用户名: 密码: 验证码:
稀土改性Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3的制备及其导电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着导电粉应用领域的不断拓宽,国内外诸多学者致力于提高导电粉导电性研究。掺杂稀土元素既可以提高粉体的导电性能,又可以改善粉体的介电性能,已成为粉体改性研究的热点。
     采用溶胶-凝胶法制备了BaTiO_3、Na_(0.5)Bi_(0.5)TiO_3和Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3粉体。通过讨论溶胶pH值、反应温度和热处理温度等条件对Na_(0.5)Bi_(0.5)TiO_3和Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3粉体结构、形貌、电阻率和介电常数的影响,确定了制备Na_(0.5)Bi_(0.5)TiO_3优化的工艺条件为:溶胶体系pH=3.5,反应温度20℃,烘干温度150℃,热处理温度350℃,煅烧温度700℃。所得Na_(0.5)Bi_(0.5)TiO_3粉体的平均晶粒为50nm,室温电阻率为3.71×106Ω m,频率500Hz时的介电常数εr为393.21,且在高频区内介电损耗比较稳定。以柠檬酸作为螯合剂制备Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3粉体的优化工艺条件为:溶胶体系pH=4.5,反应温度为40℃,烘干温度为120℃,热处理温度为500℃,煅烧温度为750℃。针对不同x值(x0,1)所制备的Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3粉体中,随着x值增大,电阻率呈下降趋势,其中Ba_(0.2)(Na_(0.5)Bi_(0.5))_(0.8)TiO_3粉体室温电阻率最低,达3.24×107Ω m。
     在制备纯BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3粉体的基础上,为进一步降低其电阻率,采用液相掺杂方法对BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3粉体进行了稀土改性研究。选择稀土元素Sm、Ce、Pr和Gd进行了液相掺杂实验研究。电阻率测试结果表明,稀土元素液相掺杂可以降低粉体的电阻率,其中Sm掺杂对降低BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3粉体电阻率最为明显。Sm掺杂使BaTiO_3粉体的电阻率从4.30×10~9·m降低至2.38×10~6·m。选择Sm元素进行了不同Sm掺杂量改性Na_(0.5)Bi_(0.5)TiO_3实验研究,Na_(0.5)Bi_(0.5)TiO_3的电阻率随Sm掺杂量的增加呈现先降后升的趋势。当Sm的掺杂量为0.5at%时,Na_(0.5)Bi_(0.5)TiO_3粉体的电阻率最低,达2.41×10~5Ω m。介电性能测试表明,Sm掺杂使Na_(0.5)Bi_(0.5)TiO_3的介电常数增大,介电损耗随频率变化的趋势与纯Na_(0.5)Bi_(0.5)TiO_3粉体相同。XRD分析结果表明,Gd、Pr和Sm均掺入到A位。SEM表征表明,稀土元素掺杂可使粉体粒径减小,部分粉体颗粒出现团聚现象。XPS分析测试表明,稀土掺杂后粉体表面富集Na元素,并形成了非化学计量表面层。
     统筹考虑电性能测试和形貌分析的实验结果,选择Sm元素进行了气相扩渗实验。制备了不同温度Sm气相扩渗改性BaTiO_3、Na_(0.5)Bi_(0.5)TiO_3和Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3粉体,并讨论了改性前后BaTiO_3、Na_(0.5)Bi_(0.5)TiO_3和Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3粉体组成、结构和电性能上的变化。研究结果表明,Sm扩渗改性能降低BaTiO_3、Na_(0.5)Bi_(0.5)TiO_3和Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3粉体的电阻率,且在一定温度范围内(740℃~860℃),电阻率随着扩渗温度的升高而降低。当扩渗温度为860℃时,Sm扩渗改性后,Na_(0.5)Bi_(0.5)TiO_3粉体电阻率从3.71×10~6Ω m降为4.01×10~5Ω m;BaTiO_3粉体电阻率从4.3010~9Ω m降为4.27×10~4Ω m; Ba0.6(Na0.5Bi0.5)0.4TiO3粉体电阻率从5.76×10~8Ω m降为3.67×10~3Ω m。
     采用Materials Studio软件对Gd、Pr和Sm掺杂的BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3体系进行了计算。计算结果表明,A位和B位掺杂均使BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3体系晶胞发生畸变,而且A位掺杂后体系单点能更低,更稳定,说明BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3体系更倾向于A位掺杂。Gd、Pr和Sm降低BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3粉体电阻率的原因是在能带中引入了杂质能级,减小了禁带宽度,从而改善BaTiO_3和Na_(0.5)Bi_(0.5)TiO_3粉体的导电性,计算结果和实验数据基本吻合。
The conductive powders have attracted considerable attention in recent yearsbecause of their very important applications in many fields especially in staticelimination. Rare earth modified method can improve the conductivity and thedielectric properties of powders, and become the hot research of powder modified.
     In this study, BaTiO_3, Na_(0.5)Bi_(0.5)TiO_3and Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3powders wereprepared by the sol-gel method. The process conditions of preparing Na_(0.5)Bi_(0.5)TiO_3and Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3powders such as pH, reaction temperature and heattreatment temperature were studies. The effects of the process conditions on powderstructure, morphology and resistivity, dielectric constant effects of Na_(0.5)Bi_(0.5)TiO_3and Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3powders were discussed to find the optimum processconditions. The optimum process conditions are as follows: pH=3.5,reactiontemperature of20℃, drying temperature of150℃, warm-up temperature of80℃,calcining temperature of700℃. The Na_(0.5)Bi_(0.5)TiO_3powders with an average grainsize of50nm,has the room temperature resistivity of3.71×10~6Ω m, the frequency of500Hz, the dielectric constant εr393.21, and its cut dielectric loss in the highfrequency region is relatively stable. The optimum process conditions of preparingBa_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3powders with citric acid as a chelating agent are as follows:pH=4.5,reaction temperature of40℃, drying temperature of120℃, warm-uptemperature of5000℃, calcining temperature of750℃. The resistivity of theBa_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3powders decreases with the increases of x, and reached thelowest point of3.24×10~7Ω m with the values of x was0.8.
     Based on obtained pure BaTiO_3and Na_(0.5)Bi_(0.5)TiO_3powders, the liquid-phasedoping technique was adopted to improve the conductivity of the BaTiO_3andNa_(0.5)Bi_(0.5)TiO_3powders. The resistivity of Sm-dopped BaTiO_3and Na_(0.5)Bi_(0.5)TiO_3powders are much lower than the other rare earths dopped powders. When theconsistency of Sm is0.3at%, the resistivity of Sm-dopped BaTiO_3powder is thelowest, which drops from4.30×10~9Ω m to2.38×10~6Ω m. When the consistency ofSm is0.5at%, the resistivity of Sm-dopped Na_(0.5)Bi_(0.5)TiO_3powder is the lowest,which drops from3.71×10~6Ω m to2.41×10~5Ω m. The result of dielectric testsshowed that Sm-doping method improved the ceramic dielectric constant, and thedielectric loss versus frequency of Sm-dopped Na_(0.5)Bi_(0.5)TiO_3and pure Na_(0.5)Bi_(0.5)TiO_3have essentially the same changing tendency. The result of XRD analysis showedthat Gd, Pr and Sm were incorporated into the A site. The result of XPS analysisshowed that the powder surface after rare earth doping enriched Na elements, and non-stoichiometric surface layer was formed.
     Combined with electrical properties and morphology analysis of theexperimental test results, the gaseous penetration experiments was done by usingSm elements as diffusion agent。The composition, structure and conductivity of theSm-penetrated BaTiO_3, Na_(0.5)Bi_(0.5)TiO_3and Ba_((1-x))(Na_(0.5)Bi_(0.5))_xTiO_3powders beforeand after doping were studied. The results reveals that the powder resistivity dropswith the increase of penetration temperature. The resistivity of Sm-penetratedBaTiO_3powder drops from4.30×10~9Ω m to4.27×10~4Ω m. The resistivity ofSm-penetrated Na_(0.5)Bi_(0.5)TiO_3powder drops from3.71×10~6Ω m to4.01×10~5Ω m.The resistivity of Sm-penetrated Ba0.6(Na0.5Bi0.5)0.4TiO3powder drops from5.76×10~8Ω m to3.67×10~3Ω m.
     The first-principles calculation was carried out with Materials Studio softwarepackage for Gd, Pr and Sm-modified BaTiO_3and Na_(0.5)Bi_(0.5)TiO_3system. The resultsshow that dopant elements render crystal cell distorted. After comparison ofsingle-point energy between A-site substitution and B-site substitution, it is foundthat rare earth elements are relatively easy to substitute A site. Impurity levels areintroduced within the band gap or overlap with the band edge of the BaTiO_3andNa_(0.5)Bi_(0.5)TiO_3structures and leading to band gap narrowing, which results in thereduction of the resistivity of the rare earth elements-modified BaTiO_3andNa_(0.5)Bi_(0.5)TiO_3system. By the analysis of calculation results and experimental data,it is found that they match with each other and will be helpful for future research.
引文
[1] Beloni E, Dreizin E L. Model of heating and ignition of conductive polydispersepowder in electrostatic discharge [J]. Combustion Theory and Modelling,2012,16(6):976-993.
    [2] Pavlovi M M, Pavlovi M G, Pani V, et al. Electrical Conductivity ofLignocellulose Composites Loaded with Electrodeposited Copper Powders. PartIII. Influence of Particle Morphology on Appearance of Electrical ConductiveLayers[J]. Int. J. Electrochem. Sci,2012,7:8894-8904.
    [3] Guo G, Gan W, Xiang F, et al. Effect of dispersibility of silver powders inconductive paste on microstructure of screen-printed front contacts andelectrical performance of crystalline silicon solar cells[J]. Journal of MaterialsScience: Materials in Electronics,2011,22(5):527-530.
    [4] Zhong N, Ning X S, Chen K X, et al. Fabrication of SphericalThermal-Conductive Silicon Nitride Powder [J]. Advanced Materials Research,2012,412:175-178.
    [5] Stoian E V. Characterization of Silicone Rubber Reinforced with ConductivePowder [J]. Advanced Materials Research,2012,378:535-538.
    [6]陈国建,韩要星,胡勇,等.纳米导电粉在抗静电纤维制备中的应用[J].纺织科学研究,2004,1:15-19.
    [7]张文涛,施利毅,钟庆东,等.钢板用浅色抗静电涂料的制备[J].中国涂料,2005,20(9):23-25.
    [8] Weng C J, Chen Y L, Jhuo Y S, et al. Advanced antistatic/anticorrosion coatingsprepared from polystyrene composites incorporating dodecylbenzenesulfonicacid‐doped SiO2@polyaniline coreshell microspheres [J]. PolymerInternational,2012.
    [9] Chang C C, Hwang F H, Hsieh C Y, et al. Preparation and characterization ofpolymer/zirconia nanocomposite antistatic coatings on plastic substrates[J].Journal of Coatings Technology and Research,2013,10(1):73-78.
    [10]吴浩,何红兵,杨琳,等.导静电环氧涂料导静电和防腐性能研究[J].现代涂料与涂装,2012,15(2):4-6.
    [11]张建荣,顾达,杨云霞. Sb掺杂SnO2纳米粉体的结晶行为和电学性能[J].应用化学.2002,19(6):552~554.
    [12]付明,刘焕明.环保型导电浆料的研究进展[J].材料导报,2005,19(5):280~282.
    [13] Dalle Vacche S, Oliveira F, Leterrier Y, et al. The effect of processing conditionson the morphology, thermomechanical, dielectric, and piezoelectric propertiesof P (VDF-TrFE)/BaTiO3composites[J]. Journal of Materials Science,2012,47(11):4763-4774.
    [14] zen M, Mertens M, Luyten J, et al. Hydrothermal synthesis of carbonate-freesubmicron-sized barium titanate from an amorphous precursor: Synthesis andcharacterization[J]. Ceramics International,2012,38(1):619-625.
    [15] Dang F, Kato K, Imai H, et al. Oriented aggregation of BaTiO3nanocrystals andlarge particles in the ultrasonic-assistant synthesis[J]. CrystEngComm,2010,12(11):3441-3444.
    [16] Souza A E, Silva R A, Santos G T A, et al. Photoluminescence of barium–calcium titanates obtained by the microwave-assisted hydrothermal method(MAH)[J]. Chemical Physics Letters,2010,488(1):54-56.
    [17]赵建玲,王晓慧,李龙士.两步法制备钛酸钡、钛酸锶和钛酸锶钡纳米管阵列[J].稀有金属,2005,29(4):526~529.
    [18]张亮,肖定全.高性能钛酸钡/聚合物复合材料的研究进展[J].功能材料,2012,43(10):1225-1229.
    [19]王红军,杨术明,曾翠平,等.水热合成法制备钛酸钡纳米粉体的研究进展[J].当代化工,2011,40(1):80-84.
    [20] Babkair S S. A phenomenological model of conduction in Ho-doped bariumtitanate sensor[J]. Sensors and Actuators A: Physical,2012.
    [21] Viviani M, Buscaglia M T, Buscaglia V, et al. Analysis of conductivity andPTCR effect in Er-doped BaTiO3ceramics[J]. Journal of the European CeramicSociety,2004,24(6):1221-1225.
    [22] Chen Y L, Yang S F. PTCR effect in donor doped barium titanate: review ofcompositions, microstructures, processing and properties[J]. Advances inApplied Ceramics,2011,110(5):257-269.
    [23] Huang Q, Gao L. Manufacture and electrical properties of multiwalled carbonnanotube/BaTiO3nanocomposite ceramics[J]. Journal of Materials Chemistry,2004,14(16):2536-2541.
    [24]郝素娥,孙亮,黄金祥,等.稀土气相扩渗BaTiO3基PTC陶瓷的NTCR效应[J].高等学校化学学报,2005,26(12):2207-2210.
    [25]郝素娥,孙亮,李晓丹,等. La改性BaTiO3陶瓷的结构与电性能[J].功能材料与器件学报,2004,10(4):407-412.
    [26] Smolenskii G A, Isupov V A, Agranovskay A I, et al. New FerroeleetricsComplex Composition[J]. Sov Phys-Solid State,1961,2(11):2651-2654.
    [27] Zhu M, Liu L, Hou Y, et al. Microstructure and Electrical Properties of MnO‐Doped (Na0.5Bi0.5)0.92Ba0.08TiO3Lead‐Free Piezoceramics[J]. Journal of theAmerican Ceramic Society,2007,90(1):120-124.
    [28]周昌荣,刘心宇.新型无铅压电陶瓷NBT-NBSN的研究[J].压电与声光,2008,30(2):196-198.
    [29] Gomah‐Pettry J R, Salak A N, Marchet P, et al. Ferroelectric relaxor behaviourof Na0.5Bi0.5TiO3–SrTiO3ceramics[J]. physica status solidi (b),2004,241(8):1949-1956.
    [30] Suchanicz J, Rosiek R, Mercurio J P, et al. Influence of Axial Pressure onElectric Properties of Na0.5Bi0.5TiO3-PbTiO3System[J]. Ferroelectrics,2004,300(1):107-116.
    [31] Li Y M, Chen W, Xu Q, et al. Dielectric and Piezoelectric Properties ofNa0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3Lead-Free Ceramics[J]. Journal ofelectroceramics,2005,14(1):53-58.
    [32] Isupov V A. Ferroelectric Na0.5Bi0.5TiO3and K0.5Bi0.5TiO3perovskites and theirsolid solutions[J]. Ferroelectrics,2005,315(1):123-147.
    [33] Maurya D, Zhou Y, Yan Y, et al. Synthesis mechanism of grain-orientedlead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3ceramics with giant piezoelectricresponse[J]. Journal of Materials Chemistry C,2013,1:2102-2111.
    [34] Chu B J, Chen D R, Li G R, et al. Electrical properties of Na1/2Bi1/2TiO3-BaTiO3ceramics[J]. Journal of the European Ceramic Society,2002,22(13):2115-2122.
    [35] Wang X, Chan H L W, Choy C. Piezoelectric and dielectric properties ofCeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3lead-free ceramics[J]. Solid statecommunications,2003,125(7-8):395-400.
    [36] Liu L, Zhu M, Hou Y, et al. Abnormal piezoelectric and dielectric behavior of0.92Na0.5Bi0.5TiO3-0.08BaTiO3induced by La doping[J]. Journal of materialsresearch,2007,22(05):1188-1192.
    [37] Chen W, Chen M, Kim B. Structure and electrical properties of(Na0.5Bi0.5)0.94Ba0.06TiO3ceramic with0.5wt%of MnO[J]. Journal of WuhanUniversity of Technology-Mater. Sci. Ed.,2008,23(4):499-502.
    [38] He D Y, Qiao L J, Volinsky A A, et al. Humidity effects on (001) BaTiO3singlecrystal surface water adsorption [J]. Applied Physics Letters,2011,98(6):062905-062905-3.
    [39] Bassiri R, Borisenko K B, Cockayne D J H, et al. Probing the atomic structureof amorphous Ta2O5coatings[J]. Applied Physics Letters,2011,98(3):031904-031904-3.
    [40] Long R, English N J. Synergistic effects of Bi/S codoping on visiblelight-activated anatase TiO2photocatalysts from first principles[J]. The Journalof Physical Chemistry C,2009,113(19):8373-8377.
    [41] Zaleska A, Sobczak J W, Grabowska E, et al. Preparation and photocatalyticactivity of boron-modified TiO2under UV and visible light[J]. AppliedCatalysis B: Environmental,2008,78(1):92-100.
    [42] Fang T T, Shuei J T. Experimental assessment of the inhibition of reduction ofCa2+-doped barium titanate in a reducing atmosphere[J]. Journal of MaterialsResearch-Pittsburgh-,1999,14:1910-1915.
    [43] Bardapurkar P P, Barde N P, Thakur D P, et al. Effect of Ba2+–Sr2+co-substitution on the structural and dielectric properties of Lead Titanate[J].Journal of electroceramics,2012,29(1):62-70.
    [44]马学静,尹红梅,周树银,等. Ba1-xSrxTiO3(x=0,0.1,0.2,0.3,004)陶瓷材料的结构及介电性能的研究[J].喀什师范学院学报,2012,33(3):37-40.
    [45] Umeda Y, Takano K, Kojima T, et al. Theoretical Analysis of Oxygen VacancyFormation in Zr-Doped BaTiO3[J]. Japanese Journal of Applied Physics,2012,51(9).
    [46] Yeon J, Kim S H, Hayward M A, et al.“A” Cation Polarity Control inACuTe2O7(A=Sr2+, Ba2+, or Pb2+)[J]. Inorg. Chem,2011,50(17):8663-8670.
    [47] Baskaran, N, Chang, H. Effect of Sn doping on the phase transformationproperties of ferroelectric BaTiO3[J].Journal of Materials Science-Materials InElectronics,12(9):527-531
    [48] Fu C, Liang J, Cai W, et al. The Electronic Structure of Hf-Doped BariumTitanate[J]. Ferroelectrics,2012,432(1):1-7.
    [49] Dughaish Z H, Issa M A A. Dielectric Properties of BaTiO3Doped CeO2Ceramics[J]. Journal of Natural Sciences and Mathematics,2011,2(1).
    [50] Shuang W. Effect of CeO2on the microstructure and dielectric properties ofBaTiO3system [J]. Journal of Tianjin University of Technology and Education,2010,1:005.
    [51] Jiwei Z, Chen H, Chou C C, et al. Peculiarities of temperature and fielddependence of tunability in Ba0.6Sr0.4TiO3ceramics with differing grain sizes[J].Journal of Alloys and Compounds,2011,509(20):6113-6116.
    [52] Maslova O A, Zakharchenko I N, Bunina O A, et al. X-ray diffractioninvestigation of BaTiO3/(Ba, Sr) TiO3superlattices[J]. Physics of the Solid State,2012,54(5):1014-1017.
    [53] Maslova O A, Yuzyuk Y I, Ortega N, et al. Raman spectroscopy of BaTiO3/(Ba,Sr) TiO3superlattices[J]. Physics of the Solid State,2011,53(5):1062-1066.
    [54] Ortega N, Kumar A, Maslova O A, et al. Effect of periodicity and compositionin artificial BaTiO3/(Ba, Sr) TiO3superlattices[J]. Physical Review B,2011,83(14):144108.
    [55] Cheng X, Shen M. Enhanced spontaneous polarization in Sr and Ca co-dopedBaTiO3ceramics[J]. Solid state communications,2007,141(11):587-590.
    [56] Prasertpalichat S, Unruan M, Sareein T, et al. Effect of Compressive Stress onFerroelectric Aging Behavior of Hybrid-Doped Fe3+/Nb5+BaTiO3Ceramics[J].Key Engineering Materials,2010,421:259-262.
    [57] Silva R S, M'Peko J C, Fontes L C, et al. Cation size effects-modified phase andPTCR development in Er3+and Ca2+co-doped BaTiO3ceramics during sintering[J]. Materials Research,2009,12(3):287-290.
    [58] Hara T, Shinozaki K. Effect of Oxygen Adsorption on Polaron Conduction inNanometer-Scale Nb5+-, Fe3+-, and Cr3+-Doped SrTiO3Thin Films[J].Japanese Journal of Applied Physics,2011,50(6):065807.
    [59] Prasertpalichatr S, Unruan M, Sareein T, et al. Physical Properties and ElectricalAging Effects in Fe3+/Nb5+Hybrid-Doped Barium Titanate Ceramics[J].Ferroelectrics,2009,384(1):146-152.
    [60] Hwang, JH; Han, YH. Defect chemistry of Er-doped BaTiO3[J].Solid StateIonics,140(1-2):181-186.
    [61] Tachibana N, Yuasa M, Kida T, et al. Combustion-Type H2Gas Sensor Using aPTC Thermistor Based on Bi, Na-Codoped BaTiO3as a Transducer[J]. SensorLetters,2011,9(1):21-25.
    [62] Wu D, Fang B, Du Q, et al. Preparation and Properties of La and K Co-DopedBaTiO3Lead-Free Piezoelectric Ceramics[J]. Ferroelectrics,2012,432(1):81-91.
    [63] Ko Y N, Kang Y C. Characteristics of Ag-doped BaTiO3nanopowders preparedby spray pyrolysis[J]. Ceramics International,2012,38(3):2071-2077.
    [64] Lazarevi Z, Vijatovi M M, Stojanovi B D, et al. Structure study ofnanosized La-and Sb-doped BaTiO3[J]. Journal of Alloys and Compounds,2010,494(1):472-475.
    [65] Dan L, Yongping P, Xuan S, et al. Research On Substituent Positions AndValence of Transition Metal Oxides Doping In Barium Titanate [J]. ChinaCeramics,2011,6:005.
    [66]沈志刚,陈建峰,刘方涛等. Ba1-xSrxTiO3纳米粉体的直接沉淀法合成、结构与介电特性[J].功能材料,2003,34(5):556~558.
    [67]杨双.稀土多元渗法制备稀土碳化钼及其导电性[D].哈尔滨工业大学,2009.
    [68]黄金祥,郝素娥,孙亮. Pr对Pr-Mn共掺BaTiO3陶瓷的气相扩渗及其PTC特性[J].压电与声光,2006,28(5):569~571.
    [69] Kowalski K, Ijjaali M, Bak T.. Effect of oxygen activity on Nb solubility inBaTiO3. Journal of Physics and Chemistry of Solids,2001;62(3):537-541.
    [70] Yamaji A, Enomoto Y, Kinoshita K. Preparation, characterization and propertiesof Dy-doped small grained BaTiO3ceramics. Journal of the American CeramicSociety,1977,60(3):97~99.
    [71]毛翠萍,陈亿裕,韩晓东等.低电阻率、大升阻比BaTiO3基PTCR陶瓷材料[J].电子元件与材料,2003,22(11):35-37.
    [72]贾金亮,畅柱国,杨孟林等.低电阻率高性能BaTiO3基PTCR陶瓷材料[J].西北大学学报(自然科学版),2005,35(2):174-176.
    [73]赵丽丽,畅柱国,吴淑荣.掺杂Ag元素对溶胶–凝胶一步法制备BaTiO3基PTCR陶瓷性能的影响[J].电子元件与材料,2003,22(9):24-26.
    [74] S. Hao, Y. Wei. Electric characteristics of Nd2O3doped BaTiO3ceramic. Journalof Harbin Institute of Technology (New Series),2003,10(4):388-391.
    [75]郝素娥,韦永德. Sm对BaTiO3陶瓷的气相扩渗及其电性能[J].材料科学与工艺,2004,12(3):258-264.
    [76]郝素娥,韦永德,况冲. Gd2O3掺杂对BaTiO3陶瓷电性能的影响[J].精细化工,2002,19(12):717-719.
    [77] Cheng X, Shen M. Enhanced spontaneous polarization in Sr and Ca co-dopedBaTiO3ceramics[J]. Solid state communications,2007,141(11):587-590.
    [78] Glinchuk M D, Bykov I P, Kornienko S M, et al. Influence of impurities on theproperties of rare-earth-doped barium-titanate ceramics[J]. Journal of MaterialsChemistry,2000,10(4):941-947.
    [79] Hwang J H, Han Y H. Defect chemistry of Er-doped BaTiO3[J]. Solid StateIonics,2001,140(1):181-186.
    [80] Glinchuk M D, Bykov I P, Kornienko S M, et al. Influence of impurities on theproperties of rare-earth-doped barium-titanate ceramics[J]. Journal of MaterialsChemistry,2000,10(4):941-947.
    [81] Tsur Y, Dunbar T D, Randall C A. Crystal and defect chemistry of rare earthcations in BaTiO3[J]. Journal of Electroceramics,2001,7(1):25-34.
    [82]郭炜,李玲霞,吴霞宛,等.掺杂稀土元素对BaTiO3系统介电性能的影响[J].功能材料与器件学报,2004,10(1):103-106.
    [83]靳正国,戴维迪,苗海龙,等. Dy2O3和La2O3掺杂对BaTiO3铁电陶瓷介电特性的影响[J].硅酸盐学报,2001,29(5):397-401.
    [84]郝素娥,刑晓旭. Er2O3掺杂对BaTiO3陶瓷介电性能的影响[J].压电与声光,2006,28(2):195-198.
    [85] Buscaglia M T, Buscaglia V, Viviani M, et al. Influence of foreign ions on thecrystal structure of BaTiO3[J]. Journal of the european ceramic society,2000,20(12):1997-2007.
    [86] Langhammer H T, Müller T, B ttcher R, et al. Copper-doped hexagonal bariumtitanate ceramics[J]. Journal of the European Ceramic Society,2004,24(6):1489-1492.
    [87] Li Y, Yao X, Wang X. Dielectric properties and microstructure of magnesium-doped Ba1+k(Ti1xCax)O3x+kceramics[J]. Ceramics International.2004,(30):1283-1287.
    [88] Castro M S, Salgueiro W, Somoza A. Electron paramagnetic resonance andpositron annihilation study of the compensation mechanisms in donor-dopedBaTiO3ceramics[J]. Journal of Physics and Chemistry of Solids,2007,68(7):1315-1323.
    [89] Brzozowski E, Caballero A C, Villegas M, et al. Effect of doping method onmicrostructural and defect profile of Sb–BaTiO3[J]. Journal of the EuropeanCeramic Society,2006,26(12):2327-2336.
    [90] Masó N, Beltrán H, Cordoncillo E, et al. Electrical properties of Fe-dopedBaTiO3[J]. Journal of Materials Chemistry,2006,16(17):1626-1633.
    [91]艾桃桃,王芬.改性对BaTiO3陶瓷介电常数的影响[J].绝缘材料,2006,39(4):33-36.
    [92]孙建英,翟继卫,丑修建等.低掺杂量MgO对钛酸锶钡陶瓷的结构和性能的影响[J].功能材料,2007,1(38):93-96
    [93]余大书,王立群,冯嘉祯. Ba(1-x)LaxTiO3纳米晶的正电子湮没研究[J].天津师范大学学报(自然科学版),2002,24(4):23-26
    [94] Kishi H, Kohzu N, Iguchi Y, et al. Occupational sites and dielectric properties ofrare-earth and Mn substituted BaTiO3[J]. Journal of the European CeramicSociety,2001,21(10):1643-1647.
    [95]黄平,田玉明.施受主杂质Nb、Mn共掺BaTiO3陶瓷的制备方法及其PTC特性.太原理工大学学报.2001,32(1):94-96.
    [96] Bomlai P, Sirikulrat N, Tunkasiri T. Effect of heating rate on the properties ofSb and Mn-doped barium strontium titanate PTCR ceramics[J]. MaterialsLetters,2005,59(1):118-122.
    [97] Samantaray C B, Sim H, Hwang H. The electronic structures and opticalproperties of BaTiO3and SrTiO3using first-principles calculations[J].Microelectronics journal,2005,36(8):725-728.
    [98] Piskunov S, Kotomin E A, Fuks D, et al. Ab initio calculations of the atomic andelectronic structure of layered Ba0.5Sr0.5TiO3structures[J]. Materials Scienceand Engineering: B,2005,118(1):15-18.
    [99] Pati o E, Stashans A. Structural and electronic properties in cubic andtetragonal BaTiO3crystal due to La impurity[J]. Computational materialsscience,2001,22(3):137-143.
    [100] Zhang C, Wang C L, Li J C, et al. Substitutional position and insulator-to-metaltransition in Nb-doped SrTiO3[J]. Materials Chemistry and Physics,2008,107(2):215-219.
    [101] Guo X G, Chen X S, Sun Y L, et al. Electronic band structure of Nb dopedSrTiO3from first principles calculation[J]. Physics Letters A,2003,317(5):501-506.
    [102] Isuyov V A, Pronin I P, Kruzina T V. Temperature dependence of bireringenceand opalescence of the sodium-bismuth titanate crystals[J]. Ferroelectrics letterssection,1984,2(6):205-208.
    [103]李晓娟,李全禄,谢妙霞,等.压电陶瓷材料的发展及其新应用[J].陕西理工学院学报(自然科学版),2006,1.
    [104]李全禄,李晓娟,解妙霞,等.多功能铁氧体和磁流变液结合的新型声学与振动控制器件[J].功能材料,2006,37(5):754-755.
    [105]郭华,王秀峰,朱孔军,等.固相法和水热法制备BNT无铅压电陶瓷及其性能表征[J].陕西科技大学学报(自然科学版),2009,27(4):31-34.
    [106] Liu J B, Wang H, Hou Y D, et al. Low-temperature preparation of Na0.5Bi0.5TiO3nanowhiskers by a sol-gel-hydrothermal method[J]. Nanotechnology,2004,15(7):777-781.
    [107]苗鸿雁,朱刚强,周耀辉.水热法制备纳米Na0.5Bi0.5TiO3粉体[J].电子元件与材料,2004,23(11):16-16.
    [108]于九利,刘丽,曹仁锋,等. Bi0.5Na0.5TiO3基无铅压电陶瓷的研究进展[J].硅酸盐通报,2012,31(004):892-895.
    [109] Suchaniez J. Investigation of the Phase Transitions in (Nal/2Bil/2)TiO3[J].Ferroelectries,1995,172:455-458.
    [110]陈小明,廖运文,王怀平,等.溶胶-凝胶法制备Bi0.5(Na0.825K0.175)0.5TiO3粉体[J].西华师范大学学报(自然科学版),2009,30(3):283-286.
    [111]翟琳.钛酸秘钠基无铅压电陶瓷的溶胶-凝胶法制备及性能研究[D].广州:暨南大学,2007.
    [112]夏华婷,胡永明,周迪,等.溶胶-凝胶-水热法制备Na0.5Bi0.5TiO3单晶纳米棒的研究[J].湖北大学学报(自然科学版),2011,33(2):149-196.
    [113] Kim C Y, Sekino T, Niihara K. Synthesis of bismuth sodium titanate nanosizedpowders by solution/sol–gel process[J]. Journal of the American CeramicSociety,2003,86(9):1464-1467.
    [114] Xiao M A, Li-Hong X U E, You-Wei Y A N. Hydrothermal Synthesis ofBismuth Sodium Titanate Nanowires and Forming Mechanism[J]. Journal ofInorganic Materials,2011,12:002.
    [115] Pusit P, Gobwute R, Supon A, et al. Effect of Sintering Temperature onMicrostructure of Hydrothermally Prepared Bismuth Sodium TitanateCeramies[J]. J Eu Ceram Soc,2004,(24):517~520.
    [116]于九利,张梅,郭敏,等.溶剂热法制备织构化Bi0.5Na0.5TiO3陶瓷的影响因素[J].北京科技大学学报,2011,33(10):1253-1259.
    [117]马麦霞,王元元.常压溶剂热法制备Na0.5Bi0.5TiO3纳米粉体的研究[J].硅酸盐通报,2008,27(6):1230-1234.
    [118]施威海,刘云飞,周刘飞,等. Bi0.5Na0.5TiO3无铅压电陶瓷的结构有序化控制[J].南京工业大学学报:自然科学版,2008,30(1):54-58.
    [119] David L W, David A P. Microstructure Development in Reactive-TemplatedGrain Growth of (Bil/2Nal/2)TiO3-Based Ceramics: Templat and FormulationEffects[J]. J Am. Ceram Soc,2003,86(5):769-774.
    [120]陈新亮.(Na0.5Bi0.5)TiO3基无铅压电陶瓷的研究与应用[J].舰船电子工程,2007,27(6):188-192.
    [121]陈旻.镧系稀土氧化物对组成在MPB附近的(Na0.5Bi0.5)(1-x)BaxTiO3陶瓷结构和电学性能的影响[D].武汉理工大学,2006.
    [122] Zvirgzds J A, Kapostin P P. X-Ray Study of Phase Transtions in FerroelectricsBi0.5Na0.5TiO3[J]. Ferroelectrics,1982,40:75-77.
    [123] Suchanicz J, Kwapulinshi J. X-Ray Diffraction Study of the Phase Transtions inFerroelectrics Bi0.5Na0.5TiO3[J]. Ferroelectrics,1995,165:249-253.
    [124] Jones G O, Thomas P A. Investigation of the Structure and Phase Transition inthe Novel A-Site Substituted Distorted Perovskite Compound Bi0.5Na0.5TiO3[J].Acta Cryst,2002, B58:68-178.
    [125] Isupov V A. Ferroelectric Bi0.5Na0.5TiO3and Bi0.5K0.5TiO3Perovskites andTheir Solid Solutions[J]. Ferroelectrics,2005,315:123-147.
    [126] Tu C S, Siny I G, Schmidt V H. Sequence of Dielectric Anomalies andHigh-Temperature Relaxation Behavior in Bi0.5Na0.5TiO3[J]. Physical Review B,1994,49(17):11550-11559.
    [127] Suchanicz J. Investigations of the Phase Transition in Bi0.5Na0.5TiO3[J].Ferroelectrics,1995,172:455-458.
    [128] Suchanicz J. Peculiarities of Phase Transition in Bi0.5Na0.5TiO3[J].Ferroelectrics,1997,190:77-81.
    [129] Suchanicz J. Time Evolution of the Phase Transition in Bi0.5Na0.5TiO3[J].Ferroelectrics,1997,200:319-325.
    [130] Roleder K, Suchanicz J. Time Dependence of Electric Permititivity inBi0.5Na0.5TiO3Single Crystal[J]. Ferroelectrics,1989,89:1-5.
    [131]李月明. Na0.5Bi0.5TiO3基无铅压电陶瓷的制备、结构与电性能研究[D].武汉:武汉理工大学,2004:39-49.
    [132] Suchanicz J. Behaviour of Na0.5Bi0.5TiO3Ceramics in the A.C. Electric Field[J].Ferroelectrics,1998,209:561-568.
    [133]赵名磊.无铅压电陶瓷制备与物性研究[D].济南:山东大学,2003:90-96.
    [134] Herabut A, Safari A. Processing and Electromechanical Properties of(Bi0.5Na0.5)1-1.5xLaxTiO3Ceramics[J]. J Am Ceram Soc,1997,80(11):2954-2958.
    [135] Li J Y, Li J K, Hong K S. Dependence of Microstructure and the ElectricalProperties of Lanthanum-Substituted Na0.5Bi0.5TiO3on Cation Vacancies[J]. JAm Ceram Soc,2002,85(12):3004-3010.
    [136] Wang X X, Kwok K W, Tang X G, et al. Electromechanical properties anddielectric behavior of (Bi1/2Na1/2)(1-1.5x)BixTiO3lead-free piezoelectric ceramics[J]. Solid state communications,2004,129(5):319-323.
    [137]赁敦敏,肖定全,朱建国等.[(Bi1-x-yLax)Na1-y]0.5BayTiO3压电陶瓷的性能与微结构[J].电子元件与材料,2004,23(11):1-3.
    [138] Nagata H, Takenaka T. Effects of Substitution on Electrical Properties ofBi0.5Na0.5TiO3Based Lead-Free Ferroelectrics[C]. Proceedings of the200012thIEEE International of Symposium on Applications of Ferroelectrics,2000,1:45-51.
    [139]黎辉东.0.94(Bil/2Nal/2)TiO3-0.06BaTiO3压电陶瓷的掺杂改性研究[D].上海:中科院上海硅酸盐研究所,2003.
    [140]周小元等.锰掺杂对(Na0.5Bi0.5)0.92Ba0.08TiO3压电陶瓷性能的影响[J].功能材料与器件学报,2004,10(4):219-224.
    [141] Wang X X, Chan H L, Choy C L.(Bi0.5Na0.5)0.94Ba0.06TiO3Lead-Free Ceramicswith Simultaneous Addition of CeO2and La2O3[J]. Appl Phys:Mater Sci andProc,2005, A80:333-336.
    [142] Xu Q, Wu S, Chen S, et al. Influence of Poling Condition and SinteringTemperature on Piezoelectric Properties of (Bi1/2Na1/2)1-xBaxTiO3Ceramics[J].Materials Research Bulletin,2005,40:373-382.
    [143] Sasaki A, Chiba T, Youichi M. Dielectric and Piezoelectric Properties of(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3Systems[J]. Jpn J Appl Phys,1999,38:5564-5567.
    [144] Liao R H, Li Y M. Study on the Properties of NBT-KBT System PiezoelectricCeramic Prepared by Sol-Gel Method[J]. Journal of Synthetic Crystals,2008,37(3):283-287.
    [145] Ishii H, Nagata H, Takenaka T. Morphotropic Phase Boundary and ElectricalProperties of Bismuth Sodium Titanate-Potssium Niobate Solid SolutionCeramics[J]. Jpn J Appl Phys,2001,40:5660-5663.
    [146]李月明,陈文,徐庆等.(1-x)(Bi1/2Na1/2)TiO3-xNaNbO3系无铅压电陶瓷的机电性能[J].硅酸盐学报,2005,33(3):366-370.
    [147] PARK S E,HONG K S. Variations of Structure and Dielectric Properties onSubstituting A-Site Cation for Sr2+in Bi0.5Na0.5TiO3[J]. J Mater Res,1997,12(8):2152-2157.
    [148]吴裕功,马晋毅,董向红等.(Bi1/2Na1/2)TiO3-SrTiO3无铅压电陶瓷的介电、压电性能[J].压电与声光,2000,22(6):370-372.
    [149] Nagata H, Youshida M, Makiuchi Y, et al. Large Piezoelectric Constant andHigh Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary SystemBased on Bismuth Sodium Titanate-Bismuth Potassium Titanate-BariumTitanate Near the Morphotropic Phase Boundary[J]. Jpn J Appl Phys,2003,42:7401-7403.
    [150] Cheng X, Shen M. Enhanced spontaneous polarization in Sr and Ca co-dopedBaTiO3ceramics. Solid State Communications.2007,(141):587-590.
    [151]都洪建,肖定全,朱建国.(Bi0.5Na0.5)1-x(BaNaSrb)xTiO3无铅压电陶瓷体系的设计、制备与性能.高技术通讯,2004,7:42-44.
    [152]马晋毅,谢道华,吴裕功等. NBT-NaNbO3-BaTiO3:无铅压电材料的研究,压电与声光,2003,25(4):303-307.
    [153] Wang X X, Tang X G, Chan H L. Electromechanical and FerroelectricProperties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3Lead-Free PiezoelectricCeramics. Appl Phys Lett,2004,85(1):91-93.
    [154] Wu Y G, Zhang H L, Zhang Y, et al. Lead-Free Piezoelectric Ceramics withComposition of (0.97-x)(Bi1/2Na1/2)TiO3-0.03NaNbO3-xBaTiO3[J]. J Mater Sci,2003,38:987-994.
    [155] Shieh J, Wu K C,Chen C S. Switching characteristics of MPB compositions of(Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5) TiO3lead-free ferroelectric ceramics. ActaMaterialia,2007,55:3081-3087.
    [156] Lin D M, Kwok K W,Chan H L W. Structure and electrical Properties of(Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5) TiO3lead-free piezoelectric ceramics. SolidState Ionics2008,178:1930-1937.
    [157]侯育冬,崔斌,高峰等. Na0.5Bi0.5TiO3基无铅压电陶瓷研究进展[J].材料导报,2002,16(4):41-43.
    [158]王天宝,王列娥,卢永康等. Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系富钠区陶瓷固溶体的电物理性能研究[J].硅酸盐学报,1986,14(1):14-22.
    [159]陈敬中.现代晶体化学:理论与方法.北京:高等教育出版社,20011931
    [160] Chen W, Zhou J, Xu Q, et al. Electronic Structure and Poling Characteristics ofNa1/2Bi1/2TiO3-BaTiO3System[J]. Chinese Journal of Computational Physics,2004,21(6):543-546.
    [161] Takenaka T. Piezoelectric properties of some lead-free ferroelectric ceramics[J].Ferroelectrics,1999,230(1):87-98.
    [162]王辉,崔斌,畅柱国,等.软化学法制备钛酸钡粉体的研究进展[J].材料科学与工程学报,2003,21(5):773-776.
    [163] Gong-An Y, Yong-Ping P, Jin-Fei W, et al. Effect of CeO2Addition on theMicrostructure and Dielectric Properties of BaTiO3Co-Doped with Nb andFe[J]. Ferroelectrics,2010,407(1):31-38.
    [164]何飞刚. BaTiO3超细粉体的制备研究进展[J].应用化工,2010,39(011):1754-1757.
    [165]吴淑荣,畅柱国.不同稀土元素掺杂对钛酸钡陶瓷导电性的影响[J].功能材料,1997,28(5):509-510.
    [166] Erkalfa H, Yuksel B, Ozkan T O. The effect of TiCl3on the microstructure ofdonor-doped boron-added Ti-excess BaTiO3[J]. Journal of the EuropeanCeramic Society,2006,26(14):2909-2913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700