用户名: 密码: 验证码:
颗粒增强金属基复合材料加工过程优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属基复合材料与超合金,陶瓷、塑料和重构刚相比,具有比强度和比刚度高、耐磨性好以及高温下易操作等许多良好的性能。然而,由于此材料中存在着大量的增强相材料,这些增强相材料的硬度比常用的高速钢和硬质合金刀具要高。在金属基复合材料加工过程中,增强相材料会加剧刀具的快速磨损,导致其加工性能差以及加工成本高,使金属基复合材料的加工面临着极大的挑战,因此限制了这类材料的广泛应用。
     本论文的主要研究目标是采用建模和实验相结合的方法力求获得金属基复合材料的最优切削条件,包括切削速度、进给速度、切削深度以及刀具材料;本文还对表面粗糙度、切削力、尺寸精度、轮廓分形维数以及切屑形成进行了研究;并分别建立了其优化的参数模型。实验所用的材料为Al2124/SiCp(45%wt)复合材料,其中增强相颗粒尺寸为5-8μm,加工样件尺寸为直径31.8mm×长78.0mm的棒料。
     实验中使用的机床为CG6125C精密车床,该车床的可加工工件的半径为250mm,长度为500mm;所用的切削条件为切削速度:40m/min,60m/min,80m/min和100m/min;进料速度:0.025mm/rev,0.05mm/rev,0.1mm/rev,0.15mm/rev和0.2mm/rev;切削深度:0.1mm,0.2mm和0.3mm。采用响应曲面法和田口设计来预测加工Al2124SiCp (45%wt)过程中的输出目标特性,即轮廓分形维数,直径误差,圆度和表面粗糙度,并分别对其进行了建模与优化;并使用Thirdwave AdvanEdge仿真软件对切屑形成和切削力进行了仿真研究。
     研究结果表明:切屑的形成和切削力的仿真结果与实验结果一致,由于不可控的实验条件和加工环境所引起的,使得测得的切削力实验结果高于仿真结果。采用响应曲面法所优化、建模并预测的分形尺寸,表面粗糙度,直径误差和圆度的结果与实验结果比较吻合。由于金属基复合材料加工过程很复杂,不可能同时优化所有的目标响应。在所用实验条件下,使用PCD刀具在切削速度为80m/min,切削深度为0.1mm以及进给速度为0.1mm/rev条件下,对金属基复合材料加工时能得到较高的分形维数值。与其他刀具相比,在所用切削参数下,PCD刀具的刀具磨损量和表面粗糙度均最小,提高切削速度会较低加工表面粗糙度。此外,使用PCD刀具获得的直径和圆度误差也较小,基于组合响应曲面法优化的最佳切削参数为:使用PCD刀具在切削速度为0.1mm,进给速度为0.1232mm/rev和切削速度为71.5152m/min条件下进行切削,并且通过确认实验得到的结果和预测结果比较接近。
     在后续的研究中,作者建议对超声振动辅助切削颗粒增强铝基复合材料的分形维数进行分析,并阐述其表面形貌的形成机制,以及该加工过程对尺寸精度(例如圆柱和锥形工件的圆度)的影响。此外,在加工含有不同增强相颗粒体积分数的金属基复合材料时,为获得最优的加工条件,还需要对其建模过程进行更深入的研究。
Present generation of recreation, manufacturing and transport industries amongothers require improved performance to meet the expected targets. As technologicaladvancement expands at a geometrical progression there is need to produce productsthat match this shifting development. Such development cannot be met by monolithicalloys that have previously been used in the industry for some specialized applications.Metal matrix composites present attractive properties such as high specific strength,wear resistance and stiffness coupled with the ability to operate at elevatedtemperatures and compete with super-alloys, ceramics, and redesigned steel. However,their machining presents a significant challenge since a number of reinforcementmaterials are harder than commonly used high-speed steel and carbide tools. Thereinforcement causes rapid abrasive tool wear which impinges its wide applicationdue to poor machinability and consequent high machining costs.
     The main objective of this research is to find optimum cutting conditions formachining particulate MMCs. In this research both modeling and experimentaltechniques were used to arrive at the optimum conditions, which include cutting speed,feed rate, depth of cut, and tool material. The study also looked into surface finish,machining forces, dimensional accuracy, profile fractal dimension, and chip formation.This led to developing a model for the optimization of machining condition.Machining investigations were carried out using Al2124SiCp (45%wt) MMC wherethe reinforcement particles size ranged between5and8μm. The material used for thetest was in the form of a bar31.8mm in diameter and78.0mm in length. This materialwas selected due to its relatively low machinability anticipating larger differentiationsin quality characteristics.
     The machining of the MMC was performed at four different cutting speeds of40,60,80, and100m/min. The feed rates were0.025,0.05,0.1,0.15and0.2mm/revwhile depths of cut were0.1,0.2and0.3mm. The lathe used for the turning test wasHigh Precision Lathe Model No: CG6125C with a span radius of250mm and lengthof500mm. Modeling of optimization was carried out using Response surfacemethodology and Taguchi approach to predict a number of aspects in machinability ofAl2124SiCp (45%wt) MMC namely, profile fractal dimension, diameter error,circularity and surface roughness. Finite Element Modeling was also carried out usingThirdwave AdvantEdge simulation software to model chip formation and machiningforces of Al2124SiCp (45%wt) MMC as an Equivalent Homogeneous Material.
     Results reveal that Thirdwave AdvantEdge simulation on chip formation andmachining forces agreed strongly with experimental findings. The variation inmagnitude of the machining forces were attributed to machining conditions andenvironment that could not be controlled hence a higher value of experimental forcewas recorded as compared to simulated machining force. On response surfaceoptimization modeling the predicted and experimental values on profile fractaldimension, surface roughness, diameter error and circularity showed a high degree ofcorrelation. It was observed that it was not possible to optimize all the responsessimultaneously due to the complexity involved. To achieve high profile fractaldimension values the best combination was cutting speed80m/min and use of PCDtool at depth of cut0.1mm and feed rate0.1mm/rev. On tool wear PCD tool showedthe best results at all cutting parameters. In relation to surface roughness PCD toolsshowed profound performance where improvement was observed with increase inmachining speed. On dimensional accuracy it was observed that PCD tool performedbetter by giving low diameter and circularity values. On combined responseoptimization, the parameters selected were depth of cut0.1mm, feed rate0.1232mm/rev, cutting speed71.5152m/min and PCD cutting tool. Verificationresults showed good relationship between predicted and experimental results.
     For further research the researcher suggests analysis of profile fractal dimensionin relation to ultrasonic vibration assisted machining (UVAM) in machining MMCs.This would shed more light and the surface topography of surfaces produced throughUVAM. Assesment of dimensional accuracy components as cylindricity andcircularity of tappered work. Further modeling in optimization of cutting componentsfor MMCs having varying amount of reinforcement to achieve optimal machiningparameters.
引文
[1] Xiaoping Li, Seah WKH. Tool wear acceleration in relation to workpiecereinforcement percentage in cutting of metal matrix composites. Wear,2001,247:161–171.
    [2] Muthukrishnan N., Murugan M., Rao K. P.,. Machinability issues in turning ofAl/SiC(10p) Metal Matrix Composite. International Journal of AdvancedTechnology2008,39(3-4):211-218.
    [3] Persson H. Machining guidlines of Al/SiC Particulate Metal MatrixComposites. Vienna: MMC-Assess Consortium,2001.
    [4] International, ASM.,. ASM Handbook Volume21Composites. ASMInternational:387,2001.
    [5] Schwartz, Mel M., Encyclopedia of materials, parts, and finishes. Boca Raton,:CRC Press LLC,2002.
    [6] Surappa M. K., Rohatgi P.K. Preparation and Properties of Aluminium AlloyCeramic Particle Composites. J. Mater. Sci,1981,16:983-993.
    [7] El-Geallab M. S. Machining of Particulate Metal Matrix Composites (PhDThesis). McMaster University,1999.
    [8] Antonio C. A. C., Davim P. J.,. Optimal Cutting Conditions in Turning ofParticulate MMCs Based on Experiment and a Genetic Search Model.Composites: Part A,2002,33:213-219.
    [9] Rohatgi, P. Advances in Cast MMCs. Advanced Materials and Processes,1990.
    [10] SURAPPA, M. K., Aluminium matrix composites: Challenges andopportunities. Bangalore: Sadhana,2003,28Parts1&2.
    [11] Monaghan, J. M., The use of Quick-Stop Test to Study the Chip Formation of aSiC/Al MMC and its Matrix Alloy. Journal of Processing Advanced Materials,1994,4:170-179.
    [12] K.U. Kainer (Ed.). Metal Matrix Composites, Custom-made Materials forAutomotive and Aerospace Engineering. Weinheim: Wiley-VCH,2006.
    [13] Muthukrishnan N., Murugan M., Prahlada Rao K., An investigation on themachinability of Al-SiC metal matrix composites using pcd inserts.International Journal of Advanced Manufacturing Technology,2007,38:447–454.
    [14] Ozben T., Kilickap E., Caklr O., Investigation of mechanical and machinabilityproperties of SiC particle reinforced Al-MMC. J Mater Process Tech,2008,198(1-3):220-225.Muthukrishnan N.,
    [15] Manna, A., Bhattacharyya B., A study on different tooling systems duringmachining of Al/SiC-MMC. Journal of Materials Processing Technology,2002,123:476–482.
    [16] Kishawy H. A., Kannan S., Balazinski M. An energy based analytical forcemodel for orthoganal cutting of metal matrix composites. Ann CIRP200453(1):91-94.
    [17] Pramanik A., Zhang L. C., Arsecularatne J. A., Machining of metal matrixcomposites: Effect of ceramic particles on residual stress, surface roughnessand chip formation. Intl J Mach Tool Manuf,2008,48(15):1613-1625.
    [18] Chambers A. R. The machinability of light alloy MMCs. Composites Part A-Appl S,1996,27(2):143–147.
    [19] Ciftci I., Turker M., Seker U., Evaluation of tool wear when machining SiCp-reinforced Al-2014alloy matrix composites. Mater Des,2004,25(3):251–255.
    [20] Kannan S., Kishawy H.A., Balazinski M., Flank wear progression duringmachining metal matrix composites. J Manuf Sci E-T ASME,2006,128:787–791.
    [21] Joshi S. S., Ramakrishnan N., Nagarwalla H. E., Ramakrishnan P.,. Wear ofRotary Carbide Tools in Machining of Al/SiCp Composites. s.l.: Wear230(2):124-132,1999.
    [22] Tomac N., Tannessen K., Rasch F,O., Machinability of particulate aluminiummatrix composites. Ann CIRP1992,41(1):55–58.
    [23] Pramanik A., Zhang L. C., Arsecularatne J. A., An FEM investigation into thebehaviour of metal matrix composites: tool-particle interaction duringorthogonal cutting. s.l.: Intl J Mach Tool Manuf2007,47(10):1497-1506.
    [24] Davim J. P., Application of Merchant theory in machining particulate metalmatrix composites. Mater Des2007,28(10):2684-2687.
    [25] Waldorf D. J. A simplified model for ploughing forces in turning. J ManufProcess,2006,8:76-82.
    [26] Lin J. T., Bhattacharyya D. Lane C., Machinability of a silicon carbidereinforced aluminum metal matrix composite. Wear,1995,181-183(1):883-888.
    [27] Grzesik, Wit. Advanced Machining Processes of Metallic Materials (Theory,Modeling and Applications). Amsterdam: Elsevier,2008.
    [28] ISO. ISO3685-1993: Tool-life Testing with Single Point Cutting Tools. s.l.:ISO,1993.
    [29] Sikder, Snahungshu. Analytical Model for Force Prediction when MachiningMetal Matrix Composites (Msc ThesisUniversity of Ontario Institute ofTechnlogy,2010.
    [30] Bhattacharyya, Amitabha. Metal Cutting Theory and Practice. Central Books:1984.
    [31] Ciftci I., Cutting Tool Wear Mechanism when Machining ParticulateReinforced MMCs. Technology,2009,12(4):275-282.
    [32] Patil, Rajesh Y. Thesis on “Thermal modeling&analysis of carbide tool usingfinite element method”. T.I.E.T.,2005.
    [33] Trigger K. J., Chao B. T.,. Mechanism of Crater Wear of Cemented CarbideTools. s.l.: Transactions of ASME,1956,78(5).
    [34] Loladze T.N., Adhesion and Diffusion Wear in Metal Cutting. s.l.: Journal ofInstitution of Engineers,196243(3).
    [35] Bhattacharyya A., Ghosh A., Diffusion Wear of Cutting Tools. Proc. CIRP,1967.
    [36] Carmen TACHE, Dumitru Dumitru. Fascicle of Management andTechnological Engineering. Annals of the Oradea University,2008,7(17).
    [37] Altintas, Y., Manufacturing Automation-Metal Cutting Mechanics, MachineTool Vibrations, and CNC Design. Cambridge University Press,2000,54-59.
    [38] Patil, Rajesh Y. Cutting Tool Wear-Mechanisms. Journal of Sci., Engg.&Tech.Mgt.,2010,2(1):38-42.
    [39] Shaw, Milton C., Metal Cutting Principles,2nd Edition. Oxford Univ. Press,2005.
    [40] Lin H. M., Liao Y. S., Wei C.C., Wear behavior in turning high hardness alloysteel by CBN tool. Wear,2008,264:679–684.
    [41] Abdul B. S. Surface Integrity when Machining Metal Matrix Composites. EdDavim J. P. Machining of Metal Matrix Composites. New York: Springer,2012.
    [42] Shin Y. C., Dandekar C., Mechanics and Modeling of Chip Formation inMachining of MMC. Ed Davim P. J. Machining of Metal Matrix Composites.London: Springer-Verlag,2012.
    [43] Yaopeng Zhu. On Machining Metal Matrix Composites: A Finite ElementModel. The University of New Brunswik,2004.
    [44] Amrita P., Surjya K. P., Finite Element Modeling of Chip Formation inOrthogonal Machining. Davim P. J. Ed Statistical and ComputationalTechniques in Manufacturing. Berlin Heidelberg: Springer-Verlag,2012.
    [45] Dassault Systèmes. Abaqus/CAE User Manual. Providence: Dassault Systèmes,2010.
    [46] Soo S.L., Aspinwall D. K., Developments in modelling of metal cuttingprocesses.2007221: Proceedings of the Institution of Mechanical Engineers,Part L: Journal of Materials Design and Applications,2007,221(L4):197-211.
    [47] Tian Y. Shin Y. C. Finite Element Modeling of Machining of1020SteelIncluding the Effects of round Cutting Edge. Transactions of the NorthAmerican Manufacturing Research Institute of SME NAMRC,2004,32:111-118.
    [48] zel T., Zeren E., Finite Element Modeling the Influence of Edge Roundnesson the Stress and Temperature Fields Induced by High-speed Machining.International Journal of Advanced Manufacturing Technology,2007,35:255-267.
    [49] zel T., Zeren E., Finite Element Method Simulation of Machining of AISI1045Steel With A Round Edge Cutting Tool. Chemnitz, Germany:Proceedings of8th CIRP international workshop on modeling of machiningoperations,2005.
    [50] Camus G. Modelling of the mechanical behavior and damage processes offibrous ceramic matrix composites: application to a2-D SiC/SiC. InternationalJournal of Solids and Structures,2000,37(6):919-942.
    [51] Dandekar C. R., Shin Y. C., Modeling of machining of composite materials: Areview. International Journal of Machine Tools and Manufacture,2012,57:102-121.
    [52] Nayak D., Bhatnagar N., Mahajan P., Machining Studies of ud-frp Composites.Part2: Finite Element Analysis. Machining Science and Technology,2005,9:503-528.
    [53] Rao G. V. G., Mahajan P., Bhatnagar N., Machining of UD-GFRP CompositesChip Formation Mechanism. s.l.: Composites Science and Technology,2007,67(11–12):2271–2281.
    [54] Johnson G. R., Cook W. H., A constitutive model and data for metals subjectedto large strains, high rates and high temperatures. The Hague, the Netherlands:Proceedings of the seventh international symposium on ballistics:1983,541–547.
    [55] Monaghan J., Brazil D., Modeling the sub-surface damage associated with themachining of a particle reinforced MMC. Computational Materials Science,1997,9(1–2):99–107.
    [56] Macdougall D. A. S., Harding J., A constitutive relation and failure criterion forTi6Al4V alloy at impact rates of strain. Journal of the Mechanics and Physicsof Solids,1999,47(5):157–1185.
    [57] Follansbee P. S., Gray G.T., An analysis of the low temperature, low and highstrain-rate deformation of Ti-6Al-4V. Metallurgical Transactions,1989, A20A:863–874.
    [58] Dandekar C. R., and Shin Y. C., Multi-step3-D Finite Element Modeling ofSubsurface Damage in Machining Particulate Reinforced Metal MatrixComposites. Composites Part A: applied Science and Manufacturing,2009,40(8)1231-1239,.
    [59] Zhou L., Huang S.T., Wang D., Yu X. L., Finite element and experimentalstudies of the cutting process of SiCp/Al composites with PCD tools.International Journal of Advanced Manufacturing Technology,2011,52:619–626.
    [60] Gardner J. D., Vijayaraghavan A., Dornfeld D. A., Comparative Study of FiniteElement Simulation Software. Consortium on Deburring and Edge Finishing,Laboratory for Manufacturing and Sustainability, UC Berkeley,2005.
    [61] Corina C., Sorin-Mihai C., George C., Eugen S., FEM Tools for CuttingProcess Modeling and Simulation. University POLITEHNICA of Bucharest,Science Bulleting,2012,74(4):149-162.
    [62] Chinmaya R. D., Shin Y. C., John B., Machinability improvement of titaniumalloy (Ti–6Al–4V) via LAM and hybrid machining. International Journal ofMachine Tools and Manufacture,2010,50:174-182.
    [63] Muthukrishnan N., Murugan M., Prahlada R. K., An investigation on themachinability of Al-SiC metal matrix composites using pcd inserts.International Journal of Advanced Manufacturing Technology,2007,38:447–454.
    [64] ASME. ASME Y14.5-2009, Dimensioning and Tolerancing. New York:ASME,2009.
    [65] Mayer J. R. R., Cloutier G., Prediction of Diameter Errors in Bar Turning: aComputationally Effective Model. Applied Mathematical Modeling,2000,24:943-956.
    [66] Rafai N. H., and Islam M. N., An Investigation into Dimensional Accuracy andSurface Finish Achievable in Dry Turning. Machining Science and Technology,2009,13(3):571-589.
    [67] Phan A.V., et al., Finite element and experimental studies of diametral errors incantilever bar turning. Applied Mathematical Modelling,2003,27:221–232.
    [68] Dhar N. R., Islam M. W., Islam S., Mithu M. A. H.,. The Influence ofMinimum Quantity of Lubrication (MQL) on Cutting Temperature, Chip andDimensional Accuracy in Turning AISI-1040Steel. Journal of MaterialsProcessing Technology,2006,171:93-99.
    [69] Marcos-Barcena M., Sebastian-Perez M. A., Contreras-Samper J. P., Sanchez-Carrileo M., Sanchez-Lopez M., Sanchez-Sola J. M., Study on Roundess onCylindrical Bars Turned of Aluminum-Copper Alloys UNS A92024. Journal ofMaterials Proccessing Technology,2005,162-163:644-648.
    [70] Phadke M. S., Quality Engineering Using Robust Design. Englewood Cliffs(NJ): Prentice-Hall,1989.
    [71] Yang W. H., and Tarng Y. S., Design optimization of cutting parameters forturning operations based on the Taguchi method. Journal of MaterialProcessing Technology,1998,84:122-129.
    [72] Su Y. L., et al., Design and performance analysis of TiCN-coated cementedcarbide milling cutters. Journal of Material Processing Technology,1999,87:82-89.
    [73] Davim J. P. Design optimization of cutting parameters for turning metal matrixcomposites based on the orthogonal arrays. Journal of Material ProcessingTechnology,2003,132:340-344.
    [74] Ghani J. A., Choudhury I. A., Hassan H. H., Application of Taguchi method inthe optimization of end milling operations. Journal of Material ProcessingTechnology,2004,145:84-92.
    [75] Montgomery D. C. Design and Analysis of Experiments5Ed. New York: JohnWiley and Sons,2001.
    [76] Lima J. G. et al., Hard turning: AISI4340high strength low alloy steel andAISI D2cold work tool steel. Journal of Materials Processing Technology,2005,169:388–395.
    [77] Ling Z., Luo L., Dodd B., Experimental Study on the Formation of ShearBands and Effect of Microstructure in Al-2124/SiCp Composites UnderDynamic Compression. Reading RG62AY,: Journal de Physique111,1994,4.
    [78] Ross P. J., Taguchi Techniques for Quality Engineering: Loss Function,Orthogonal Experiments, Parameter and Tolerance Design,2nd Ed. New York:McGraw-Hill,1996.
    [79] Kwak J. S., Application of Taguchi and Response Surface Methodologies forGeometric Error in Surface Grinding Process. International Journal of MachineTools and Manufacture,2005,45:327-334.
    [80] Palanikumar K., Muthukrishnan N., Hariprasad K. S., Surface RoughnessParameters Optimization in Machining A356/SiC20p Metal Matrix Compositesby PCD Tool Using Response Surface Methodology and Desirability Function.Machining Science and Technology,2008,12:529-545.
    [81] Gaitonde V. N., Karnik S. R., Davim J. P., Computational Methods andOptimization in Machining of Metal Matrix Composites. Davim J. P.(Ed).Machining of Metal Matrix Composites2012,143-162.
    [82] Zhou J. G., Herscovici H., Chen C. C., Parametric Process Optimization toImprove the Accuracy of Rapid Prototyped Stereolithography. InternationalJournal of Machine Tools and Manufacture,1999,40:1-17.
    [83] Chawla N., Chawla K. K., Microstructure Based Modeling of the DeformationBehavior of Particle Reinforced Metal Matrix Composites, Journal of MaterialScence,2006,41,913-925.
    [84] Shetty R., Keni L., Pai R., Kamath V., Experimental and Analytical Study onChip Formation Mechanism in Machining of DRACs. ARPN Journal ofEngineering and Applied Sciences,2008,3(5):27-32.
    [85] Systems, Third Wave. AdvantEdgeTM FEM5.6User’s Manual.. Minneapolis:Third Wave Systems, Inc.2010.
    [86] Li Y., Ramesh K. T., Chin E. S. C., Comparison of the plastic deformation andfailure of A359/SiC and6061-T6/Al2O3metal matrix composites underdynamic tension. Mater Sci Eng,2004,371(A):359–70.
    [87] Li Y., Ramesh K. T., Chin E. S. C., Plastic deformation and failure in A359aluminum and an A359-SiCp MMC under quasistatic and high-strain-ratetension. J Compos Mater,2007,41:27-40.
    [88] Dandekar C. R., Shin Y. C., Multiphase fnite element modeling of machiningunidirectional composites: prediction of debonding and fber damage. J ManufSci Eng,2008,130(5).
    [89] Miguelez M. H., Navarro C., Dynamic characterization at high temperature ofMMCs with discontinuous reinforcement. J Phys IV,2000,10:305-10.
    [90] Mason J. J., Ritchie R. O., Fatigue Crack Growth Resistance in SiC Particulateand Whisker Reinforced P/M2124Aluminum Matrix Composites. MaterialsScience and Engineering,1997, A231:170-182.
    [91] International, ASM., Metals handbook: properties and selection-non ferrousalloys and special-purpose materials. ASM International,1990.
    [92] Dmitri K., Metal Matrix Composite2124-25%SiC. SubsTech Substances andTechnologies. Substances and Technologies,03062012.[Citation:28012013.] http://www.substech.com.
    [93] Morteza F., Pouya Z., Javad T., Reza Y., Investigation of Reinforced SiCParticles Percentage on Machining Force of Metal Matrix Composites. ModernApplied Science,2012,6(8):9-20.
    [94] Ilyas U., Mustafa K. U., Low Cycle Fatigue Properties of Al2124/SiC Al-AlloyComposites. Turkish J.Eng. Env. Sci.,2002,26:265-274.
    [95] Peter L. B., Peter R. D., Larry F.,. Short-Term High-Temperature Properties ofReinforced Metal Matrix Composites. Ed Norman R. A., Peter R. D. TestingTechnology of Metal Matrix Composites. West Hanover MA: AmericanSociety for Testing and Materials,1988.
    [96] Brandt R., Neuer G., Electrical resistivity and thermal conductivity of pureAluminum and aluminum alloys up to and above the melting temperature.International Journal of Thermalphysics,2007,28(5):1429-1446.
    [97] Corporation., Accuratus Ceramic. Silicon Carbide Material Properties.Accuratus. Accuratus Corporation.,[Citation:26JANUARY2013.]http://accuratus.com/silicar.html.
    [98] Sahoo P., Barman T., Davim P. J., Fractal Analysis in Machining. Springer,2011.
    [99] Sahoo P., Ghosh N., Finite element contact analysis of fractal surfaces. J PhysD Appl Phys2007,40:4245–4252.
    [100] Yan W, Komvopoulos K., Contact analysis of elastic-plastic fractal surfaces. JAppl Phys1998,84(7):3617–3624.
    [101] Aslantas K., Ucun I., Cicek A., Tool Life and Wear Mechanism of Coated andUncoated Al2O3/TiCN Mixed Ceramic Tools in Turning Hardened Alloy Steel.Wear,2012,274-275:442-451.
    [102] Shetty R., et al., Taguchi's Technique in Machining of Metal MatrixComposites. Journal of Brazil Society Mechanical Science&Engineering,2009,31.
    [103] Rajesh K. B., Sudhir K., Das S., Effect of machining parameters on surfaceroughness and tool wear for7075Al alloy SiC composite. International Journalof Advanced Manufacturing Technology,2010,50:459-469.
    [104] Guojun D., Haijun Z., Ming Z., Yuanjing Z., Experimental Investigation onUltrasonic Vibration Assisted Turning of Sicp/Al Composites. Materials andManufacturing Processes,2012.
    [105] ASME. ASME Y14.5-2009, Dimensioning and Tolerancing. ASME,2009,94-95.
    [106] Shew Y. W., Kwong C. K., Optimisation of the plated through hole processusing experimental design and response surface methodology. InternationalJournal of Advanced Manufacturing Technology,2002,20:758-764.
    [107] Minitab Inc. Meet Minitab Release16.1.0for Windows. USA: Minitab Inc,2010.
    [108] El-Gallab M., Sklad M., Maching of Al/SiC Particulate Metal MatrixComposites Part II: Workpiece Surface Integrity. Journal of MaterialsProcessing Technology,1998,83:277-285.
    [109] Ramanujan R., Muthukrishnan N., and Raju R., Optimization of CuttingParameters for Turning Al-SiC(10%) MMC Using ANOVA and GreyRelational Analysis. International Journal of Precision Engineering andManufacturing,2011,12:651-656.
    [110] Palanikumar K., Karthikeyan R., Optimal Machining Conditions for Turning ofParticulate Metal Matrix Composites using Taguchi and Response SurfaceMethodologies. s.l.: Machining Science and Technology,2006,10:417-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700