用户名: 密码: 验证码:
Mo_f/TiAl复合材料的制备及变形断裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温结构材料是航空航天推进系统实现革命性变革与发展的关键因素。TiAl基合金因具有密度低、强度高、抗氧化性能好及抗蠕变性能优异等优点成为非常有竞争力的高温结构材料,目前已应用于发动机叶片、涡轮与排气阀等构件。但航空航天工业的迅猛发展,对发动机材料提出了更高的要求。TiAl基合金要想获得更广泛的应用并满足更为苛刻的服役条件,需要进一步改善其室温断裂韧性,并提高高温强度。本文通过采用连续Mo纤维增强的方式来实现TiAl基合金强韧化的目的。采用了粉末浆料铸造与真空热压烧结相结合的工艺方法成功地制备了Mo_f/TiAl复合材料,研究了制备工艺参数对复合材料显微组织与力学性能影响,观察分析了复合材料的变形与断裂行为,揭示了复合材料的强韧化机理。
     本文采用改进的粉末浆料铸造法简便有效地实现了纤维与基体粉末的预复合。选用PMMA、丙酮与Ti、Al混合粉末制备粉末浆料,并在三者配比为10g:70ml:60g时,成功地获得了致密无空洞、纤维排布均匀、Ti、Al粉末分散良好的品质优良的预制体。预制体经除气与热压烧结两步最终制得复合材料。
     制备的复合材料中纤维排布均匀,保持了制备前的高长径比的纤维组织形貌;基体以TiAl相为主,并含有少量的Ti3Al相。热压烧结温度升高与时间延长,有利于基体致密化程度及组织均匀性的提高,但加剧界面反应,使界面处生成两个连续的反应层,由Mo纤维到基体依次为呈现放射型柱状晶形貌的δ-(Mo,Ti)3Al相和粗大等轴晶形貌的β'-(Mo,Ti)A1相。纳米压痕测试表明,δ相的硬度及弹性模量高于β'。纤维推出试验测得的界面剪切强度大于367MPa,Mo/δ界面发生脱粘。界面相的生长动力学研究表明,δ相与β'相的生长均遵循抛物线规律,二者的生长速度随温度的升高而加快。
     复合材料的性能受制备工艺参数影响,最优工艺参数为380℃保温除气1h,并经1100℃热压烧结1h。制备的单向纤维增强的复合材料的室温纵向与横向弯曲强度分别为735.4MPa与249.3MPa,纵向弯曲强度受加载方向影响很小。正交纤维增强的复合材料的室温弯曲强度下降至374.4MPa。700℃-1000℃范围内,单向纤维与正交纤维增强的复合材料的弯曲强度均随温度的升高先增加后降低,二者均在800℃时达到最高值,分别为762.9MPa与564.4MPa。
     复合材料的压缩屈服强度随测试温度的升高而减低;纵向压缩屈服强度比法向略高,纤维排布方式对复合材料的法向压缩强度影响较小。单边缺口梁法测得的单向纤维增强的复合材料的断裂韧性为23.55MPa·m1/2,较基体TiAl提高50%以上。
     由于脆性基体与韧性连续纤维的共同作用,Mo_f/TiAl复合材料的变形与断裂过程不同于均质材料,变形与断裂过程相互交织,其间伴随着基体与纤维承载作用的变化。室温纵向弯曲与拉伸时,复合材料的变形断裂过程分为三个阶段:第一阶段,复合材料的整体变形来自于纤维与基体间协同发生的弹性变形,纤维与基体共同承载;第二阶段,基体与纤维变形失配,脆性基体通过裂纹的不断萌生扩展匹配复合材料的变形,其有效承载下降,纤维则继续发生弹性变形,承载不断增加;第三阶段,基体因裂纹数量饱和而完全失效,纤维独自承载,复合材料的变形完全由纤维的弹、塑性变形提供,并最终在纤维颈缩断裂后复合材料完全破坏。复合材料中裂纹萌生于基体,发生沿TiAl相晶界及穿过Ti3Al相晶粒的扩展后,直接穿过δ与β'两界面相而受阻于纤维,两界面相与基体一同变形开裂。Mo/δ、δ/β'与β'/TiAl三界面在纤维塑性变形前均完好无损,之后因脆性δ相与韧性纤维难以协调变形,Mo/δ界面脱粘。Mo纤维对裂纹不敏感,基体裂纹难以扩展穿过纤维,纤维在达到自身的抗拉强度后萌生裂纹并断裂。
     高温下复合材料的弯曲变形与断裂方式与室温时不同,塑韧性大为提高的基体能够通过较大的变形而非裂纹的萌生扩展来匹配复合材料的整体变形,在纤维发生颈缩断裂后,复合材料因基体承载能力的不足而快速断裂。
     纵向压缩载荷作用下,复合材料中纤维在与纵向成45°方向的最大切应力作用下发生较大弯曲而不断裂,其间基体则沿纤维轴线破碎,并造成界面Mo/δ开裂。法向压缩载荷作用下,复合材料的剪切破坏面平行于纤维轴向,并呈现台阶状。高温时,复合材料塑韧性增加,基体与纤维变形协调一致,复合材料发生墩粗变形而不破裂。
     通过对复合材料力学性能及变形与断裂行为的综合分析,揭示了复合材料的强韧化机理:较高的基体致密度、良好的界面结合及较少的纤维损耗三者之间的平衡是复合材料强度得到最大提高的保证;纤维的桥接、塑性变形、脱粘与拔出以及裂纹的偏转枝生是复合材料的主要韧化机制,其中,纤维的塑性变形使强韧性优异的Mo纤维的增韧效果远胜于脆性陶瓷纤维。
High-temperature structural materials play a key role on the realization of therevolutionary development of the aerospace propulsion system. Among them,TiAl-based alloys have become very competitive ones, because they have theadvantages of low density, high strength, good oxidation resistance and excellentcreep resistance. Currently, they have been applied to engine blades, turbine,exhaust valves and other components. However, the rapid development of theaerospace industry proposes higher demands on engine materials. In order to obtaina broader development and meet harsher service conditions, TiAl-based alloys needto further improve the fracture toughness at room temperature and increase the hightemperature strength. In the present work, toughening and strengthening of theTiAl-based alloy were realized by reinforcing it with continuous Mo fibers. TheMo_f/TiAl composite were successfully fabricated by powder slurry casting andvacuum hot pressing. Effects of the fabrication process parameters on themicrostructure and mechanical properties of the composites were studied; thedeformation and fracture behavior of the composites were observed and analyzed,and the toughening and strengthening mechanism of the composites were obtained.
     In this paper, the pre-coupling of the matrix powders and fibers wereconveniently and effectively realized by improved powders slurry casting process.Qualified preforms were prepared by powder slurry with a composition of10gPMMA,70ml acetone and60g Ti and Al powders. The prepared preforms are denseand void-free with uniform fiber distribution and homogeneous dispersion of Ti andAl powders. The composites were eventually obtained by degassing and vacuum hotpressing of the preforms.
     In the prepared Mo_f/TiAl composites, the fibers distribute uniformly and haveno obvious change in microstructure after being hot pressed, which maintain themorphology of columnar crystals with high aspect ratio; the matrices mainly containTiAl phase and a small amount of Ti3Al phase. Increasing the hot pressingtemperature and prolonging the hot pressing time can benefit the densification andmicrostructural uniformity of the matrices but exacerbate the interface reaction. There are two continuous reaction layers at the interface of matrix and fibers, whichare δ-(Mo,Ti)3Al phase with columnar grains distributing in a radial way andβ'-(Mo,Ti)A1phase with coarse equiaxed grains, respectively, from the Mo fiber tothe matrix. Nano-indentation test shew that δ phase has higher nano-hardness thanthat of β' phase. The shear strength of the composite interface is higher than367MPa and debonding position is located at the Mo/δ interface. Study on thegrowth dynamics of interface phases indicates that both the interface phases growparabolicly and their grow rates increase with the temperature increasing.
     The mechanical properties of the composites are influenced by the fabricationprocess parameters, composite degassed at380℃for1hour and hot pressed at1100℃for1hour has the optimal properties. The composite reinforced byunidirectional fibers has a longitudinal and transverse bending strength of735.4MPa and249.3MPa respectively, and the former is slightly affected by theloading direction. Bending strength of the composite reinforced by orthogonalfibers decreases to374.4MPa. In the temperature range of700-1000℃,bendingstrength of the composites reinforced by unidirectional and orthogonal fibers firstlyincrease and then decrease, and they all reach the maximum value762.9MPa and564.4MPa at800℃.
     Compressive yielding strength of the composites decrease with the testingtemperature increasing, and it is slightly higher in the longitudinal direction than inthe transverse direction. The way of fiber distribution has little affect on it.Toughness of the composites reinforced by unidirectional fibers is as high as23.55MPa·m1/2, which is about50%higher than that of the matrix TiAl alloy.
     Under the co-effect of the brittle matrix and ductile fibers, the deformation andfracture of the Mof/TiAl composite show different way from that of thehomogeneous materials. The deformation and fracture two courses intertwine withthe change of the load carried by the matrix and fibers. Under room temperaturebending and tension in the longitudinal direction, the deformation and fracturecourses of the composite can be divided into three stages. In the first stage, thedeformation of the whole composite comes from the jointly elastic deformation ofthe matrix and fibers and they carry the load together; in the second stage,deformation of the matrix and fibers mismatch, many cracks initiate and propagatein the matrix in order to match the deformation of the composite, and so the load carried by the matrix decreases, while the fibers continue to be deformed elasticallyand the load carried by them increase; in the third stage, the matrix fails due to thesaturation of the cracks in it, so the fibers carry the load alone and deformation ofthe composite is provided by the elastic and plastic deformation of the fibers, andthe composite fractures after the fracture of the necked fibers. Crack initiates in thematrix and can propagate along the TiAl grain boundaries and across the Ti3Algrains. When meeting the δ and β' two interface phases, cracks can directly goacross them but be prevented by the fibers, the two interface phases deform andcrack together with the matrix. Mo/δ、δ/β' and β'/TiAl interface keep intact beforethe plastic deformation of the fibers, but after that, Mo/δ interface debonds becausethe brittle δ phase and ductile cannot deform jointly. Mo fibers are insensitive tocracks, so the crack in the matrix cannot propagate across the fibers. The fibersfracture when the stress reaches the tensile strength.
     At high temperatures, bending deformation and fracture of the composite showdifferent way with that at room temperature. Because of the improvement of theductility and plasticity, the matrix can match the whole deformation of thecomposite not by cracks but by deformation. After the necking and fracture of thefibers, the composite fractures quickly due to the insufficient load carrying abilityof the matrix.
     Under longitudinal compressive load, fibers curve greatly under the greatestshear stress with a45°angle to the longitudinal direction without fracture, and thematrix among them breaks with the interface Mo/δ debonding. Under normalcompressive load, the broken surface of the composite due to shear stress is parallelthe fiber axial and has many steps. Under high temperatures, the toughness andplasticity of the composite increase, the composite just deform plastically withoutrupture.
     The strengthening and toughening mechanisms have been revealed bycomprehensive analysis of the mechanical properties, deformation and fracturebehavior of the composite. The balance between the high matrix density, goodinterfacial bonding and less fiber damage is a guarantee of the maximum increasingof the composite strength. The toughening mechanisms of the composite include thebridging, plastic deformation, pull-out and debonding of the fibers and thedeflection of the cracks. Among them, the plastic deformation of the fiber makes the Mo fiber have higher toughening effect than that of the brittle ceramic fibers.
引文
[1]傅恒志.未来航空发动机材料面临的挑战与发展趋向[J].航空材料学报,1998,18(4):52-61.
    [2]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造技术,2003,12:19-25.
    [3]章德铭,陈贵清,韩杰才,等.质轻高温结构材料-γ-TiAl基合金的研究动向[J].材料导报,2005,19(8):47-50.
    [4] Clemens H, Kestler H. Processing and Applications of Intermetallicγ-TiAl-Based Alloys[J]. Advanced Engineering Materials,2000,2(9):551-570.
    [5] Tetsui T. Development of a TiAl Turbocharger for Passenger Vehicles[J].Materials Science and Engineering A,2002,329-331:582-588.
    [6]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):1-5.
    [7] Ishihara S, Koishi T, Orikawa T, et al. Synthesis of Intermetallic NiAlCompound Nanoparticles by Pulsed Wire Discharge of Twisted Ni and AlWires[J]. Intermetallics,2012,23:134-142.
    [8] Kubaski E T, Cintho O M, Antoniassi J L, et al. Obtaining NiAl IntermetallicCompound Using Different Milling Devices[J]. Advanced Powder Technology,2012,23(5):667-672.
    [9] Ruiz-Luna H, Alvarado-Orozco J M, Caceres-Diaz L A, et al. StructuralEvolution of B2-NiAl Synthesized by High-Energy Ball Milling[J]. Journal ofMaterials Science,2013,48(1):265-272.
    [10] Duarte L I, Leinenbach C, Klotz U E, et al. Experimental Study of theFeAl-NiAl-TiAl Section[J]. Intermetallics,2012,23:80-90.
    [11] He Y Z, Liu J L, Xu H, et al. Manufacture of Porous FeAl IntermetallicsProduced by Mechanical Alloying and Sintering[J]. Automation Equipmentand Systems,2012,468-471:2028-2032.
    [12] Song B, Dong S J, Coddet P, et al. Fabrication and MicrostructureCharacterization of Selective Laser-Melted Feal Intermetallic Parts[J].Surface&Coatings Technology,2012,206(22):4704-4709.
    [13] Mostaan H, Karimzadeh F, Abbasi M H. Synthesis and Formation Mechanismof Nanostructured NbAl3Intermetallic During Mechanical Alloying and aKinetic Study on Its Formation[J]. Thermochimica Acta,2012,529:36-44.
    [14] Rios C T, Coelho A A, Batista W W, et al. Ise and Fracture ToughnessEvaluation by Vickers Hardness Testing of an Al3Nb-Nb2Al-AlNbNi in SituComposite[J]. Journal of Alloys and Compounds,2009,472(1-2):65-70.
    [15] Yamaguchi M, Inui H, Ito K. High Temperature Structural Intermetallics[J].Acta Materialia,2000,48(1):307-322.
    [16]张玉军,尹衍升.金属间化合物陶瓷复合材料研究进展[J].兵器材料科学与工程,2000,23(1):8-11.
    [17]贺志勇,刘小萍,王振霞,等. γ-TiAl金属间化合物表面改性技术研究现状[J].材料导报,2007,21(2):83-86.
    [18]李金山,张铁邦,常辉,等. TiAl基金属间化合物的研究现状与发展趋势[J].中国材料进展,2010,29(3):1-5.
    [19]李宝辉,孔凡涛,陈玉勇,等. TiAl金属间化合物的合金设计及研究现状[J].航空材料学报,2006,26(2):72-78.
    [20] Cho H S, Nam S W, Kim. Y-W. Primary Creep Deformation BehaviorsRelated with Lamellar Interface in TiAl-Alloy[J]. Metals and materials,1998,4(1):33-37.
    [21] Lapin J, Pelachová T, Dománková M. Creep Behaviour of a NewAir-Hardenable Intermetallic Ti-46Al-8Ta Alloy[J]. Intermetallics,2011,19(6):814-819
    [22] Tsuyama S, Mitao S, Minakawa K N. Alloy Modification of Base TitaniumAluminide for Improved Oxidation, Creep Strength, Fractures Toughness[J].Materials Science and Engineering A,1992,153(1-2):451-456.
    [23] Zhu H, Seo D Y, Maruyama K, et al. Effect of Initial Microstructure onMicrostructural Instability and Creep Resistance of XD TiAl Alloys[J].Metallurgical and Materials Transactions A,2006,37(10):3149-3159.
    [24] Chen G L, Sun Z Q, Zhou X. Oxidation and Mechanical Behavior ofIntermetallic Alloys in the Ti-Al-Nb Ternary System[J]. Materials Scienceand Engineering A,1992,153(1-2):597-601.
    [25] Rastkar A R, Shokri B. A Multi-Step Process of Oxygen Diffusion to Improvethe Wear Performance of a Gamma-Based Titanium Aluminide[J]. Wear,2008,264(11-12):973-979.
    [26] Wu X H. Review of Alloy and Process Development of TiAl Alloys[J].Intermetallics,2006,14:1114-1122.
    [27]艾桃桃. TiAl基合金的韧化途径及基础应用研究[J].稀有金属,2009,33(6):913-920.
    [28] Clemensa H, Bartelsb A, Bystrzanowskib S, et al. Grain Refinement inγ-TiAl-Based Alloys by Solid State Phase Transformations[J]. Intermetallics,2006,14(12):1380-1385.
    [29] Lasalmonie A. Intermetallics: Why Is It So Difficult to Introduce Them inGas Turbine Engines?[J]. Intermetallics,2006,14(10-11):1123-1129.
    [30] Li B H, Chen Y Y, Hou Z Q, et al. Microstructure and Mechanical Propertiesof as-Cast Ti-43Al-9V-0.3Y Alloy[J]. Journal of Alloys and Compounds,2009,473(1-2):123-126.
    [31] Tetsui T, Shindoa K, Kobayashib S, et al. A Newly Developed Hot WorkedTiAl Alloy for Blades and Structural Components[J]. Scripta Materialia,2002,47(6):399-403.
    [32] Xu X J, Lin J P, Wang Y L, et al. Deformability and MicrostructureTransformation of Pilot Ingot of Ti–45Al–(8–9)Nb–(W,B,Y) Alloy[J].Materials Science and Engineering A,2006,416(1-2):98-103.
    [33]孔凡涛,陈子勇,田竞,等.提高tia L基合金室温塑性的方法[J].稀有金属材料与工程,2003,32(2):81.
    [34] Ferreira R A S, Arvieu C, Guillaume B, et al. Titanium Matrix CompositesProcessed by Continuous Binder-Powder Coating: An AlternativeFabrication Route[J]. Composites Part A,2006,37(10):1831-1836.
    [35]胥凯,刘政,刘萍.金属基复合材料的发展及其应用[J].南方金属,2005,147(6):1-6.
    [36] Martin R, Kampe S L, Marte J S, et al. Microstructure/ProcessingRelationships in Reaction-Synthesized Titanium Aluminide IntermetallicMatrix Composites[J]. Metallurgical and Materials Transactions A,2002,33(8):2743-2753.
    [37]王文生,阎蕴琪,李中奎.纤维增强TiAl基复合材料的研究[J].钛工业进展,2003,(2):5-8.
    [38]黄旭,齐立春,李臻熙. TiAl基复合材料的研究进展[J].稀有金属材料与工程,2006,35(11):1843-1846.
    [39] Xia Q F, Wang J N, Yang J, et al. On the Massive Transformation inTiAl-Based Alloys[J]. Intermetallics,2001,9:361-367.
    [40] Murray J L. Calculation of the Titanium-Aluminum Phase Diagram[J].Metallurgical Transactions A,1988,19(2):243-247.
    [41] Kim Y W. Intermetallics Alloys Based on Gamma Titanium Aluminide[J].JOM,1989,41(7):24-30.
    [42]刘冰,范润华,孙家涛. TiAl基合金的研制及其在汽车上的应用[J].材料工艺设备,2005,(3):29-38.
    [43] Kim Y W. Gamma Titanium Aluminides: Their Status and Future[J]. JOM,1995,47(7):39-47.
    [44] Liu C T, HScheibel J, Maziasz P J. Tensile Properties and Fracture Toughnessof TiAl Alloys with Controlled Microstructures[J]. Intermetallics,1996,4(6):429-440.
    [45]彭超群,黄伯云,贺跃辉. TiAl合金设计与成形方法[J].粉末冶金技术,2001,19(5):297-301.
    [46] Clements H, Appel F, Bartels A, et al. Processing and Application ofEngineering γ-TiAl Based Alloys[J]. Advanced Engineering Materials,2000,2(9):551-570.
    [47]缪家士,林均品,王艳丽,等.高铌钛铝基合金板材的高温包套轧制[J].稀有金属材料与工程,2004,33(4):436-438.
    [48] Cheng L, Chang H, Tang B, et al. Deformation and Dynamic RecrystallizationBehavior of a High Nb Containing TiAl Alloy[J]. Journal of Alloys andCompounds,2013,552:363-369.
    [49] Cheng L, Chang H, Tang B, et al. Characteristics of MetadynamicRecrystallization of a High Nb Containing TiAl Alloy[J]. Materials Letters,2013,92:430-432.
    [50] Sun H F, Li X W, Feng J, et al. Characterization of TiAl-Based Alloy withHigh-Content Nb by Powder Metallurgy[J]. Transactions of NonferrousMetals Society of China,2012,22: S491-S495.
    [51] Liu X P, You K, Wang Z X, et al. Effect of Mo-Alloyed Layer on OxidationBehavior of TiAl-Based Alloy[J]. Vacuum,2013,89:209-214.
    [52] Sun H L, Huang Z W, Zhu D G, et al. Dendrite Core Grain Refining andInterdendritic Coarsening Behaviour in W-Containing Gamma-TiAl BasedAlloys[J]. Journal of Alloys and Compounds,2013,552:213-218.
    [53] Sun H L, Sun C, Huang Z W, et al. Thermal Stability of TiAl AlloysContaining Tungsten and Niobium[J]. Rare Metal Materials And Engineering,2012,41(11):1923-1928.
    [54]李书江,王艳丽,林均品,等.微量C, B对高铌TiAl合金显微组织与力学性能的影响[J].稀有金属材料与工程,2004,33(2):144-148.
    [55] Perdrix F, Trichet M F, Bonnentien J L, et al. Relationships betweenInterstitial Content, Microstructure and Mechanical Properties in FullyLamellar Ti-48Al Alloys, with Special Reference to Carbon[J]. Intermetallics,2001,9(9):807-815.
    [56] Shu S L, Qiu F, Lin Y Y, et al. Effect of B4C Size on the Fabrication andCompression Properties of in Situ TiB2-Ti2AlC/TiAl Composites[J]. Journalof Alloys and Compounds,2013,551:88-91.
    [57] Kulkarni S R, Wu A V D K H. Synthesis of Ti2AlC by Spark Plasma Sinteringof TiAl-Carbon Nanotube Powder Mixture[J]. Journal of Alloys andCompounds,2010,490(1-2):155-159.
    [58] Chen Y Y, Niu H Z, Tian J, et al. Research Progress of Particulates ReinforcedTiAl Based Composites[J]. Rare Metal Materials and Engineering,2011,40(11):2060-2064.
    [59] Yin W M, Lupinc V, Battezzati L. Microstructure Study of a Gamma-TiAlBased Alloy Containing W and Si[J]. Materials Science and Engineering: A,1997,239-240:713-721.
    [60] Pond R C, Shang P, Cheng T T, et al. Interfacial Dislocation Mechanism forDiffusional Phase Transformations Exhibiting Martensitic Crystallography:Formation of TiAl+Ti3Al Lamellar[J]. Acta Materialia,2000,48(5):1047-1053.
    [61] Shu S L, Xing B, Qiu F, et al. Comparative Study of the CompressionProperties of TiAl Matrix Composites Reinforced with Nano-TiB2andNano-Ti5Si3Particles[J]. Materials Science and Engineering A,2013,560:596-600.
    [62] Klassen T, Suryanarayana C, Bormann R. Low-Temperature Superplasticityin Ultrafine-Grained Ti5Si3-TiAl Composites[J]. Scripta Materialia,2008,59(4):455-458.
    [63] Zhu J F, Yang W W, Li S D. Effect of Si Addition on the Microstructures andMechanical Properties of TiAl Intermetallics[J]. Advanced Materials,2011,239-242:413-416.
    [64]孔凡涛.稀土对TiAl合金凝固组织及性能影响的研究[D].哈尔滨:哈尔滨工业大学硕士论文,2003:4-23.
    [65] Xiao S L, Xu L J, Yu H B, et al. Effect of Y Addition on Microstructure andMechanical Properties of TiAl-Based Alloys Prepared by SPS[J]. Rare MetalMaterials and Engineering,2013,42(1):23-27.
    [66]张永刚,韩雅芳,陈国良.金属间化合物结构材料[M].北京:国防工业出版社,2001:59-63
    [67] MecCullough C, Valencia J J, Levi C G, et al. Phase Equilibria andSolidification in Ti-Al Alloys[J]. Acta Metallurgica,1989,37(5):1321-1336.
    [68] Huang S C, Chessnut J C. Intermetallic Compounds: Principles andPractice[M]. UK: Wiley,1994:73.
    [69]孔凡涛,陈玉勇,田竞,等. TiAl基金属间化合物研究进展[J].材料科学与工艺,2003,11(4):441-444.
    [70] Kim Y W. Ordered Intermetallic Alloys, Part III: Gamma TitaniumAluminides[J]. JOM,1994,46(7):30-39.
    [71] Hu D, Jiang H, Loretto M H, et al. Beta Phase Decomposition in a TiAl AlloyDuring Continuous Cooling[J]. Thermec2006, Pts1-5,2007,539-543:3625-3630.
    [72] Yamaguchi M, Inui H, Ito K. High-Temperature Structural Intermetallics[J].Acta Materialia,2000,48(1):307-322.
    [73] Blackburn M J. The Science Technology and Application of Titanium[M]. UK:Oxford Pergamon Press,1970:633-643.
    [74] Wang Y H, Lin J P, He Y H, et al. Microstructural Characteristics ofTi-45Al-8.5Nb/TiB2Composites by Powder Metallurgy[J]. Journal of Alloysand Compounds,2009,468(1-2):505-511.
    [75] Chan K S, Kim Y W. Influence of Microstructure on Crack-tipMicromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy[J].Metallurgical and Materials Transactions A,1992,23(6):1663-1667.
    [76] Beddoes J, Wallace W, Zhao L. Current Understanding of Creep Behaviour ofnear γ-Titanium Aluminides[J]. International Materials Reviews,1995,40(5):197-271.
    [77] Travitzky N, Gotman I, Claussen N. Alumina-Ti Aluminide InterpenetratingComposites: Microstructure and Mechanical Properties[J]. Materials Letters,2003,57(22-23):3422-3426.
    [78] Yang F, Kong F T, Chen Y Y, et al. Effect of Spark Plasma SinteringTemperature on the Microstructure and Mechanical Properties of aTi2AlC/TiAl Composite[J]. Journal of Alloys and Compounds,2010,496(1-2):462-466.
    [79] Yeh C L, Shen Y G. Formation of TiAl-Ti2AlC in Situ Composites byCombustion Synthesis[J]. Intermetallics,2009,17(3):169-173.
    [80] Yeh C L, Su S H. In Situ Formation of TiAl-TiB2Composite by SHS[J].Journal of Alloys and Compounds,2006,407(1-2):150-156.
    [81] Xiang L, Wang F, Zhu J, et al. Mechanical Properties and Microstructure ofAl2O3/TiAl in Situ Composites Doped with Cr2O3[J]. Materials Science andEngineering: A,2011,528(9):3337-3341.
    [82]李云明,王芬,朱建锋. PAXD法制备TiB/TiAl基复合材料及其力学性能研究[J].航空材料学报,2009,29(4):90-93.
    [83] Senkov O N, Cavusoglu M, Froes F H. Synthesis and Characterization of aTiAl/Ti5Si3Composite with a Submicrocrystalline Structure[J]. MaterialsScience and Engineering A,2001,300(1-2):85-93.
    [84] Forouzanmehr N, Karimzadeh F, Enayati M H. Synthesis andCharacterization of TiAl/Alpha-Al2O3Nanocomposite by MechanicalAlloying[J]. Journal of Alloys and Compounds,2009,478(1-2):257-259.
    [85] Zhu J F, Gao J Q, Wang F. Synthesis of TiAl-Ti2AlN Composites by in-SituCrystallization[J]. Transactions of Nonferrous Metals Society of China,2006,(S3):1928-1931.
    [86] Shafirovich E, Teoh S K, Varma A. Combustion of Levitated TitaniumParticles in Air[J]. Combustion and Flame,2008,152(1-2):262-271.
    [87] Leyens C, Hausmann J, Kumpfert J. Continuous Fiber Reinforced TitaniumMatrix Composites: Fabrication, Properties and Applications[J]. AdvancedEngineering Materials,2003,5(6):399-410.
    [88] Guo Z X, Derby B. Solid-State Fabrication and Interfaces of Fibre ReinforcedMetal Matrix Composites[J]. Progrw in Materials Science,1995,39:41l-495.
    [89] Nicolaou P D, Piehler H R. Fabrication of Metal-Matrix Composites byHot-Triaxial-Compaction of Foil/Fiber/Foil Lay-Ups[J]. Scripta Materialia,1998,39(8):1077-1082.
    [90] Luo X, Yang Y Q, Liu Y C, et al. The Fabrication and Property of SiC FiberReinforced Copper Matrix Composites[J]. Materials Science andEngineering A,2007,459(1-2):244-250.
    [91] Kim T W. Microstructural Aspects of Titanium Metal Matrix Composites inConsolidation Processing[J]. Materials Letters,2005,59(2-3):143-147.
    [92] Kim T W, Choi N S. Microstructural Influences on Consolidation Behavior ofTitanium Metal Matrix Composites[J]. Materials Science and Engineering A,2004,387-89:887-891.
    [93] Mizuuchi K, Inoue K, Sugioka M, et al. Microstructure and MechanicalProperties of Boron-Fiber-Reinforced Titanium-Matrix Composites Producedby Pulsed Current Hot Pressing (PCHP)[J]. Materials Science andEngineering A,2006,428(1-2):175-179.
    [94] Carrere N, Valle R, Bretheau T, et al. Multiscale Analysis of the TransverseProperties of Ti-Based Matrix Composites Reinforced by SiC Fibres: Fromthe Grain Scale to the Macroscopic Scale[J]. International Journal ofPlasticity,2004,20(4-5):783-810.
    [95]何贵玉,胡世平,储双杰,等.连续Ti纤维增强TiAl化合物基复合材料的研制[J].西北工业大学学报,1995,13(3):345-349.
    [96] Wei W, Yang Y Q, Zhang W, et al. Study of Matrix Microstructure ofSiCf/Ti-43Al-9V Composites[J]. Materials Science and Technology,2013,29(5):581-586.
    [97] Pickens J W, Noebe R D, Watson G K, et al. Fabrication of IntermetallicMatrix Composites by the Powder Cloth Process[R]. Washington: NASA,1989:515
    [98] Krishnamurthy S, Smith P R, Miracle D B. Preliminary Evaluation of aTi-24.5Al-17Nb/SiC Composite[J]. Scripta Metallurgica,1994,31(6):653-658.
    [99] Baumann S F, Brindley P K, Smith S D. Reaction Zone Microstructure in aTi3Al+Nb/SiC Composite[J]. Metallurgical Transactions A,1990,21(6):1559-1569.
    [100]符跃春,石南林,张德志,等.粉末布法制备SiC/Ti基复合材料[J].中国有色金属学报,2004,14(3):465-470.
    [101] Mackay R A, Brindley P K, Froes F H. Continuous Fibre ReinforcedTitanium Aluminide Composites[J]. JOM,1991,43(5):23-29.
    [102]张国兴,康强,李阁平,等. SiCf增强Ti-48Al-1.5Mn复合材料的界面反应[J].金属学报,2003,39(3):329-331.
    [103] Zhao Y Y, Grant P S, Cantor B. Fabrication of Ti/SiCfMetal-MatrixComposites by Vacuum Plasma Spraying[J]. Journal De Physique IV,1993,3(C7):1685-1691.
    [104] Djanarthany S, Viala J C, Bouix J. Development of SiC/TiAl Composites:Processing and Interfacial Phenomena[J]. Materials Science andEngineering A,2001,300(1-2):211-218.
    [105] Hu W, Weirich T, Hallstedt B, et al. Interface Structure, Chemistry andProperties of NiAl Composites Fabricated from Matrix-CoatedSingle-Crystalline Al2O3Fibres (Sapphire) with and without an HbnInterlayer[J]. Acta Materialia,2006,54(9):2473-2488.
    [106] Zhong Y, Hu W, Eldridge J I, et al. Fiber Push-out Tests on Al2O3Fiber-Reinforced NiAl-Composites with and without Hbn-Interlayer atRoom and Elevated Temperatures[J]. Materials Science and Engineering A,2008,488(1-2):372-380.
    [107] Hu W, Chen H, Zhong Y, et al. Investigations on NiAl CompositesFabricated by Matrix Coated Single Crystalline Al2O3-Fibers with andwithout Hbn Interlayer[J]. Frontiers of Materials Science in China,2008,2(2):182-193.
    [108] Even C, Arvieu C, Quenisset J M. Powder Route Processing of CarbonFibres Reinforced Titanium Matrix Composites[J]. Composites Science andTechnology,2008,68(6):1273-1281.
    [109]杨延清,朱艳,马至军. SiC长纤维增强钛合金基复合材料的制备[J].机械科学与技术,2002,21(3):424.
    [110] Wood M, Ward-Close M. Fibre-Reinforced Intermetallic Compounds byPhysical Vapour Deposition[J]. Materials Science and Engineering A,1995,192-193(Part2):590-596.
    [111] Subramanian P R, Krishnamurthy S, Keller S T, et al. Processing ofContinuously Reinforced Ti-Alloy Metal Matrix Composites (Mmc) byMagnetron Sputtering[J]. Materials Science and Engineering A,1998,244(1):1-10.
    [112] Han J C, Zhang D M, Chen G Q, et al. Fabrication, Microstructure andProperties of Electron Beam-Physical Vapor Deposited TiAl Sheet andTiAl/Nb Laminated Composites[J]. Transactions of Nonferrous MetalsSociety of China,2006,16: S449-S452.
    [113] Brunet A, Valle R, Vassel A. Intermetallic TiAl-Based Matrix Composites:Investigation of the Chemical and Mechanical Compatibility of a ProtectiveCoating Adapted to an Alumina Fibre[J]. Acta Materialia,2000,48(20):4763–4744.
    [114] Zhang W, Yang Y Q, Zhao G M, et al. Investigation of Interfacial Reactionin SiC Fiber Reinforced Ti-43Al-9V Composites[J]. Intermetallics,2013,33:54-59.
    [115] Ferreira R A S, Arvieu C, Guillaume B, et al. Titanium Matrix CompositesProcessed by Continuous Binder-Powder Coating: An AlternativeFabrication Route[J]. Composites Part A,2006,37(10):1831-1836.
    [116] Ferreira R A S, Arvieu C, Quenisset J M. Effects of Pressure and ThermalExposure on the Ti/SiC/C Composites Produced by ContinuousBinder-Powder Coating[J]. Scripta Materialia,2005,53(3):329-333.
    [117] Guo Z X, Beeley N R F. A Novel Powder Coated Fibre Pre-Processing Routeto Metal Matrix Composites[J]. Advanced Engineering Materials,2001,3(4):223-226.
    [118]杨锐,石南林,王玉敏,等. SiC纤维增强钛基复合材料研究进展[J].钛工业进展,2005,22(5):32-36.
    [119] Li Y H, Zhang D Z, Shi N L, et al. Preparation and Interfacial Stability ofSiCf/Ti-6Al-4V Composites Fabricated Using Powder Coated FiberMethod[J]. Journal of Materials Science&Technology,2005,21(6):903-908.
    [120] Wu G H, Su J, Gou H S, et al. Study on Graphite Fiber and Ti ParticleReinforced Al Composite[J]. Journal of Materials Science,2009,44(18):4776-4780.
    [121] Wu G H, Liu Y M, Xiu Z Y, et al. Reaction Procedure of a Graphite FiberReinforced Ti-Al Composite Produced by Squeeze Casting-in SituReaction[J]. Rare Metals,2010,29(1):98-101.
    [122] Liu Y M, Xiu Z Y, Guo Y L, et al. Synthesis of Cf/TiAl3Composite byInfiltration-in Situ Reaction[J]. Journal of Materials Science&Technology,2009,25(6):803-806.
    [123] Vassel A. Continuous Fibre Reinforced Titanium and AluminiumComposites: A Comparison[J]. Materials Science and Engineering A,1999,263(2):305-313.
    [124] Djanarthany S, Viala J-C, Bouix J. Development of SiC/TiAl Composites:Processing and Interfacial Phenomena[J]. Materials Science andEngineering A,2001,300(1-2):211-218.
    [125]汤志鸣,汤文明,曹菊芳,等. SiC/TiAl界面固相反应研究[J].材料热处理学报,2008,29(3):17-21.
    [126]刘艳梅,姜龙涛,于杰,等. Cf/Ti-Al复合材料微观组织和力学性能[C]//第十五届全国复合材料学术会议论文集.北京:新华出版社,2009,123-127.
    [127]张全成,何贵玉,吴建生. TiNb长纤维强韧化Ti-48Al-2Cr-2Nb基复合材料的研究[J].材料科学与工艺,2000,8(4):77-79.
    [128] Mileiko S T, Povarova K B, Korzhov V P, et al. High-Temperature Creep ofSapphire-Fibre/Titanium-Aluminide-Matrix Composites[J]. ScriptaMaterialia,2001,44(10):2463-2469.
    [129] Krishnamurthy S, Smith P R, Miracle D B. Modification of TransverseCreep Behavior of an Orthorhombic Titanium Aluminide BasedTi-22Al-23Nb/SiCfComposite Using Heat Treatment[J]. Materials Scienceand Engineering A,1998,243(1-2):285-289.
    [130] Du J, Hoschen T, Rasinski M, et al. Feasibility Study of a TungstenWire-Reinforced Tungsten Matrix Composite with Zrox InterfacialCoatings[J]. Composites Science and Technology,2010,70(10):1482-1489.
    [131] Du J, Hoschen T, Rasinski M, et al. Interfacial Fracture Behavior ofTungsten Wire/Tungsten Matrix Composites with Copper-CoatedInterfaces[J]. Materials Science and Engineering A,2010,527(6):1623-1629.
    [132]薛春岭,杨延清,罗贤,等. Cu/Mo双涂层改性SiCf/Ti6Al4V复合材料的界面与性能[J].稀有材料科学与工程,2012,41(4):653-657.
    [133]马兴华. SiCf/Ti复合材料的制备及性能研究[D].哈尔滨:哈尔滨工业大学硕士论文,2010:11
    [134] Baran E, Akis T, Yesilmen S. Pull-out Behavior of Prestressing Strands inSteel Fiber Reinforced Concrete[J]. Construction and Building Materials,2012,28(1):362-371.
    [135] Zhu D S, Gu B Q. Micromechanical Analysis of Single-Fiber Pull-out Testof Fiber-Reinforced Viscoelastic Matrix Composites[J]. New Materials,Applications and Processes,2012,399-401:556-560.
    [136]刘荣梅,梁大开.石英光纤与树脂界面剪切强度实验研究[J].南京航空航天大学学报,2010,42(6):758-763.
    [137]马莉,江晓禹,裴永琪.玻璃纤维单丝拔出实验及其有限元模拟[J].材料导报B,2011,25(10):139-142.
    [138] Graciani E, Varna J, Mantic V, et al. Evaluation of interfacial fracturetoughness and friction coefficient in the single fiber fragmentation test[J].Procedia Engineering,2011,10:2484-2489.
    [139] Johnson A C, Hayes S A, Jones F R. The Role of Matrix Cracks andFibre/Matrix Debonding on the Stress Transfer between Fibre and Matrix ina Single Fibre Fragmentation Test[J]. Composites Part A,2012,43(1):65-72.
    [140] Lachman N, Carey B J, Hashim D P, et al. Application ofContinuously-monitored Single Fiber Fragmentation Tests to CarbonNanotube/Carbon Microfiber Hybrid Composites[J]. Composites Scienceand Technology,2012,72(14):1711-1717.
    [141] Liu H X, Gu Y Z, Li M, et al. Characterization of Interfacial Toughness inCarbon Fiber/Epoxy Resin Composite Subjected to Water Aging UsingSingle-Fiber Fragmentation Method in an Energy-Based Model[J]. PolymerComposites,2012,33(5):716-722.
    [142] Du J, Hoschen T, Rasinski M, et al. Shear Debonding Behavior of aCarbon-Coated Interface in a Tungsten Fiber-Reinforced Tungsten MatrixComposite[J]. Journal of Nuclear Materials,2011,417(1-3):472-476.
    [143] Molina-Aldareguia J M, Rodriguez M, Gonzalez C, et al. An Experimentaland Numerical Study of the Influence of Local Effects on the Applicationof the Fibre Push-in Test[J]. Philosophical Magazine,2011,91(7-9):1293-1307.
    [144] Mueller W M, Moosburger-Will J, Sause M G R, et al. Microscopic Analysisof Single-Fiber Push-out Tests on Ceramic Matrix Composites Performedwith Berkovich and Flat-End Indenter and Evaluation of InterfacialFracture Toughness[J]. Journal of the European Ceramic Society,2013,33(2):441-451.
    [145] Silvain J F, Bihr J C, Lepetitcorps Y. Epma and Xps Studies of TiAl-SiCInterfacial Chemical Compatibility[J]. Composites Parr A,1996,27A:691-695.
    [146] Goo G K, Graves J A, Mecartney M L. Interfacial Reaction of CoatedSilicon Carbide Fibers with Gamma-Titanium Aluminide[J]. ScriptaMetallurgicaet Materialia,1992,26(7):1043-1048.
    [147] Tenyama K, Maeda M, Shibayanagi T. Interfacial Microstructure of SiliconCarbide and Titanium Aluminide Joints Produced by Sol Idstate DiffusionBonding[J]. Materials transactions,2004,45(8):2734-2739.
    [148]刘会杰,冯吉才,钱乙余. SiC/TiAl扩散连接接头的界面结构及连接强度[J].焊接学报,1999,20(3):170-174.
    [149] Nourbakhsh S, Sahin O, Margolin H. A Structural Study of Oxidation in anA1203Fiber Reinforced Titanium Aluminide Composite[J]. ActaMetallurgica et Materialia,1995,43(8):3035-3044.
    [150] Majumdar B S, Miracle D B. Fiber coatings for a sapphire/gamma-TiAlcomposite utilizing ductile and barrier metallic layers[C]//Proceedings ofthe10th International Conference on Composite Materials. UK: WoodheadPublishing;1995:745-754.
    [151] Weber C, Yang J Y, Lofvander J P A, et al. The creep and fracture resistanceof gamma-TiAl reinforced with Al2O3fibers[J]. Acta Metallurgica etMaterialia,1993,41:2681-2690.
    [152]胡世平,何贵玉. Ti/TiAl复合材料界面与弯曲性能的研究[J].西北工业大学学报,1996,14(1):149-152.
    [153]胡世平,张太贤,何贵玉,等. Ti/TiAl金属间化合物为基的复合材料的性能与析出相研究[J].稀有金属材料与工程,1994,23(3):23-26.
    [154]晏建武,何贵玉,李烈风.钛纤维强化Ti-48Al-2Cr-2Nb合金复合材料性能与界面研究[J].稀有金属,1996,20(3):202-206.
    [155]何贵玉,胡世平,储双杰,等.两种不同涂层的Ti纤维增强TiAl基复合材料[J].中国有色金属学报,1996,6(4):110-114.
    [156]何贵玉,胡世平,储双杰,等.涂层对Ti纤维与Ti/TiAl复合材料性能影响的研究[J].材料工程,1995,(3):26-31.
    [157]何贵玉,李烈风,储双杰,等.涂层Ti纤维增强TiAl基复合材料[J].兵器材料科学与工程,1996,19(2):3-7.
    [158] Yang W S, Xiu Z Y, Wang X, et al. Microstructure Evolution and OxidationBehaviour of Tif/TiAl3Composites[J]. Materials and Design,2011,32:207-216.
    [159]张全成,何贵玉,吴建生,等. TiNb/Ti-48Al-2Cr-2Nb复合材料的力学性能和断裂特征[J].稀有金属材料与工程,2001,30(5):372-375.
    [160]刘翠霞,杨延清,徐婷,等.化学气相沉积法连续SiC纤维的研究现状和发展趋势[J].材料导报,2006,8(20).
    [161] Iorio L E, Bewlay B P, Larsen M. Analysis of Aks-and Lanthana-DopedMolybdenum Wire[J]. International Journal of Refractory Metals&HardMaterials,2006,24(4):306-310.
    [162] Bowman R R, Misra A K, Arnold S M. Processing and MechanicalProperties of Al2O3Fiber-Reinforced NiAl Composites[J]. Metallurgicaland Materials Transactions A,1995,26(3):615-628.
    [163] Hsu F Y, Wang G X, Klaar H J, et al. Investigation of the Reaction Zonebetween TiAl and Mo [J]. Metallurgical and Materials Transactions A,1996,27A:2285-2292.
    [164] Zhang M X, Hsieh K C, Chang Y A, et al. Interdiffusion between theOrdered Intermetallic Compound TiAl and Mo[J]. Intermetallics,1995,3:47-56.
    [165]束德林.工程材料力学性能[M].北京:机械工业出版社;2003:35-37
    [166] Beeley N R F, Guo Z X. Development of a Powder Coated FibrePre-Processing Route for Production of Fibre Reinforced Composites [J].Materials Science and Technology,2000,16(5):862-866.
    [167] Bei H, George E P. Microstructures and Mechanical Properties of aDirectionally Solidified NiAl-Mo Eutectic Alloy[J]. Acta Materialia,2005,53(1):69-77.
    [168] N.R.F. Beeley, Guo Z X. Fluid Dynamic Simulations of a Slurry CoatingProcess on a Continuous Fibre[J]. Materials Science and Engineering A,2004,365:341-348.
    [169] Tang L G, Li L, Yi X S, et al. Aqueous Powder Slurry Manufacture ofContinuous Fiber Reinforced Polyethylene Composite[J]. PolymerComposites,1997,18(2):223-231.
    [170]王学成,张小明,柴惠芬.燃烧合成TiAl合金结构转变动力学的端部淬火熄灭法分析[J].稀有金属材料与工程,1999,28(3):161-165.
    [171]吴引江,兰涛.漫渗燃烧合成TiAl金属间化合物的物化过程探讨[J].稀有金属材料与工程,1996,25(2):17-20.
    [172] Van L F J J, Rieck G D. Diffusion in the Titanium-Aluminium System-Ii.Interdiffusion in the Composition Range between25and100At.%Ti[J].Acta Metallurgica,1973,21(1):73-84.
    [173] Mackowiak J, Shreir L L. The Nature and Growth of Interaction LayersFormed During the Reaction between Solid Titanium and LiquidAluminium[J]. Journal of the Less Common Metals,1959,1(6):456-466.
    [174] Fu E K Y, Rawlings R D, Mcshane H B. Reaction Synthesis of TitaniumAluminides[J]. Journal of Materials Science&Technology,2001,36(23):5537-5542.
    [175] Alonso P R, Rubiolo G H. Ordering and Phase Separation AroundTi50Al25Mo25Composition in Ternary Ti–Al–Mo Bcc Alloys[J]. Journalof Alloys and Compounds,2004,363(1):90–98
    [176]望谭,畅陈,汪明朴,等.纯Mo棒在镦粗过程中的织构和组织对其横向塑性的影响[J].中国有色金属学报,2010,20(5):859-865.
    [177] Ohba Y. Secondary Recrystallization of Pure Molybdenum Wires[J]. ActaMetallurgica,1986,34(7):1329-1334.
    [178] Oliver W C, Pharr G M. An Improved Technique for Determining Hardnessand Elastic-Modulus Using Load and Displacement Sensing IndentationExperiments[J]. Journal of Materials Research,1992,7(6):1564-1583.
    [179] Song J, Hu W, Gottstein G. Long Term Stability and Mechanical Propertiesof Al2O3-NiAl Composites Reinforced with Partially Fragmented LongFibers[J]. Materials Science and Engineering A,2011,528(25-26):7790-7800.
    [180] Wagner C. The Evaluation of Data Obtained with Diffusion Couples ofBinary Single-Phase and Multiphase Systems[J]. Acta Metallurgica,1969,17(2):99-107.
    [181]公衍生. TiC颗粒增强TiAl金属间化合物基复合材料的制备与性能研究[D].济南:济南大学学位论文,2003:45-46
    [182] Rao K T V, Odette G R, Ritchie R O. Ductile-Reinforcement Toughening inGamma-TiAl Intermetallic Matrix Composites-Effects onFracture-Toughness and Fatigue-Crack Propagation Resistance[J]. ActaMetallurgica et Materialia,1994,42(3):893-911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700