用户名: 密码: 验证码:
FeCuNbSiB/SiR复合薄膜在压应力下的力敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型装备及重点工程领域常需对壳体、管道等曲面异构组件间的连接状态、使用过程中的受力情况进行实时检测,以准确掌握关键材料及其部件的使用状态、库存性能等重要信息,从而使曲面异构组件间的接触应力敏感性能的测量成为力传感器领域的重要课题。
     本文以FeCuNbSiB软磁粉为功能填充粒子,以三元嵌段有规共聚硅橡胶为基体材料,采用机械共混和精密铸压热成型方法制备了FeCuNbSiB软磁粉/硅橡胶柔性力敏复合薄膜(简称“FeCuNbSiB/SiR复合薄膜”),较系统地研究了FeCuNbSiB/SiR复合薄膜的制备工艺、微观结构、理化特性等;并循序渐进地设计和开发了FeCuNbSiB/SiR复合薄膜在不同加载方式下的力敏特性测试技术和力敏性能表征方法。在此基础上系统研究了FeCuNbSiB/SiR复合薄膜在不同加载方式下的力敏特性,经大量实验,优化出具有优良力敏性能的FeCuNbSiB/SiR复合薄膜,并针对复合薄膜特有的力敏特性,初步探讨了FeCuNbSiB/SiR复合薄膜的力敏机制;最后,依据优化的力敏薄膜,试制出了柔性接触应力传感器原理样机。本文研究主要取得以下结果:
     (1)在复合薄膜制备方面:研究和开发了以FeCuNbSiB软磁粉为功能填充粒子、以三元嵌段有规共聚硅橡胶为基体的FeCuNbSiB/SiR力敏复合薄膜,实验可制备的复合薄膜尺寸范围为:长度≤200mmm、宽度≤100mm、厚度50μm~2000μm。研究了软磁粉成分、相结构、粉体粒度及表面性质对复合薄膜物化性能的影响,并对橡胶配方进行优化,解决了软磁粉在橡胶中的均匀分散、橡胶与软磁粉界面控制、复合薄膜厚度控制等问题。研究表明,FeCuNbSiB/SiR复合薄膜的物理机械性能达到了柔性力敏传感器要求,其拉伸强度4.73MPa、扯断伸长率168%、压缩永久变形量3.28%、回弹性51.8%、绍尔A硬度75度。
     (2)在复合薄膜力敏特性测试和性能表征方面:针对压应力条件下复合薄膜的应力阻抗测试问题,循序渐进地设计开发了静态加载、动态加载、环境温度湿度体系下的加载、静态与动态加载体系下的应力阻抗测试系统,有效地消除了测试系统的不稳定、接触误差等。经过多次反复实验,最终确定“LCR测试+感抗补偿分析”的方法对复合薄膜的力敏特性进行测试,并用Z-σ标准等效曲线表征复合薄膜的力敏特性,用Z-σ标准等效曲线的标准偏差衡量复合薄膜的力敏稳定性,用应力阻抗效应SI%表征复合薄膜力敏灵敏度。优化定型后的复合薄膜力敏性能测试体系由TH2816LCR数字电桥、LYYL-500N高档型微机控制压力试验机、感抗补偿电路等组成,复合薄膜体系采用电容方式连接。测试表征条件定型为:复合薄膜标准规格20mm×20mm、测试频率1kHz、压应力动态加载/卸载速度不大于0.5mm/min、压应力保持加载时间120s。
     (3)在复合薄膜力敏特性研究方面:研究表明,在测试频率小于100kHz范围内复合薄膜具有良好的力敏特性。随测试频率升高,复合薄膜的力敏敏感度下降;随着压应力增大,复合薄膜的阻抗值下降,力敏敏感度也随之下降。在0.1MPa-0.54MPa压应力范围内,复合薄膜力敏敏感度增幅最大,且呈线性变化;当压应力在0.54MPa-1.5MPa范围内,复合薄膜力敏敏感度增幅渐趋平缓。复合薄膜的厚度、软磁粉粒径、含量及其分散均匀性是影响其力敏特性的主要因素,且上述各因素间存在较强的关联性,其最佳条件的优选需结合软磁粉及其复合薄膜制备工艺的难易程度、可操作性、质量稳定性,特别是实际应用对复合薄膜厚度的限制条件进行综合考虑。通过对复合薄膜力敏特性内外影响因素的优化,复合薄膜具有较佳力敏特性所具备的条件为:测试频率小于100kHz,压应力小于0.5MPa,FeCuNbSiB软磁粉粒径(10-30)μm,且经480℃×1h热处理,FeCuNbSiB软磁粉含量在(22.5-35)vO1%之间,复合薄膜厚度小于300μm,环境温度13℃-50℃。
     优化后的复合薄膜(FeCuNbSiB软磁粉含量为27.5vO1%、厚度为200+2μm)具有优异的应力敏感性能,在连续加/卸载速率不大于0.5mm/min或保压条件下,测试频率1kHz、压应力0.2MPa-1.0MPa范围内具有良好的力敏稳定性和灵敏性。复合薄膜的SI%值为6%-23%,测试标准偏差稳定在0.02~0.05,在小于0.3MPa的压应力范围内复合薄膜的力敏特性更优。
     (4)在复合薄膜力敏机制研究方面:通过对复合薄膜的阻抗值Z及分量LC、R和相位角0的频谱特性分析,复合薄膜在交流测试电路中呈现压-容和压-阻特征。整体测试系统的等效电路可以看做是复合薄膜的总电容C与总电阻R并联后再与电路中的电感L串联的结构。影响复合薄膜压-容和压-阻特性的关键因素是复合薄膜模量和粉体含量。研究还发现,该柔性力敏复合薄膜在测试频率为50kHz时具有较为显著的交流阻抗双逾渗特性。
     (5)通过柔性电路印刷及热压封装技术实现了对优化后的FeCuNbSiB/SiR柔性力敏复合薄膜的封装;复合薄膜进行封装后其应力敏感性能无明显影响,由此制得的柔性接触应力传感器原理样机具有良好的力敏特性和阻抗蠕变性能。
     FeCuNbSiB/SiR复合薄膜符合柔性接触应力敏传感器的基本要求,具有耐环境性好、绝缘、厚度可控等突出优势,可以作为力敏薄膜使用,有望成为新一代接触应力传感器敏感元材料,具有很好的应用前景。
In the fields of large equipment and key engineering, it is necessary to detect the contact stress in the connection status and the use procedure of shell components, piping components and so on by real-time, of which the important information of active condition and inventory performance for the key materials and its parts can be grasped accurately. So the contact stress sensitivity measurement for the components with curved surface structure is becoming an important topic in the field of force sensor.
     A series of novel flexible stress sensitive composite film of FeCuNbSiB soft magnetic powder/silicone rubber ("FeCuNbSiB/SiR composite film") were successfully fabricated by mechanical blending and precise cast pressure hot forming method, using FeCuNbSiB soft magnetic powder as functional filler particles and ternary block silicone rubber as matrix. The preparation technics, microstructure, physical and chemical properties of FeCuNbSiB/SiR composite film were studied systematically in the paper. Then, the measuring technique and characterization methods for the stress sensitive characteristics of the composite film were designed and developed step by step. On this basis, the stress sensitive characteristics of the composite film under different loading mode was studied systematically and the composite films with excellent stress sensitive property were optimized through a large number of experiments. The stress sensitive mechanism of the FeCuNbSiB/SiR composite film was preliminary discussed based on the peculiar stress sensitive characteristics. Finally, the flexible contact stress sensor prototype system was trial-produced according to the optimized stress sensitive film. The major results obtained in the study are as follows.
     (1) On the respect of composite film preparation. FeCuNbSiB/SiR stress sensitive composite film was researched and developed based on FeCuNbSiB soft magnetic powder as functional filler particles with stress sensitivity and ternary block silicone rubber as matrix, of which the length, width and thickness of the composite film can be controlled in the range of less than200mm, less than100mm and 50-2000μm, respectively. The effects of filler particle types, phase structure, particle size and surface modification on the physical and chemical properties of FeCuNbSiB/SiR composite film were studied in detail and the rubber compounding was also optimized through vulcanization technology. Thus, such problems as uniform dispersion of soft magnetic powder into the rubber matrix, the interface control between rubber matrix and soft magnetic powder and the thickness control of the composite film, were solved successfully. It shows that the physical and mechanical properties of FeCuNbSiB/SiR composite film can meet the requirements of flexible stress sensitive sensor with4.73MPa tensile strength,168%elongation at break,3.28%compression permanent deformation,51.8%rebound resilience and75A shore hardness.
     (2) On the respect of the measuring technique and characterization methods for the stress sensitive characteristics of composite film. For the stress-impedance measurement of the composite film under axial forces, the stress-impedance measurement system was designed and developed from static loading, dynamic loading to the static and dynamic loading system, which can eliminate the instability of testing system, and contact error effectively."LCR testing puls inductive reactance compensation analysis" method was adopted to measure the stress sensitive characteristics of the composite film, Z-σ standard equivalent curve to represent the stress sensitive characteristics, standard deviation of Z-σ standard equivalent curve to evaluate the stability of stress sensitive characteristics and the stress impedance effect SI%to represent the sensitivity of the composite film. The optimized system for stress sensitive property measurement is composed by TH2816LCR digital electric bridge, LYYL-500N high-range computer control compression-testing machine, inductance compensation circuit and so on, and the composite film system was connected by capacitance mode. The measurement conditions are set as20mm×20mm for size,1kHz for frequency, less than0.5mm/min for the pressuredynamic loading/unloading speed and120s for the compressive load time.
     (3) On the respect of the stress sensitive characteristics'research of the composite film. The results show that the stress sensitive characteristics of the composite film are excellent when the test frequency is less than100kHz. The stress sensitivity of the composite film decreases with the increase of the test frequency, and the impedance Z and stress sensitivity of the composite film also decrease with the pressureincreasing. When the pressureis in the range of0.1MPa~0.54MPa, the stress sensitivity presents linear increase and the amplification reaches to maximum value. When the pressureis in the range of0.54MPa~1.5MPa, the stress sensitivity increases slowly and presents nonlinear variation. The thickness of the composite film, the soft magnetic powder's size, content and its dispersion uniformity are the major factors that can affect the stress sensitivity of the composite film. It is also found that the factors above have strong relationship between each other, so the optimization should be overall considered by the complexity, operability, quality stability of the preparation technics for soft magnetic powder and composite film, especially the limiting conditions for the thickness of the composite film in practical application. Through the optimization of internal and external influencing factors for stress sensitive characteristics of the composite film, the optimum conditions are as follows: the test frequency should be less than100kHz, the pressureless than0.5MPa, the particle size of FeCuNbSiB soft magneitic power in the range of (10~30) μm, the heat treatment condition480℃xlh, the content of FeCuNbSiB in the range of (22.5~35)vol%, the thickness of the composite film less than300μm and the environment temperature13℃~50℃. The optimized composite film with27.5vol%powder content and200±2μm thickness possesses excellent stress sensitivity, stability at the conditions of0.5mm/min continuous load/unload speed or pressure maintaining1kHz frequency and0.2MPa~1.0MPa pressurerange. The value of SI%is6%~23%, the standard deviation is0.02~0.05and the stress sensitivity is more excellent when the pressureis less than0.3MPa.
     (4) On the respect of stress sensitivity mechanism research of the composite film. It was found that the composite film showed stress-capacitive and stress-resistance characteristic during alternating test circuit by the analysis of spectral characteristics for impedance Z, inductance L, capacitance C, resistance R and phase angle θ. The equivalent circuit of the whole test system is in the structure of total capacitance C and total resistance R's parallel connection, and series connection with inductance L of the circuit. The key factors to affect the stress-capacitive and stress-resistance characteristic of the composite film are the modulus and powder content. It is special to see that the flexible stress sensitive composites present remarkable double percolation characteristics at the frequency of50kHz.
     (5) On the respect of the flexible contact stress sensor prototype system. The optimized FeCuNbSiB/SiR composite film was packaged by the flexible circuit printing and hot-press packaging technique. It was found that the stress sensitivity of the composite film after packaging was not been affected obviously. Thus, the flexible contact stress sensor prototype system is provided with good stress sensitivity and impedance creep property produced by the flexible circuit printing and hot-press packaging technique above.
     FeCuNbSiB/SiR composite film is in accord with the essential requirements of flexible contact stress sensitive sensor, and possessing the prominent dominant of environmental friendly, insulation, thickness control and so on, which is expected'to become a new potential generation of sensitive material used in contact stress sensor field with excellent application prospect.
引文
[1]唐文彦.传感器(第3版)[M].北京:机械工业出版社,2011.
    [2]吕惠民,田敬民.压力传感器的研究现状与发展趋势[J].半导体技术,1998,23(4):11~13.
    [3]张桂成.国内力敏传感器的研究进展[J].传感技术学报,1992,1:38-42.
    [4]陈栋.基于SAW器件的曲面狭缝间作用力检测传感器的研究与设计[D].电子科技大学,2012.
    [5]Yuji J, Sonoda C. A PVDF tactile sensor for static contact force and contact temperature [C].5th IEEE Conference on Sensors, Daegu, Korea,2006:738~741.
    [6]Kotovsky J. MEMS Contact Stress Sensing [D]. USA: University of California,2005.
    [7]Wensink H, Boer M J D, Wiegerink R J, et al. First micromachined silicon load cell for loads up to 1000 kg [C]. Proceedings of SPIE,1998,4:3514~3521.
    [8]杜晓松.锰铜薄膜超高压力传感器研究[D].电子科技大学,2002.
    [9]http://www.pressureprofile.com
    [10]万珍珍.铁基非晶合金压磁性能研究[D].南昌大学,2008.
    [11]Wiegerink R, Zwijze R, Krijnen G, et al. Quasi monolithic silicon load cell for loads up to 1000kg with insensitivity to non-homogeneous load distributions [J]. Sensors and Actuators A:Physical,2000,80 (2):189~196.
    [12]陈祥林,丁天怀,黄毅平,等.新型接近式柔性电涡流阵列传感器系统[J].机械工程学报,2006,42(8):151~153.
    [13]张万里,蒋洪川,杨国宁,等.热处理温度对FeCoSiB薄膜及FeCoSiB/Cu/FeCoSiB三明治膜应力阻抗效应的影响[J].功能材料,2005,36(4):516-518.
    [14]马广斌.压应力条件下铁基非晶带材压磁性能的研究[D].南昌大学,2007.
    [15]Blanco J M, Zhukov A P, Gonzalez J. Torsional stress impedance and magneto-impedance in (Coo.95Feo.o5)72.5 Si12.5B15 amorphous wire with helical induced anisotropy [J]. Journal of Physics D:Applied Physics,1999,32(24):3140~3145.
    [16]Mohri K, Kohzawa T, Kawashima K, et al. Magneto-inductive effect (MI effect) in amorphous wires [J]. IEEE Transactions on Magnetics,1992,28(5):3150~3152.
    [17]Shen L P, Uchiyana T, Mohri K, et al. Sensitive stress-impedance micro sensor using amorphous magnetositive wire [J]. IEEE Transactions on Magnetics,1997,33(5): 3355~3357.
    [18]宋雪丰,鲍丙豪.非晶态合金材料应力阻抗效应研究进展[J].磁性材料及器件,2006,37(3):7-15.
    [19]鲍丙豪,宋雪丰.钴基非晶合金薄带应力阻抗效应的研究[J].稀有金属材料与工程,2007,36(2):208-210.
    [20]黄得星,杜西亮,杨秀萍,等.以非晶软磁薄膜为磁芯的车轮[J].传感器传感技术学报,1996,9(2):40-43.
    [21]蒋达国,姚爱民,朱正吼FeCuNbSiB非晶纳米晶带材软磁性能和压磁性能研究[J].金属功能材料,2007,14(1):12~15.
    [22]Ikeda M, Uemura K, Sasaki I, et al. Factors Affecting the Output Voltage of a Magnetostrictive Tension Sensor Constructed from Ni-Fe Sputtered Films and a Stainless-Steel Shaft [J]. Transactions of the Institute of Electrical Engineers of Japan. A,1999, 119(1):106~112.
    [23]Choudhary P, Meydan T. A novel accelerometer design using the inverse magnetostrictive effect [J]. Sensors and Actuators A:Physical,1997,59(1-3):51~55.
    [24]Chiriac H, Ovari T A, Marinescu C S. Comparative study of the giant magneto-impedance effect in CoFeSiB glass-covered and cold-drawn amorphous wires [J]. IEEE Transactions on Magnetics,1997,33(5):3352~3354.
    [25]李文忠,郑建龙,马云,等.退火工艺对Fe及薄带纵向驱动应力阻抗效应的影响[J].浙江师范大学学报,2011,34(2):153~157.
    [26]高振,李德仁,张俊峰,等.脉冲电流退火对Fe73.5Cu1Nb3Sin.5B9合金薄带巨应力阻抗效应的影响[J].金属功能材料,2002,9(2):26-28.
    [27]高振,李德仁,张俊峰,等.电流退火对铁基非晶合金Fe78Si9813薄带巨应力阻抗效应的影响[J].粉末冶金工业,2002,12(4):28-31.
    [28]Li D R, Lu Z C, Zhou S X. Giant stress-impedance effect in amorphous and thermally annealed Fe73.5Cu1Nb3Si13.5B9 ribbons [J]. Sensors and Actuators A: Physical,2003, 109(1-2):68~71.
    [29]朱正吼,宋晖.退火工艺对FeSiB非晶带材脆性的影响[J].热加工工艺,2004,12:36~40.
    [30]朱正吼,宋晖,严明明,等. FeCuNbSiB非晶软磁带材的制备及其缺陷分析[J].机械工程材料,2004,28(10):48~50.
    [31]马广斌,朱正吼,夏小鸽.退火条件对FeCuNbSiB非晶带材应力阻抗效应的影响[J].材料热处理,2006,35(20):1-3.
    [32]夏小鸽,朱正吼,马广斌.退火工艺对FeCuNbSiB非晶带材压磁效应的影响[J].功能材料,2006,37(12):1881~1883.
    [33]马广斌,朱正吼,夏小鸽.非晶Fe94Si6薄带压磁效应的研究[J].功能材料,2007,38(1):14~19.
    [34]蒋达国,朱正吼,马广斌,等.FeSiB非晶薄带的压磁效应研究[J].功能材料,2007,38(6):911~913.
    [35]Ma G B, Zhu Z H, Xia X G, et al. Pressure stress-impedance effect in FeCuNbSiB amorphours ribbons [J]. Science in China Series E: Technological Sciences.2009,52(8): 2302~2304.
    [36]马广斌,朱正吼,黄渝鸿,等.非晶FeCoSiB薄带的压磁性能研究[J].功能材料,2007,38(7):1071~1073.
    [37]蒋达国,黄强,朱正吼.铁基非晶薄膜的压磁效应[J].机械工程材料,2007,31(9):72~74.
    [38]万珍珍,朱正吼,黄渝鸿.硅橡胶表面状态的非晶带材压磁性能的研究[J].功能材料,2008,39(7):1099-1101.
    [39]马广斌,朱正吼,黄渝鸿.非晶FeCuNbSiB带材压磁性能的特点[J].稀有金属材料与工程,2008,37(2):286~288.
    [40]蒋达国.铁基非晶带材的模量与应力阻抗效应研究[D].南昌大学,2007.
    [41]万珍珍,朱正吼,黄渝鸿.表面处理和温度对铁基非晶带材压磁性能的影响[J].功能材料,2008,39(6):942~945.
    [42]蒋达国,李厚德,朱正吼.退火条件对铁基非晶薄带应力阻抗效应的影响[J].兵工材料科学与工程,2008,31(1):44~47.
    [43]蒋达国,余晓光,朱正吼.退火工艺对FeSiB非晶薄带压应力阻抗效应的影响[J].稀有金属材料与工程,2008,37(3):440-443.
    [44]Zhu Z H, Huang Y H, Jiang D G, et al. Point-piezomagnetic properties of the FeCuNbSiB Alloy Strips[J]. Journal of Wuhan University of Technology-Mater.2009,24(1):114~118.
    [45]杨操兵,朱正吼,刘志宾,等.微量稀土La掺杂对FeCuNbSiB非晶带材压磁性能的影响[J].功能材料,2010,41(7):1247~1249.
    [46]徐雪娇,朱正吼,杨操兵,等.稀土La改性铁基非晶带材组织结构与软磁性能研究[J].功能材料,2011,42(2):294-297.
    [47]Shin K H, Inoue M, Arai K I. Strain sensitivity of highly magnetostrictive amorphous films for use in microstrain sensors [J]. Journal of Applied Physics,1999,85(8):5465~5467.
    [48]Imamura K, Shin K H, Ishiyama K, et al. Anisotropy control of magnetostrictive film patterns [J]. IEEE Transactions on Magnetics,2001,37(4):2025~2027.
    [49]茅听辉,禹金强,周勇,等FeSiB薄膜的巨磁阻抗和应力阻抗效应研究[J].真空科学与技术,2002,22(6):429~433.
    [50]苏鼎,张万里,蒋洪川,等.柔性FeCoSiB非晶磁弹性薄膜的应力阻抗效应[J].功能材料与器件学报,2008,14(5):907~910.
    [51]Yamadera H, Nishibe Y. Strain-impedance properties of a CoSiB/Cu/CoSiB layered film [J]. Journal of Applied Physics,2000,87(9):5356~5358.
    [52]Suwa Y, Agatsuma S, Hashi S, et al. Study of strain sensor using FeSiB magnetostrictive thin film [J]. IEEE Transactions on Magnetics,2010,46(2):666~669.
    [53]张万里,蒋洪川,杨国宁,等.热处理温度对FeCoSiB非晶磁弹性薄膜的应力阻抗效应研究[J].功能材料与器件,2008,14(5):907~910.
    [54]苏鼎.柔性FeCoSiB非晶磁弹性薄膜应力阻抗效应研究[D].电子科技大学,2008.
    [55]刘均东.铁磁/金属/铁磁三明治多层膜的应力阻抗效应研究[D].电子科技大学,2010.
    [56]谌贵辉,杨国宁,张万里,等.退火条件对FeSiCoB薄膜应力阻抗效应的影响[J].电子元件与材料,2005,24(5):5-7.
    [57]杨国宁.FeCoSiB非晶磁弹性薄膜材料及应用研究[J].电子科技大学,2005.
    [58]彭斌.非晶磁弹性薄膜中应力对磁性能的影响研究[D].电子科技大学,2008.
    [59]Zhou Y, Mao X H, Chen J A, et al. Stress-impedance effect in layered FeSiB/Cu/FeSiB films with a meander line structure[J]. Journal of Magnetism and Magnetic Materials,2005, 292:255-259.
    [60]Armes S P, Gottesfeld S, Beery J G, et al. Conducting polymer-colloidal silica composites [J]. Polymer,1991,32(13):2325~2330.
    [61]Gill M, Mykytiuk J, Armes S P, et al. Novel colloidal polyaniline-silica composites [J]. Journal of the Chemical Society, Chemical Communications,1992, (2):108~109.
    [62]Stejskal J, Armes S P, Riede A, et al. Polyaniline Dispersions.6. Stabilization by Colloidal Silica Particles [J]. Macromolecules,1996,29(21):6814~6819.
    [63]Terrill N J, Crowley T, Gill M, et al. Small-angle x-ray scattering studies on colloidal dispersions of polyaniline-silica nanocomposites [J]. Langmuir,1993,9(8):2093~2096.
    [64]Maeda S, Armes S P. Preparation of Novel Polypyrrole-Silica Colloidal Nanocomposites [J]. Journal of Colloid and Interface Science,1993,159(1):257~259.
    [65]Lascelles S F, McCarthy G P, Butterworth M D, et al. Effect of synthesis parameters on the particle size, composition and colloid stability of polypyrrole-silica nanocomposite particles [J]. Colloid and Polymer Science,1998,276(10):893~902.
    [66]Drelinkiewicz A, Hasik M, Choczynski M. Preparation and Properties of Polyaniline Containing Palladium [J]. Materials Research Bulletin,1998,33(5):739~762.
    [67]Bardet M, Guinaudeu M, Bourgeoisat C, et al. ESR studies of conducting polypyrrole-rubber blends [J]. Synthetic Metals,1991,41(1-2):359~362.
    [68]Zoppi R A, Felisberti M I, Paoli M A D. Chemical preparation of conductive elastomeric blends: Polypyrrole/EPDM. I. Oxidant particle-size effect [J]. Journal of Polymer Science Part A: Polymer Chemistry,1994,32 (6):1001~1008.
    [69]Zoppi R A, Paoli M A D. Chemical preparation of conductive elastomeric blends: polypyrrole/EPDM—II. Utilization of matrices containing crosslinking agents, reinforcement fillers and stabilizers [J]. Polymer,1996,37 (10):1999~2009.
    [70]Zoppi R A, Paoli M A D. Chemical preparation of conductive elastomeric blends: polypyrrole/EPDM III. Electrochemical characterization [J]. Journal of Electroanalytical Chemistry,1997,437(1-2):175~182.
    [71]Vilcakova J, Paligova M, Omastova M, et al. "Switching effect" in pressure deformation of silicone rubber/polypyrrole composites [J]. Synthetic Metals 2004,146 (2):121~126.
    [72]Faez R, Paoli M A D. A conductive rubber based on EPDM and polyaniline:I. Doping method effect [J]. European Polymer Journal,2001,37 (6):1139~1143.
    [73]Faez R, Gazotti W A, Paoli M A D. An elastomeric conductor based on polyaniline prepared by mechanical mixing [J]. Polymer,1999,40 (20):5497~5503.
    [74]Gangopadhyay R, De A. Conducting polymer composites: novel materials for gas sensing [J]. Sensors and Actuators B:Chemical,2001,77 (1-2):326~329.
    [75]Niwa O, Hikita M, Tamamura T. Electrical properties of poly (vinyl chloride)-polypyrrole conductive polymer alloy films [J]. Macromolecular Rapid Communications 1985,6 (6): 375~379.
    [76]Wang H L, Toppare L, Fernandez J E. Conducting polymer blends: polythiophene and polypyrrole blends with polystyrene and poly (bisphenol A carbonate) [J]. Macromolecules 1990,23 (4):1053~1059.
    [77]Street G B, Lindsey S E, Nazzal A I, et al. The Structure and Mechanical Properties of Polypyrrole [J]. Molecular Crystals and Liquid Crystals,1985,118 (1):137~148.
    [78]Park Y H, Han M H. Preparation of conducting polyacrylonitrile/polypyrrole composite films by electrochemical synthesis and their electrical properties [J]. Journal of Applied Polymer Science,1992,45(11):1973~1982.
    [79]Selampinar F, Akbulut U, Yalchin T, et al. A conducting composite of polypyrrole I. Synthesis and characterization [J]. Synthetic Metals,1994,62 (3):201~206.
    [80]Voet A. Temperature Effect of Electrical Resistivity of Carbon Black Filled Polymers [J]. Rubber Chemistry and Technology,1981,54(1):42~50.
    [81]Roland C M, Peng K L. Electrical Conductivity in Rubber Double Networks [J]. Rubber Chemistry and Technology,1991,64(5):790~800.
    [82]Sau K P, Chaki T K, Khastgir D. Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber [J]. Journal of Materials Science,1997, 32(21):5717~5724.
    [83]Roy D, Jana P B, De S K, et al. Studies on the electrical conductivity and galvanomagnetic characteristics of short carbon fibre filled thermoplastic elastomers [J]. Journal of Materials Science,1996,31(20):5313~5319.
    [84]Tricas N, Vidal-Escales E, Borros S, et al. Influence of carbon black amorphous phase content on rubber filled compounds [J]. Composites Science and Technology.2003,63(8): 1155~1159.
    [85]Wang L H, Ding T H, Wang P. Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite[J]. Carbon,2009,47(14):3151~3157.
    [86]Hussain M, Choa Y H, Niihara K. Fabrication process and electrical behavior of novel pressure sensitive composites [J]. Composites Part A:Applied Science and Manufacturing, 2001,32(12):1689~1696.
    [87]Chen X Q, Yang S, Hasegawa M, et al. Tactile microsensor elements prepared from arrayed superelastic [J]. Applied Physics Letters,2005,87(5):054101.
    [88]Chang F Y, Wang R H, Yang H, et al. Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films[J]. Thin Solid Films,2010,518(24): 7343~7347.
    [89]http://www.tekscan.com/flexiforce
    [90]黄英.基于压力敏感导电橡胶的柔性多维阵列触觉传感器研究[D].合肥工业大学,2009.
    [91]向蓓.基于新型三维柔性触觉传感器的力敏导电硅橡胶导电机理研究[D].合肥工业大学,2009.
    [92]Kost J, Narkis M, Foux A. Effects of axial stretching on the resistivity of carbon black filled silicone rubber [J]. Polymer Engineering and Science,1983,23(10):567~571.
    [93]Kost J, Narkis M, Foux A. Resistivity behavior of carbon-black-filled silicone rubber in cyclic loading experiments [J]. Journal of Applied Polymer Science,1984,29(12): 3937~3946.
    [94]Kost J, Foux A, Narkis M. Quantitative model relating electrical resistance, strain, and time for carbon black loaded silicone rubber [J]. Polymer Engineering and Science,1994, 34(21):1628~1634.
    [95]彭景翠,陈小华,李宏建.中阻值导电塑料(浆料)的研制及性能研究[J].功能材料,1993,24(4):323~326.
    [96]陈克正,王德平,张志琨.纳米导电纤维和导电炭黑并用填充硅橡胶复合材料的电性能[J].材料研究学报,1999,13(3):323~327.
    [97]万影,陈刚,闻荻江.橡胶/炭黑复合材料的压敏性和时间响应性[J].合成橡胶工业,2000,23(1):36-40.
    [98]潘伟,翟普,刘立志.SiO2纳米粉对炭黑/硅橡胶复合材料的压阻、阻温特性的影响[J].材料研究学报,1997,11(4):397~401.
    [99]Sau K P, Chaki T K, Khastgir D. The change in conductivity of a rubber-carbon black composite subjected to different modes of pre-strain [J]. Composites Part A:Applied Science and Manufacturing,1998,29(4):363~370.
    [100]Hussain M, Choa Y H, Niihara K. Conductive rubber materials for pressure sensors [J]. Journal of Materials Science Letters,2001,20(6):525~527.
    [101]Hussain M, Choa Y H, Niihara K. Fabrication process and electrical behavior of novel pressure-sensitive composites [J]. Composites part A:Applied Science and Manufacturing 2001,32(12):1689~1696.
    [102]Hussain M, Choa Y H, Niihara K. Effects of nano ceramics on electrical resistivity of carbon filled rubber materials [J]. Scripta materialia.2001,44 (8-9):1203~1206.
    [103]Job A E, Oliveira F A, Alves N, et al. Conductive composites of natural rubber and carbon black for pressure sensors [J]. Synthetic Metals,2003,135-136:99~100.
    [104]金观昌,张军,张建中,等.一种新型人足底压力分布测量系统及其应用[J].生物医学工程学杂志,2005,22(1):133~136.
    [105]http://www.inaba-rubber.co.jp, INASTOMER Co.(Japan)
    [106]http://www.althensensors.com ALTHEN GmbH Mess- and Sensortechnik
    [107]谢泉,刘让苏.白炭黑和炭黑含量对导电硅橡胶拉敏特性影响的研究[J].高分子材料科学与工程,1998,14(1):94~97.
    [108]朱正吼,黄渝鸿.一种力敏硅橡胶薄膜的制备方法[P].中国,发明专利,CN1966550,2007.
    [109]黄渝鸿,吴菊英,郭静,等.柔性压磁复合材料及其制备方法[P].中国,发明专利,CN101100549,2008.
    [110]万珍珍,朱正吼,李塘华.FeCuNbSiB/丁基橡胶复合薄膜压磁性能的研究[J].功能材料,2008,39(9):1494-1496
    [111]马广斌,朱正吼,李塘华,等.FeCuNbSiB/硅橡胶复合薄膜制备及压磁性能研究[J].功能材料,2007,38(5):737~739.
    [112]李塘华,朱正吼,马广斌,等.一种新型压磁薄膜[J].功能材料,2007,38(11):1787-1789.
    [113]黄渝鸿,吴菊英,朱正吼.基于Fe73.5Cu1Nb3Si13.5B9非晶纳米晶粉的压磁复合材料研究[J].稀有金属,2008,32(2):165~170.
    [114]黄渝鸿,郭静,吴菊英,等.Fe73.5CulNb3Si13.5B9 非晶粉/硅橡胶压磁复合材料的制备与性能研究[J].橡胶工业,2008,55(6):329~333.
    [115]周佳,朱正吼,李晓敏,等.多角形非晶粉/硅橡胶复合薄膜压磁性能研究[J].功能材料,2012,43(18):2519~2522.
    [116]李晓敏,朱正吼,周佳,等.环境温湿度对压磁柔性薄膜力敏性能的影响[J].功能材料,2013,44(5):632-635.
    [117]F.E.卢博斯基编.非晶态金属合金[M].柯成,唐与谌,罗阳译.北京:冶金工业出版社出版,1989.
    [118]王一禾,杨膺善编.非晶态合金[M].北京:冶金工业出版社,1989.
    [119]陈国钧.新一代软磁合金一超微晶合金的结构和磁性能[J].金属材料研究,1991,17(4):17-27.
    [120]陈光著.金属玻璃及其复合材料[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [121]Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. Journal of Applied Physics,1988,64(10):6044~6046.
    [122]张世远.新型纳米晶软磁合金及其应用(一)[J].磁性材料及器件,2004,35(3):1-5.
    [123]李塘华.橡胶基软磁复合材料薄膜的制备及其压磁性能研究[D].南昌大学,2007.
    [124]刘生丽,冯辉霞,张建强,等.逾渗理论的研究及应用进展[J].应用化工,2010,39(7):1074-1078.
    [125]李大军.聚合物/石墨导电复合材料的制备及其性能研究[D].扬州大学,2008.
    [126]左敏.聚乙烯基石墨复合材料的电性能及其外场响应行为的研究[D].四川大学,2004.
    [127]曾戎,曾汉民.导电高分子复合材料导电通路的形成[J].材料工程,1997,10:9-13.
    [128]Bueche F. Electrical resistivity of conducting particles in an insulating matrix [J]. Journal of Applied Physics,1972,43(11):4837~4838.
    [129]张园园.导电炭黑填充硅橡胶复合材料的制备与性能研究[D].山东大学,2010.
    [130]Sumita M, Sakata K, Asai S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black [J]. Polymer Bulletin,1991,25(2):265~271.
    [131]Wessling B. Electrical conductivity in heterogeneous polymer systems. V (1):Further experimental evidence for a phase transition at the critical volume concentration [J]. Polymer Engineering and Science,1991,31(16):1200~1206.
    [132]Rajagcpal C, Satyam M. Studies on electrical conductivity of insulator-conductor composites [J]. Journal of Applied Physics,1978,49(11):5536~5542.
    [133]金日光,华幼卿(编).高分子物理[M].北京:化学工业出版社,1991
    [134]Medalia A I. Electrical Conduction in Carbon Black Composites [J]. Rubber Chemistry and Technology,1986,59(3):432~454.
    [135]McLachlan D S. An equation for the conductivity of binary mixtures with anisotropic grain structures [J]. Journal of Physics C:Solid State Physics,1987,20(7):865~877.
    [136]McLachlan D S, Blaszkiewicz M, Newnham R E. Electrical resistivity of composites [J]. Journal of the American Ceramic Society,1990,73(8):2187~2203.
    [137]Beek L K H, Pul B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates [J]. Journal of Applied Polymer Science,1962,6(24):651~655.
    [138]Sommerfeld A, Bethe H. Handbook der Physik von Geiger and Scheel [M].1933.
    [139]Holm R. The Electric Tunnel Effect across Thin Insulator Films in Contacts [J]. Journal of Applied Physics,1951,22(5):569~574.
    [140]Simmons J G, Unterkofler G J. Potential Barrier Shape Determination in Tunnel Junctions [J]. Journal of Applied Physics,1963,34(6):1828~1830.
    [141]Sheng P, Sichel E K, Gittleman J I. Fluctuation-induced tunneling conduction in carbon-polyvinlchloride composites [J]. Physical Review Letters,1978,40(18):1197~1200.
    [142]Sheng P. Flutuation-induced tunneling conduction in disordered materials [J]. Physical Review B,1980,21 (6):2180~2195.
    [143]Polley M H, Boonstra B B S T. Carbon Blacks for Highly Conductive Rubber [J]. Rubber Chemistry and Technology,1957,30(1):170~179.
    [144]Beek K, Watanabe K, Jojima E, et al. Electrical conductivity of carbon-polymer composites as a function of carbon content [J]. Journal of Materials Science,1982,17(6):1610~1616.
    [145]白钰.基于巨应力阻抗效应的加速度计若干技术研究[D].南京理工大学,2009.
    [146]Li D R, Lu Z C, Zhou S X. Magnetic anisotropy and stress-impedance effect in Joule heated Fe73.5Cu1Nb3Si13.5B9 ribbons [J]. Journal of Applied Physics,2004,95(1):204~207.
    [147]Mohri K, Uchiyama T, Shen L P, et al. Sensitive Micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance(SI) effects for intelligent measurements and controls[J]. Sensors and Actuators A:Physical,2001,91(1-2):85~90.
    [148]鲍丙豪,任乃飞,王国余.各向异性场对非晶态合金应力阻抗效应的影响[J].物理学报,2008,57(4):2519~2522.
    [149]郑海娟.铁基非晶纳米晶带材热处理工艺研究[D].南昌大学,2012.
    [150]徐雪娇.铁基非晶纳米晶带材的制备与表面处理[D].南昌大学,2012.
    [151]张宁娜,王立军.FeCuNbSiB系列纳米晶软磁合金应力敏感性的研究概述[J].金属功能材料,2009,16(6):45-49.
    [152]黄渝鸿,范敬辉,付强,等.嵌段硅橡胶及其感应导电纳米复合材料研究[J].化工新型材料,2008,36(5):18~21.
    [153]黄渝鸿,范敬辉,付强,等.三元嵌段共聚硅橡胶的合成与表征[J].绝缘材料,2008,41(2):15~25.
    [154]张凯,吴菊英,黄渝鸿,梅军.炭黑用量对硅橡胶压阻材料性能的影响[J].电子元件与材料,2012,
    [155]吴菊英,黄渝鸿,郭静,等.炭黑用量对硅橡胶基力敏复合材料性能的影响[J].橡胶工业,2012,59(5):276-281.
    [156]王贝贝.遇油遇水膨胀橡胶的制备及性能研究[D].青岛科技大学,2011.
    [157]齐亮.EPDM橡胶多相体系形态结构及耐热性能的研究[D].青岛科技大学,2011.
    [158]孙文,丁乃秀,郝福兰.炭黑对丁苯橡胶硫化反应的影响研究[J].世界橡胶工业,2012,39(3):6-10.
    [159]汪源浚.LCR测量仪的工作原理及使用技巧[J].教学与科技,2008,(1):14-18.
    [160]向蓓,黄英,付秀兰,等.新型力敏导电复合材料的电阻温度特性研究[J].传感器与微系统,2008,27(7):24~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700