Development of a second generation regional climate model (RegCM2) I:boundary layer and radiative t ransfer processes. Mon. Wea. Rev.,1993,121 (10):2794-2813.
    24. Giorgi F, Marinucci M R, Bates G T, et al.. Development of a second generation regional climate model (RegCM2) II:convective process and assimilation of lateral boundary conditions. Mon. Wea. Rev,1993,121 (10):2814-2832.
    25. Lee Dong-Kyou, Suh Myoung-Seok. Ten-year east Asian summer monsoon simulation using a regional climate model(RegCM2). J Geophy Res,2000,105(D24):29565-29577.
    26. Li Qiaoping and Ding Yihui,2012:Climate Simulation and Future Projection of Precipitation and the Water Vapor Budget in the Haihe River Basin, Acta Meteorological Sinica,26(3):345-361.
    27. Liu Yiming, Ding Yihui. Simulation of heavy rainfall in the summer of 1998 over China with regional climate model. Acta Meteo Sinica,2002,16(3):348-362.
    28. Liu Y, Avissar R, Giorgi F. Simulation with the regional climate model RegCM2 of extremely anomalous precipitation during the 1991 east Asian flood:An evaluation study. J Geophy Res,1996,101:26199-26215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700