用户名: 密码: 验证码:
腐植酸碳化膜及石墨烯复合物的自组装和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的发展,人们可以通过纳米材料的组成、结构和形貌等来控制它们的基本性质。纳米功能材料表现出不同于其块体材料的性质,并可被应用于某些特定场合。通过对纳米材料进行一定的自组装,可以得到性质不同于单个纳米颗粒和块体样品的纳米结构复合物。本文首先制备出了几种纳米结构材料(石墨烯片、银纳米颗粒、氧化铁纳米颗粒和腐植酸纳米胶粒),从而为这些纳米材料的各种自组装做好了铺垫。利用层层自组装、流动定向自组装和溶液相自组装方法,将这些纳米材料自组装成复合物或薄膜,从而研究了复合物或薄膜的性质与形貌、结构之间的关系。此外,将绿色化学基本原理和纳米材料制备相结合,努力实现使用原料的低廉性、实验过程的绿色化、工艺过程的普适性和可控性以及材料形貌的可控性等目标。本文的主要内容包括以下几点:
     1.采用层层自组装技术,构建了由带负电的腐植酸和带正电的聚二烯二甲基溴化铵组成的多层纳米结构薄膜。紫外可见光分光光度计的测量显示薄膜的吸收率随着双层数的增加而线性的增加。傅里叶变换红外光谱的结果表明薄膜中既含有未离解的腐植酸胶体也含有离解的腐植酸。浸渍溶液中NaCl摩尔浓度为0.0到0.2M时,层层自组装得到的(PDDA/HA)10薄膜的厚度为6.0±0.5到64.9±0.5nm。薄膜的厚度与浸渍溶液中NaCl摩尔浓度的平方根成线性增加关系,而薄膜的折射率也与浸渍溶液的离子强度有关。这些都是由于随着溶液离子强度的增加,溶液中的聚合电解质的链状结构从伸展的棒状构型变为无规则的卷曲状构型并在薄膜中保持而导致的。根据薄膜的电化学测试,氢离子还原的峰值电流与扫描速度的平方根成线性关系,这说明在电极表面发生的氧化还原过程是扩散限制的。将在氧化铝纤维上的(Fe~(3+)/HA)40薄膜碳化后,薄膜的石墨化和有序程度随碳化温度升高而提高。
     2.水溶性石墨烯的制备及其流动定向自组装方法构建薄膜。将石墨氧化制得氧化石墨,接着氧化石墨被超声剥离得到氧化石墨烯分散液。在氨水存在的情况下用肼还原,得到依靠静电排斥作用而稳定的石墨烯胶体分散液。这种分散液可以在没有聚合物稳定剂和表面活性剂的情况下稳定存在达一个月以上,从而使石墨烯的液相大规模加工成为可能。鉴于层层自组装方法效率低,采用流动定向自组装方法将石墨烯分散液加工成厚度在几十纳米到十几微米范围的均匀薄膜,并将薄膜转移到各种基体之上。与氧化石墨烯薄膜相比,石墨烯薄膜具有高的金属光泽和反射性、以及改善的电化学性能。用循环伏安法表征了薄膜的电化学电容性质,结果显示其质量比电容可达121F/g,可潜在的用于柔性超级电容器的电极材料。利用Fe(CN)_6~(3-/4-)氧化还原系统,对比了氧化石墨烯薄膜/电解液界面处和石墨烯薄膜/电解液界面处的电子传输性能,得到了还原对性能改善的作用,并理解了电化学性能和结构的关系。
     3.水溶性银纳米颗粒-石墨烯复合物的制备及其流动定向自组装方法构建薄膜。采用靠静电作用的溶液相自组装方法,通过分步还原氧化石墨烯和银离子制备了银纳米颗粒-石墨烯复合物。依靠氨吸附的静电排斥作用,使产物可以水中稳定存在达两周。透射电子显微镜测试显示银纳米颗粒很好的分散于石墨烯片之中,且复合物的形貌和复合物中银纳米颗粒的含量有密切关系。利用流动定向自组装方法,可以制得具有闪亮的金属光泽、高的反射性和很好的柔性的均匀薄膜。与单纯的石墨烯薄膜的拉曼信号相比,复合物薄膜的拉曼信号强度随着银纳米颗粒在复合物中含量的增加而增强了三到八倍,说明拉曼信号的强度增加量可以通过改变复合物中银纳米颗粒的密度来调节。这种信号增强是由银纳米颗粒和石墨烯之间形成的电荷转移配合物引起的,是化学拉曼增强作用。对于Fe(CN)_6~(3-/4-)氧化还原系统,复合物薄膜/电解液界面处具有快速的电子转移速度。
     4.通过溶液相自组装方法,制备了氧化铁纳米颗粒-石墨烯复合物。预制好的憎水性氧化铁纳米颗粒被转移到水相,接着与氧化石墨烯分散液混合。在还原过程中,直径约为10nm的氧化铁纳米颗粒通过静电作用被自组装到石墨烯片之上。X射线衍射和选取电子衍射显示复合物中的氧化铁纳米颗粒是反尖晶石结构的。由磁化曲线可知,随着氧化铁纳米颗粒含量的降低,复合物的比饱和磁化强度值由38.3emu/g降低到19.5emu/g和7.7emu/g,并都表现出磁滞较小的铁磁行为。复合物的介电常数和磁导率在测试的频率范围内有明显的波动,这主要归因于由交换共振(小尺寸效应、表面效应和自旋波激发的结果)和自然共振引起的多重磁共振。
     5.将绿色化学基本原理和金属纳米颗粒的制备相结合,描述了一种环境友好的制备单分散银纳米颗粒的方法。将预制好的油酸银前驱体在油酸中热还原,可以制备平均直径在4.0到5.0nm范围内、直径的标准差最低可达0.3nm(多分散性:5.5%)的银纳米颗粒。在整个制备过程,需要的反应物只有硝酸银、油酸钠和油酸,这充分显示了该方法在简单和环境可持续性方面的优势。在相同的初始前驱体摩尔浓度情况下,银纳米颗粒的平均直径可以通过反应时间来粗略控制,也可以通过反应温度来更精细的调节。利用成核/扩散成长模型,解释了各种情况下制备的银纳米颗粒的尺寸和形貌差异。得到的单分散银纳米颗粒很容易自组装成单层纳米颗粒紧密排列的六角形阵列。利用石墨烯作为分析物,银纳米颗粒组成的表面增强拉曼散射活性涂层使其拉曼散射信号增强。具有活性层的石墨烯拉曼散射信号强度是纯石墨烯拉曼散射信号强度的十五倍以上。银纳米颗粒的表面增强拉曼散射活性是在银纳米颗粒结合处(活性位置)的强烈的局域性磁场的结果,并且可以用粒子间耦合诱导的拉曼增强来解释。
With the development of nanosciance and nanotechnology, the properties ofnanostructure materials were controlled by their composition, structure andmorphology. These functional nanomaterials can have properties that differ fromthose of the same bulk materials and can be used in certain circumstances. Thecomposites obtained from the self-assembly of nanomaterials display properties thatare different to those displayed by the individual nanoparticles and bulk materials.Several nanostructure materials, namely, graphene, silver nanoparticles, iron oxideand humic acid nanoparticles, were prepared to pave the way for variousself-assembly. These nanostructure materials were self-assembled into compositesand films to study the relationship of their properties and the morphology, structure.Furthermore, with the integration of green chemistry principles into the synthesis ofnanostructure materials, the goals, such as, the low cost of raw materials, the greenexperiment, the process of universality and controllability, as well as materialmorphology controllability, were sought achieve with efforts. The main contents andresults are summarized as follows:
     1. Multilayer films consisting of negatively charged humic acid and positivelycharged polyelectrolyte have been fabricated on various substrates using thelayer-by-layer self-assembly technique. The thickness (linearly increasing with thesquare root of NaCl concentration) and refractive index of the films determined byellipsometry can be regulated by ionic strength through adjusting the coiling of thepolyelectrolyte chains for assembly. The cone-shaped features on surface obtainedby atomic force microscope are derived from the negatively charged colloidal humicacid binding with polyelectrolyte cation. The smooth features are corresponding to the dissociated humic acid with carboxylate ion (―COO) electrostatically attractedon polyelectrolyte cation. These results are verified by Fourier transform infraredspectra. The linear dependence of the peak current on the square root of the scan raterevealed by the cyclic voltammetry indicates that the redox process at the electrodesurface is diffusion-limited and the charge transport does not involve the film itself.
     2. The aqueous graphene dispersions can be readily formed by reduction ofgraphene oxide colloids modified with ammonia. The dispersion can be stable overone month without the need for either polymer or surfactant stabilizers. Uniformfilms with thickness ranging from dozens of nanometers to more than a dozenmicrometers were prepared by flow directed self-assembly method and transferredto various substrates. As comparison to graphene oxide film, graphene film displaysa shiny metallic luster, high reflectivity and improved electrochemical properties.This graphene film electrode shows a specific electrochemical capacitance of121F/g, and is particularly promising for flexible supercapacitors. The electron transferreaction at the graphene film/solution interface is faster than that at the grapheneoxide film/solution interface using the Fe(CN)_6~(3-/4-)redox system due to therelationship of electrochemical properties and structure.
     3. A solution-based chemical approach has been used to prepare silvernanoparticle–graphene (Ag–G) composites through sequential reduction of grapheneoxidation and silver ions. The products can readily form a stable aqueous solutionwithout polymeric or surfactant stabilizers, and this makes it possible to producegraphene–silver composites on a large scale using low-cost solution processingtechniques. The paper-like Ag–G film obtained by vacuum filtration is glossy andhas a high reflectivity and good flexibility. Raman signals of graphene for the filmare increased from three-to eightfold with the increase of silver nanoparticle contentin the composites, indicating that the increase can be tuned by changing the densityof silver nanoparticles. The electrochemical properties of the Ag–G film demonstratetheir fast electron-transfer kinetics for the Fe(CN)_6~(3-/4-)redox system.
     4. Monodisperse iron oxide nanoparticle-reduced graphene oxide compositeswere prepared by self-assembly in aqueous phase. Pre-synthesized iron oxide nanoparticles were transferred to aqueous phase and then mixed with grapheneoxide dispersion. The iron oxide nanoparticles, with diameter of around10nm, wereself-assembled on the reduced graphene oxide sheets through electrostatic attractionduring the reduction of graphene oxide. X-ray diffraction and selected area electrondiffraction indicated the inverse spinel structure of the iron oxide nanoparticles. Themagnetization curves indicated that all samples exhibited ferromagnetic behavior atroom temperature with small coercivity. The values of specific saturatedmagnetization of composites with different densities of iron oxide nanoparticles are38.3,19.5and7.7emu/g. Permittivity and permeability of composites exhibitobvious fluctuations, which are ascribed to the multiple magnetic resonances. Themultiple resonances involve exchange resonances (the consequence of small sizeeffect, surface effect and spin wave excitations) and natural resonance.
     5. We describe a simple and green method for preparing silver nanoparticleswith an average diameter in the range from4.0nm to5.0nm and with the standarddeviation as low as0.3nm (polydispersity:5.5%). The pre-synthesized silver oleateprecursor in oleic acid was thermally reduced to obtain the monodisperse silvernanoparticles without a size selection procedure. This environmentally friendlychemistry approach requires only three reagents (silver nitrate, sodium oleate andoleic acid) which all come from renewable resources. The average diameter of thesenanoparticles can be greatly adjusted by reaction time and finely regulated byreaction temperature at same precursor concentration. The nucleation/diffusionalgrowth model can be used to interpret the size and morphology difference of silvernanoparticles synthesized in different condition. Raman spectra of graphene withand without an active layer of silver nanoparticles were measured to investigate thesurface-enhanced Raman scattering properties of silver nanoparticles. Raman signalof graphene with an active layer increased by fifteen-fold in comparison to thatwithout an active layer. The surface-enhanced Raman scattering activity can beexplained using the interparticle coupling induced Raman enhancement.
引文
1. Zhang Xiang, Sun Cheng and Fang Nicholas, Manufacturing at Nanoscale:Top-Down, Bottom-up and System Engineering. Journal of NanoparticleResearch,2004.6(1): p.125-30.
    2.张淑东,自下而上与自上而下法构筑纳米结构及其物性研究,[学位论文],中国科技大学图书馆,中国科学技术大学,2010.
    3. Lu An-Hui, Salabas E. L and Schüth Ferdi, Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application. AngewandteChemie International Edition,2007.46(8): p.1222-44.
    4. Ko Hyunhyub, Singamaneni Srikanth and Tsukruk Vladimir V.,Nanostructured Surfaces and Assemblies as SERS Media. Small,2008.4(10):p.1576-99.
    5. Petty Michael C., Langmuir-Blodgett Films an introduction.1996, Cambridge:Cambridge University.
    6. Decher Gero. and Schlenoff J. Schlenoff, Multilayer thin films: sequentialassembly of nanocomposite materials.2003, Weinheim: Wiley-VCH
    7. Dikin Dmitriy A., Stankovich Sasha, Zimney Eric J., et al., Preparation andcharacterization of graphene oxide paper. Nature,2007.448(7152): p.457-60.
    8. Wang Xuan, Zhi Linjie and Mullen Klaus, Transparent, Conductive GrapheneElectrodes for Dye-Sensitized Solar Cells. Nano Letters,2007.8(1): p.323-7.
    9. Ariga Katsuhiko, Hill Jonathan P. and Ji Qingmin, Layer-by-layer assembly asa versatile bottom-up nanofabrication technique for exploratory research andrealistic application. Physical Chemistry Chemical Physics,2007.9(19): p.2319-40.
    10. Stevenson F.J., Humus chemistry: genesis, composition, reactions.1994, NewJersey: John Wiley&Sons Inc.
    11.郑平,煤炭腐植酸的生产和应用.1991.
    12. Ziechmann W., Spectroscopic investigations of lignin, humic substances andpeat. Geochimica et Cosmochimica Acta,1964.28(10–11): p.1555-66.
    13. Giannis Apostolos, Gidarakos Evangelos and Skouta Antigoni, Application ofsodium dodecyl sulfate and humic acid as surfactants on electrokineticremediation of cadmium-contaminated soil. Desalination,2007.211(1-3): p.249-60.
    14. Yee Min Min, Miyajima Tohru and Takisawa Noboru, Study of ionicsurfactants binding to humic acid and fulvic acid by potentiometric titrationand dynamic light scattering. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2009.347(1-3): p.128-32.
    15. Alvarez-Puebla R. A. and Garrido J. J., Effect of pH on the aggregation of agray humic acid in colloidal and solid states. Chemosphere,2005.59(5): p.659-67.
    16. Plaschke M., R mer J., Klenze R., et al., In situ AFM study of sorbed humicacid colloids at different pH. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1999.160(3): p.269-79.
    17. Kroto H. W., Heath J. R., O'Brien S. C., et al., C60: Buckminsterfullerene.Nature,1985.318(6042): p.162-3.
    18. Iijima Sumio, Helical microtubules of graphitic carbon. Nature,1991.354(6348): p.56-8.
    19. Novoselov K. S., Geim A. K., Morozov S. V., et al., Electric Field Effect inAtomically Thin Carbon Films. Science,2004.306(5696): p.666-9.
    20. Geim A. K. and Novoselov K. S., The rise of graphene. Nature Materials,2007.6(3): p.183-91.
    21. Rao C. N. R., Biswas Kanishka, Subrahmanyam K. S., et al., Graphene, thenew nanocarbon. Journal of Materials Chemistry,2009.19(17): p.2457-69.
    22. Tombros N., Tanabe S., Veligura A., et al., Anisotropic Spin Relaxation inGraphene. Physical Review Letters,2008.101(4): p.046601.
    23. Lee Changgu, Wei Xiaoding, Kysar Jeffrey W., et al., Measurement of theElastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008.321(5887): p.385-8.
    24. Balandin Alexander A., Ghosh Suchismita, Bao Wenzhong, et al., SuperiorThermal Conductivity of Single-Layer Graphene. Nano Letters,2008.8(3): p.902-7.
    25. Enoki Toshiaki, Kawatsu Naoki, Shibayama Yoshiyuki, et al., Magnetism ofnano-graphite and its assembly. Polyhedron,2001.20(11-14): p.1311-5.
    26. Kim Hyunwoo, Abdala Ahmed A. and Macosko Christopher W.,Graphene/Polymer Nanocomposites. Macromolecules,2010.43(16): p.6515-30.
    27. Chen Da, Tang Longhua and Li Jinghong, Graphene-based materials inelectrochemistry. Chemical Society Reviews,2010.39(8): p.3157-80.
    28. Bonaccorso F., Sun Z., Hasan T., et al., Graphene photonics andoptoelectronics. Nat Photon,2010.4(9): p.611-22.
    29. Nair Lakshmi S. and Laurencin Cato T., Silver Nanoparticles: Synthesis andTherapeutic Applications. Journal of Biomedical Nanotechnology,2007.3(4):p.301-16.
    30. Sharma Virender K., Yngard Ria A. and Lin Yekaterina, Silver nanoparticles:Green synthesis and their antimicrobial activities. Advances in Colloid andInterface Science,2009.145(1–2): p.83-96.
    31. Li W., Guo Y. and Zhang P., SERS-active silver nanoparticles prepared by asimple and green method. The Journal of Physical Chemistry C,2010.114(14):p.6413-7.
    32. Zhang G., Keita B., Dolbecq A., et al., Green chemistry-type one-stepsynthesis of silver nanostructures based on MoV–MoVI mixed-valencepolyoxometalates. Chemistry of Materials,2007.19(24): p.5821-3.
    33. Laurent S., Forge D., Port M., et al., Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, andbiological applications. Chemical reviews,2008.108(6): p.2064.
    34. Gu Hongwei, Xu Keming, Xu Chenjie, et al., Biofunctional magneticnanoparticles for protein separation and pathogen detection. ChemicalCommunications,2006(9): p.941-9.
    35. Jiles D. C., Recent advances and future directions in magnetic materials. ActaMaterialia,2003.51(19): p.5907-39.
    36. Neuberger Tobias, Sch pf Bernhard, Hofmann Heinrich, et al.,Superparamagnetic nanoparticles for biomedical applications: Possibilities andlimitations of a new drug delivery system. Journal of Magnetism and MagneticMaterials,2005.293(1): p.483-96.
    37. Berry Catherine C., Possible exploitation of magnetic nanoparticle-cellinteraction for biomedical applications. Journal of Materials Chemistry,2005.15(5): p.543-7.
    38. Decher Gero, Fuzzy Nanoassemblies: Toward Layered PolymericMulticomposites. Science,1997.277(5330): p.1232-7.
    39. Keller Steven W., Kim Hyuk-Nyun and Mallouk Thomas E., Layer-by-LayerAssembly of Intercalation Compounds and Heterostructures on Surfaces:Toward Molecular "Beaker" Epitaxy. Journal of the American ChemicalSociety,1994.116(19): p.8817-8.
    40. Quinn J. F., Johnston A. P. R., Such G. K., et al., Next generation, sequentiallyassembled ultrathin films: Beyond electrostatics. Chemical Society Reviews,
    2007.36(5): p.707-18.
    41. Zhang Xi, Chen Huan and Zhang Hongyu, Layer-by-layer assembly: fromconventional to unconventional methods. Chemical Communications,2007(14): p.1395-405.
    42. Khopade A.J. and Caruso F., Stepwise self-assembled poly (amidoamine)dendrimer and poly (styrenesulfonate) microcapsules as sustained deliveryvehicles. Biomacromolecules,2002.3(6): p.1154-62.
    43. Cho Jinhan, Hong Jinkee, Char Kookheon, et al., Nanoporous BlockCopolymer Micelle/Micelle Multilayer Films with Dual Optical Properties.Journal of the American Chemical Society,2006.128(30): p.9935-42.
    44. Jin Mingshang, He Guannan, Zhang Hui, et al., Shape-Controlled Synthesis ofCopper Nanocrystals in an Aqueous Solution with Glucose as a ReducingAgent and Hexadecylamine as a Capping Agent. Angewandte ChemieInternational Edition,2011.50(45): p.10560-4.
    45. Sun Shouheng, Murray C. B., Weller Dieter, et al., Monodisperse FePtNanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science,2000.287(5460): p.1989-92.
    46. Guo S. and Sun S., FePt Nanoparticles Assembled on Graphene as EnhancedCatalyst for Oxygen Reduction Reaction. Journal of the American ChemicalSociety,2012.
    47. Sun Yongming, Hu Xianluo, Luo Wei, et al., Hierarchical self-assembly ofMn2Mo3O8-graphene nanostructures and their enhanced lithium-storageproperties. Journal of Materials Chemistry,2011.21(43): p.17229-35.
    48. Chen Haiqun, Müller Marc B., Gilmore Kerry J., et al., Mechanically Strong,Electrically Conductive, and Biocompatible Graphene Paper. AdvancedMaterials,2008.20(18): p.3557-61.
    49. Eda Goki, Fanchini Giovanni and Chhowalla Manish, Large-area ultrathinfilms of reduced graphene oxide as a transparent and flexible electronicmaterial. Nat Nano,2008.3(5): p.270-4.
    50. Park S., An J., Jung I., et al., Colloidal suspensions of highly reduced grapheneoxide in a wide variety of organic solvents. Nano Letters,2009.9(4): p.1593-7.
    51. Dubin S., Gilje S., Wang K., et al., A one-step, solvothermal reduction methodfor producing reduced graphene oxide dispersions in organic solvents. ACSnano,2010.4(7): p.3845-52.
    1. Tan K. H., Humic matter in soil and the environment: principles andcontroversies.2003, New York: Marcel Dekker.
    2. Myneni S. C. B., Brown J. T., Martinez G. A., et al., Imaging of HumicSubstance Macromolecular Structures in Water and Soils. science,1999.286(5443): p.1335-7.
    3. Alvarez-Puebla Ramon A., Garrido Julian J., Valenzuela-Calahorro Cristobal,et al., Retention and induced aggregation of Co(II) on a humic substance:sorption isotherms, infrared absorption, and molecular modeling. SurfaceScience,2005.575(1-2): p.136-46.
    4. Miikki V., Senesi N. and Hanninen K., Characterization of humic materialformed by composting of domestic and industrial biowastes: Part2spectroscopic evaluation of humic acid structures. Chemosphere,1997.34(8):p.1639-51.
    5. Sutton Rebecca and Sposito Garrison, Molecular Structure in Soil HumicSubstances: The New View. Environmental Science&Technology,2005.39(23): p.9009-15.
    6. Kang Seunghun and Xing Baoshan, Humic Acid Fractionation uponSequential Adsorption onto Goethite. Langmuir,2008.24(6): p.2525-31.
    7. Yang Kun, Lin Daohui and Xing Baoshan, Interactions of Humic Acid withNanosized Inorganic Oxides. Langmuir,2009.25(6): p.3571-6.
    8. Ou Xiaoxia, Chen Shuo, Quan Xie, et al., Photochemical activity andcharacterization of the complex of humic acids with iron(III). Journal ofGeochemical Exploration,2009.102(2): p.49-55.
    9. Perminova I. V., Hatfield K. and Hertkorn N., Use of humic substances toremediate polluted environments: from theory to practice.2005, Dordrecht:Springer.
    10. Louis Ghantous, Elisabeth Lojou and Pierre Bianco, Membrane Electrodes forStudying the Interaction of Humic Acids with Heavy Metals: Cu(II), Pb(II),Cd(II), and U(VI). Electroanalysis,1998.10(18): p.1249-54.
    11. Vermeer A. W. P., van Riemsdijk W. H. and Koopal L. K., Adsorption ofHumic Acid to Mineral Particles.1. Specific and Electrostatic Interactions.Langmuir,1998.14(10): p.2810-9.
    12. Liu A., Wu R. C., Eschenazi E., et al., AFM on humic acid adsorption on mica.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000.174(1-2): p.245-52.
    13. Plaschke M., Romer J., Klenze R., et al., In situ AFM study of sorbed humicacid colloids at different pH. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1999.160(3): p.269-79.
    14. Iglesias A., Lopez R., Gondar D., et al., Adsorption of MCPA on goethite andhumic acid-coated goethite. Chemosphere,2010.78(11): p.1403-8.
    15. Antelo J., Fiol S., Marino S., et al., Copper adsorption on humic acid coatedgibbsite: comparison with single sorbent systems. Environmental Chemistry2009.6(6): p.535-43.
    16. Li Ying, Yue Qin-Yan and Gao Bao-Yu, Effect of humic acid on the Cr(VI)adsorption onto Kaolin. Applied Clay Science,2010.48(3): p.481-4.
    17. Galeska Izabela, Hickey Tammy, Moussy Francis, et al., Characterization andBiocompatibility Studies of Novel Humic Acids Based Films as MembraneMaterial for an Implantable Glucose Sensor. Biomacromolecules,2001.2(4):p.1249-55.
    18. Vinodgopal K., Subramanian Vaidyanathan, Carrasquillo Sheila, et al.,Electrophoretic Assembly of Naturally Occurring Humic Substances as ThinFilms. Environmental Science and Technology,2002.37(4): p.761-5.
    19. Crespilho Frank N., Zucolotto Valtencir, Siqueira Jose R., et al.,Immobilization of Humic Acid in Nanostructured Layer-by-Layer Films forSensing Applications. Environmental Science&Technology,2005.39(14): p.5385-9.
    20. Xu J. J., Wang G., Zhang Q., et al., Interfacing cytochrome c to Au electrodeswith humic acid film. Electrochemistry Communications,2004.6(3): p.278-83.
    21. Jiang C., Markutsya S. and Tsukruk V. V., Compliant, Robust, and TrulyNanoscale Free-Standing Multilayer Films Fabricated Using Spin-AssistedLayer-by-Layer Assembly. Advanced Materials,2004.16(2): p.157-61.
    22. Decher Gero, Fuzzy Nanoassemblies: Toward Layered PolymericMulticomposites. Science,1997.277(5330): p.1232-7.
    23. Jiang Chaoyang, Markutsya Sergiy, Pikus Yuri, et al., Freely suspendednanocomposite membranes as highly sensitive sensors. Nature Materials,2004.3(10): p.721-8.
    24. Aleixo L. M., Godinho O. E. S. and da Costa W. F., Potentiometric study ofacid--base properties of humic acid using linear functions for treatment oftitration data. Analytica Chimica Acta,1992.257(1): p.35-9.
    25. Choppin G. R. and Kullberg L., Protonation thermodynamics of humic acid.Journal of Inorganic and Nuclear Chemistry,1978.40(4): p.651-4.
    26. Tatzber Michael, Stemmer Michael, Spiegel Heide, et al., FTIR-spectroscopiccharacterization of humic acids and humin fractions obtained by advancedNaOH, Na4P2O7, and Na2CO3extraction procedures. Journal of PlantNutrition and Soil Science,2007.170(4): p.522-9.
    27. Chen Hongjun, Wang Yuling and Dong Shaojun, An Effective HydrothermalRoute for the Synthesis of Multiple PDDA-Protected Noble-MetalNanostructures. Inorganic Chemistry,2007.46(25): p.10587-93.
    28. Shiratori S. S. and Rubner M. F., pH-Dependent Thickness Behavior ofSequentially Adsorbed Layers of Weak Polyelectrolytes. Macromolecules,2000.33(11): p.4213-9.
    29. Yoo Dongsik, Shiratori Seimei S. and Rubner Michael F., Controlling BilayerComposition and Surface Wettability of Sequentially Adsorbed Multilayers ofWeak Polyelectrolytes. Macromolecules,1998.31(13): p.4309-18.
    30. McAloney Richard A., Sinyor Mark, Dudnik Vyacheslav, et al., Atomic ForceMicroscopy Studies of Salt Effects on Polyelectrolyte Multilayer FilmMorphology. Langmuir,2001.17(21): p.6655-63.
    31. Steitz Roland, Leiner Vincent, Siebrecht Ralf, et al., Influence of the ionicstrength on the structure of polyelectrolyte films at the solid/liquid interface.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2000.163(1): p.63-70.
    32. Steitz Roland, Jaeger Werner and Klitzing Regine v, Influence of ChargeDensity and Ionic Strength on the Multilayer Formation of StrongPolyelectrolytes. Langmuir,2001.17(15): p.4471-4.
    33. Kubo S., Diaz A., Tang Y., et al., Tunability of the refractive index of goldnanoparticle dispersions. Nano Letters,2007.7(11): p.3418-23.
    34. Kim J. K., Gessmann T., Schubert E. F., et al., GaInN light-emitting diode withconductive omnidirectional reflector having a low-refractive-index indium-tinoxide layer. Applied Physics Letters,2006.88(1).
    35. Miyauchi M. and Tokudome H., Low-reflective and super-hydrophilicproperties of titanate or titania nanotube thin films via layer-by-layer assembly.Thin Solid Films,2006.515(4): p.2091-6.
    36. Guo J. and Ma J., AFM study on the sorbed NOM and its fractions isolatedfrom River Songhua. Water Research,2006.40(10): p.1975-84.
    37. Chen C., Wang X., Jiang H., et al., Direct observation of macromolecularstructures of humic acid by AFM and SEM. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007.302(1-3): p.121-5.
    38. Laurent Delphine and Schlenoff Joseph B., Multilayer Assemblies of RedoxPolyelectrolytes. Langmuir,1997.13(6): p.1552-7.
    39. Nurmi James T. and Tratnyek Paul G., Electrochemical Properties of NaturalOrganic Matter (NOM), Fractions of NOM, and Model BiogeochemicalElectron Shuttles. Environmental Science&Technology,2002.36(4): p.617-24.
    1. Lee Changgu, Wei Xiaoding, Kysar Jeffrey W., et al., Measurement of theElastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008.321(5887): p.385-8.
    2. Balandin Alexander A., Ghosh Suchismita, Bao Wenzhong, et al., SuperiorThermal Conductivity of Single-Layer Graphene. Nano Letters,2008.8(3): p.902-7.
    3. Bolotin K. I., Sikes K. J., Jiang Z., et al., Ultrahigh electron mobility insuspended graphene. Solid State Communications,2008.146(9-10): p.351-5.
    4. Stoller Meryl D., Park Sungjin, Zhu Yanwu, et al., Graphene-BasedUltracapacitors. Nano Letters,2008.8(10): p.3498-502.
    5. Areshkin Denis A. and White Carter T., Building Blocks for IntegratedGraphene Circuits. Nano Letters,2007.7(11): p.3253-9.
    6. Pasricha R., Gupta S. and Srivastava A. K., A Facile and Novel Synthesis ofAg–Graphene-Based Nanocomposites. Small,2009.5(20): p.2253-9.
    7. Khan Umar, May Peter, O’Neill Arlene, et al., Development of stiff, strong,yet tough composites by the addition of solvent exfoliated graphene topolyurethane. Carbon,2010.48(14): p.4035-41.
    8. Wang Da-Wei, Li Feng, Zhao Jinping, et al., Fabrication ofGraphene/Polyaniline Composite Paper via In Situ AnodicElectropolymerization for High-Performance Flexible Electrode. ACS Nano,2009.3(7): p.1745-52.
    9. Yan Jun, Fan Zhuangjun, Wei Tong, et al., Fast and reversible surface redoxreaction of graphene–MnO2composites as supercapacitor electrodes. Carbon,2010.48(13): p.3825-33.
    10. Wang Shu Jun, Geng Yan, Zheng Qingbin, et al., Fabrication of highlyconducting and transparent graphene films. Carbon,2010.48(6): p.1815-23.
    11. Wu Junbo, Agrawal Mukul, Becerril Héctor A., et al., Organic Light-EmittingDiodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano,2009.4(1): p.43-8.
    12. Wang Xuan, Zhi Linjie and Mullen Klaus, Transparent, Conductive GrapheneElectrodes for Dye-Sensitized Solar Cells. Nano Letters,2007.8(1): p.323-7.
    13. Xu Yanfei, Long Guankui, Huang Lu, et al., Polymer photovoltaic deviceswith transparent graphene electrodes produced by spin-casting. Carbon,2010.48(11): p.3308-11.
    14. Novoselov K. S., Geim A. K., Morozov S. V., et al., Electric Field Effect inAtomically Thin Carbon Films. Science,2004.306(5696): p.666-9.
    15. Kim Keun Soo, Zhao Yue, Jang Houk, et al., Large-scale pattern growth ofgraphene films for stretchable transparent electrodes. Nature,2009.457(7230):p.706-10.
    16. Park Hye Jin, Meyer Jannik, Roth Siegmar, et al., Growth and properties offew-layer graphene prepared by chemical vapor deposition. Carbon,2010.48(4): p.1088-94.
    17. Li Dan, Muller Marc B., Gilje Scott, et al., Processable aqueous dispersions ofgraphene nanosheets. Nat Nano,2008.3(2): p.101-5.
    18. Zhu Y., Murali S., Cai W., et al., Graphene and Graphene Oxide: Synthesis,Properties, and Applications. Advanced Materials,2010.22(35): p.3906-24.
    19. Hummers W. S. and Offeman R. E., Preparation of graphitic oxide. Journal ofthe American Chemical Society,1958.80: p.1339.
    20. Cote Laura J., Kim Franklin and Huang Jiaxing, Langmuir BlodgettAssembly of Graphite Oxide Single Layers. Journal of the American ChemicalSociety,2008.131(3): p.1043-9.
    21. Li J. and Liu C. Y, Ag/Graphene Heterostructures: Synthesis, Characterizationand Optical Properties. European Journal of Inorganic Chemistry,2010.2010(8): p.1244-8.
    22. Paredes J. I., Villar-Rodil S., Martínez-Alonso A., et al., Graphene OxideDispersions in Organic Solvents. Langmuir,2008.24(19): p.10560-4.
    23. Si Yongchao and Samulski Edward T., Synthesis of Water Soluble Graphene.Nano Letters,2008.8(6): p.1679-82.
    24. Vickery Jemma L., Patil Avinash J. and Mann Stephen, Fabrication ofGraphene–Polymer Nanocomposites With Higher-Order Three-DimensionalArchitectures. Advanced Materials,2009.21(21): p.2180-4.
    25. Yu Dingshan and Dai Liming, Self-Assembled Graphene/Carbon NanotubeHybrid Films for Supercapacitors. The Journal of Physical Chemistry Letters,2009.1(2): p.467-70.
    26. Jin Zhong, McNicholas Thomas P., Shih Chih-Jen, et al., Click Chemistry onSolution-Dispersed Graphene and Monolayer CVD Graphene. Chemistry ofMaterials,2011.23(14): p.3362-70.
    27. Lotya Mustafa, King Paul J., Khan Umar, et al., High-Concentration,Surfactant-Stabilized Graphene Dispersions. ACS Nano,2010.4(6): p.3155-62.
    28. Dikin Dmitriy A., Stankovich Sasha, Zimney Eric J., et al., Preparation andcharacterization of graphene oxide paper. Nature,2007.448(7152): p.457-60.
    29. Liu Sheng, Wang Jinqing, Zeng Jing, et al.,"Green" electrochemical synthesisof Pt/graphene sheet nanocomposite film and its electrocatalytic property.Journal of Power Sources,2010.195(15): p.4628-33.
    30. Chen H., Muller M. B., Gilmore K. J., et al., Mechanically strong, electricallyconductive, and biocompatible graphene paper. Advanced Materials,2008.20:p.3557-61.
    31. Stankovich Sasha, Piner Richard D., Chen Xinqi, et al., Stable aqueousdispersions of graphitic nanoplatelets via the reduction of exfoliated graphiteoxide in the presence of poly(sodium4-styrenesulfonate). Journal of MaterialsChemistry,2006.16(2): p.155-8.
    32. Li Jun, Cassell Alan, Delzeit Lance, et al., Novel Three-DimensionalElectrodes: Electrochemical Properties of Carbon Nanotube Ensembles. TheJournal of Physical Chemistry B,2002.106(36): p.9299-305.
    33. Tang Longhua, Wang Ying, Li Yueming, et al., Preparation, Structure, andElectrochemical Properties of Reduced Graphene Sheet Films. AdvancedFunctional Materials,2009.19(17): p.2782-9.
    34. Shang Nai Gui, Papakonstantinou Pagona, McMullan Martin, et al.,Catalyst-Free Efficient Growth, Orientation and Biosensing Properties ofMultilayer Graphene Nanoflake Films with Sharp Edge Planes. AdvancedFunctional Materials,2008.18(21): p.3506-14.
    35. Ji Xiaobo, Banks Craig E., Crossley Alison, et al., Oxygenated Edge PlaneSites Slow the Electron Transfer of the Ferro-/Ferricyanide Redox Couple atGraphite Electrodes. ChemPhysChem,2006.7(6): p.1337-44.
    36. Davies Trevor J., Hyde Michael E. and Compton Richard G., NanotrenchArrays Reveal Insight into Graphite Electrochemistry. Angewandte ChemieInternational Edition,2005.44(32): p.5121-6.
    37. Geim A. K. and Novoselov K. S., The rise of graphene. Nat Mater,2007.6(3):p.183-91.
    38. McCreery Richard L., Advanced Carbon Electrode Materials for MolecularElectrochemistry. Chemical Reviews,2008.108(7): p.2646-87.
    39. Kneten Kristin R. and McCreery Richard L., Effects of redox system structureon electron-transfer kinetics at ordered graphite and glassy carbon electrodes.Analytical Chemistry,1992.64(21): p.2518-24.
    1. Stankovich Sasha, Dikin Dmitriy A., Dommett Geoffrey H. B., et al.,Graphene-based composite materials. Nature,2006.442(7100): p.282-6.
    2. Yu Aiping, Ramesh Palanisamy, Itkis Mikhail E., et al., GraphiteNanoplatelet Epoxy Composite Thermal Interface Materials. Journal ofPhysical Chemistry C,2007.111(21): p.7565-9.
    3. Watcharotone Supinda, Dikin Dmitriy A., Stankovich Sasha, et al.,Graphene Silica Composite Thin Films as Transparent Conductors. NanoLetters,2007.7(7): p.1888-92.
    4. Jasuja Kabeer and Berry Vikas, Implantation and Growth of Dendritic GoldNanostructures on Graphene Derivatives: Electrical Property Tailoring andRaman Enhancement. ACS Nano,2009.3(8): p.2358-66.
    5. Kim Young-Kwan, Na Hee-Kyung and Min Dal-Hee, Influence of SurfaceFunctionalization on the Growth of Gold Nanostructures on Graphene ThinFilms. Langmuir,2010.26(16): p.13065-70.
    6. Muszynski Ryan, Seger Brian and Kamat Prashant V., Decorating GrapheneSheets with Gold Nanoparticles. The Journal of Physical Chemistry C,2008.112(14): p.5263-6.
    7. Xu Chao, Wang Xin and Zhu Junwu, Graphene Metal ParticleNanocomposites. The Journal of Physical Chemistry C,2008.112(50): p.19841-5.
    8. Xu Y., Bai H., Lu G., et al., Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets. Journal of theAmerican Chemical Society,2008.130: p.5856-7.
    9. Park Sungjin, An Jinho, Piner Richard D., et al., Aqueous Suspension andCharacterization of Chemically Modified Graphene Sheets. Chemistry ofMaterials,2008.20(21): p.6592-4.
    10. Hernandez Yenny, Nicolosi Valeria, Lotya Mustafa, et al., High-yieldproduction of graphene by liquid-phase exfoliation of graphite. Nat Nano,2008.3(9): p.563-8.
    11. Niyogi Sandip, Bekyarova Elena, Itkis Mikhail E., et al., Solution Propertiesof Graphite and Graphene. Journal of the American Chemical Society,2006.128(24): p.7720-1.
    12. Si Yongchao and Samulski Edward T., Synthesis of Water Soluble Graphene.Nano Letters,2008.8(6): p.1679-82.
    13. Lightcap Ian V., Kosel Thomas H. and Kamat Prashant V., AnchoringSemiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat.Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters,2010.10(2): p.577-83.
    14. Lu Yan, Mei Yu, Schrinner Marc, et al., In Situ Formation of Ag Nanoparticlesin Spherical Polyacrylic Acid Brushes by UV Irradiation. Journal of PhysicalChemistry C,2007.111(21): p.7676-81.
    15. Nickel Ulrich, zu Castell Amelie, P ppl Karin, et al., A Silver ColloidProduced by Reduction with Hydrazine as Support for Highly SensitiveSurface-Enhanced Raman Spectroscopy. Langmuir,2000.16(23): p.9087-91.
    16. Bhui Dipak Kumar, Bar Harekrishna, Sarkar Priyanka, et al., Synthesis andUV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution.Journal of Molecular Liquids,2009.145(1): p.33-7.
    17. Everett DH, Basic principles of colloid science.1988: Royal Society ofChemistry.
    18. Cassagneau Thierry and Fendler Janos H., Preparation and Layer-by-LayerSelf-Assembly of Silver Nanoparticles Capped by Graphite Oxide Nanosheets.Journal of Physical Chemistry B,1999.103(11): p.1789-93.
    19. Baker Gary A. and Moore David S., Progress in plasmonic engineering ofsurface-enhanced Raman-scattering substrates toward ultra-trace analysis.Analytical and Bioanalytical Chemistry,2005.382(8): p.1751-70.
    20. Giovannetti G., Khomyakov P. A., Brocks G., et al., Doping Graphene withMetal Contacts. Physical Review Letters,2008.101(2): p.026803.
    21. Chan Kevin T., Neaton J. B. and Cohen Marvin L., First-principles study ofmetal adatom adsorption on graphene. Physical Review B,2008.77(23): p.235430.
    22. Chen Yi-Chieh, Young Robert J., Macpherson Julie V., et al., Single-WalledCarbon Nanotube Networks Decorated with Silver Nanoparticles: A NovelGraded SERS Substrate. Journal of Physical Chemistry C,2007.111(44): p.16167-73.
    23. Shang Nai Gui, Papakonstantinou Pagona, McMullan Martin, et al.,Catalyst-Free Efficient Growth, Orientation and Biosensing Properties ofMultilayer Graphene Nanoflake Films with Sharp Edge Planes. AdvancedFunctional Materials,2008.18(21): p.3506-14.
    1. Jiang Ji-Sen, Gan Zhi-Feng, Yang Yong, et al., A novel magnetic fluid basedon starch-coated magnetite nanoparticles functionalized with homing peptide.Journal of Nanoparticle Research,2009.11(6): p.1321-30.
    2. Rangheard Claudine, de Julian Fernandez Cesar, Phua Pim-Huat, et al., At thefrontier between heterogeneous and homogeneous catalysis: hydrogenation ofolefins and alkynes with soluble iron nanoparticles. Dalton Transactions,2010.39(36): p.8464-71.
    3. Pankhurst Q. A., Connolly J., Jones S. K., et al., Applications of magneticnanoparticles in biomedicine. Journal of Physics D: Applied Physics,2003.36(13): p. R167-R81.
    4. Cong Huai-Ping, He Jia-Jun, Lu Yang, et al., Water-SolubleMagnetic-Functionalized Reduced Graphene Oxide Sheets: In situ Synthesisand Magnetic Resonance Imaging Applications. Small,2010.6(2): p.169-73.
    5. Reiss Gunter and Hutten Andreas, Magnetic nanoparticles: Applicationsbeyond data storage. Nat Mater,2005.4(10): p.725-6.
    6. He Fuan, Fan Jintu, Ma Dong, et al., The attachment of Fe3O4nanoparticlesto graphene oxide by covalent bonding. Carbon,2010.48(11): p.3139-44.
    7. Bulte Jeff W. M. and Kraitchman Dara L., Iron oxide MR contrast agents formolecular and cellular imaging. NMR in Biomedicine,2004.17(7): p.484-99.
    8. Koenig Seymour H. and Kellar Kenneth E., Theory of1/T1and1/T2NMRDprofiles of solutions of magnetic nanoparticles. Magnetic Resonance inMedicine,1995.34(2): p.227-33.
    9. Yang Chunhui, Du Jingjie, Peng Qian, et al., Polyaniline/Fe3O4NanoparticleComposite: Synthesis and Reaction Mechanism. The Journal of PhysicalChemistry B,2009.113(15): p.5052-8.
    10. Azadmanjiri J., Hojati-Talemi P., Simon G. P., et al., Synthesis andelectromagnetic interference shielding properties of iron oxide/polypyrrolenanocomposites. Polymer Engineering&Science,2011.51(2): p.247-53.
    11. Zhan Yingqing, Meng Fanbin, Lei Yajie, et al., One-pot solvothermal synthesisof sandwich-like graphene nanosheets/Fe3O4hybrid material and itsmicrowave electromagnetic properties. Materials Letters,2011.65(11): p.1737-40.
    12. Bregar V. B., Advantages of ferromagnetic nanoparticle composites inmicrowave absorbers. Magnetics, IEEE Transactions on,2004.40(3): p.1679-84.
    13. Lamba Subhalakshmi and Annapoorni S., Single domain magnetic arrays: roleof disorder and interactions. The European Physical Journal B-CondensedMatter and Complex Systems,2004.39(1): p.19-25.
    14. Park Tae-Jin, Papaefthymiou Georgia C., Viescas Arthur J., et al.,Size-Dependent Magnetic Properties of Single-Crystalline MultiferroicBiFeO3Nanoparticles. Nano Letters,2007.7(3): p.766-72.
    15. Novoselov K. S., Geim A. K., Morozov S. V., et al., Electric Field Effect inAtomically Thin Carbon Films. Science,2004.306(5696): p.666-9.
    16. Areshkin Denis A. and White Carter T., Building Blocks for IntegratedGraphene Circuits. Nano Letters,2007.7(11): p.3253-9.
    17. Stoller Meryl D., Park Sungjin, Zhu Yanwu, et al., Graphene-BasedUltracapacitors. Nano Letters,2008.8(10): p.3498-502.
    18. Balandin Alexander A., Ghosh Suchismita, Bao Wenzhong, et al., SuperiorThermal Conductivity of Single-Layer Graphene. Nano Letters,2008.8(3): p.902-7.
    19. Wang Xuan, Zhi Linjie and Mullen Klaus, Transparent, Conductive GrapheneElectrodes for Dye-Sensitized Solar Cells. Nano Letters,2007.8(1): p.323-7.
    20. Wang Shu Jun, Geng Yan, Zheng Qingbin, et al., Fabrication of highlyconducting and transparent graphene films. Carbon,2010.48(6): p.1815-23.
    21. Park Hye Jin, Meyer Jannik, Roth Siegmar, et al., Growth and properties offew-layer graphene prepared by chemical vapor deposition. Carbon,2010.48(4): p.1088-94.
    22. Li Dan, Muller Marc B., Gilje Scott, et al., Processable aqueous dispersions ofgraphene nanosheets. Nat Nano,2008.3(2): p.101-5.
    23. Stankovich Sasha, Dikin Dmitriy A., Dommett Geoffrey H. B., et al.,Graphene-based composite materials. Nature,2006.442(7100): p.282-6.
    24. Salavagione Horacio J., Martínez Gerardo and Ellis Gary, Recent Advances inthe Covalent Modification of Graphene With Polymers. MacromolecularRapid Communications,2011.32(22): p.1771-89.
    25. He Fu-An, Fan Jin-Tu, Song Fei, et al., Fabrication of hybrids based ongraphene and metal nanoparticles by in situ and self-assembled methods.Nanoscale,2011.3(3): p.1182-8.
    26. Kim Young-Kwan, Na Hee-Kyung and Min Dal-Hee, Influence of SurfaceFunctionalization on the Growth of Gold Nanostructures on Graphene ThinFilms. Langmuir,2010.26(16): p.13065-70.
    27. Xu Zhengxia, Gao Hanyang and Guoxin Hu, Solution-based synthesis andcharacterization of a silver nanoparticle–graphene hybrid film. Carbon,2011.49(14): p.4731-8.
    28. Wang Chao, Han Xijiang, Xu Ping, et al., The electromagnetic property ofchemically reduced graphene oxide and its application as microwaveabsorbing material. Applied Physics Letters,2011.98(7): p.072906.
    29. Bronstein Lyudmila M., Huang Xinlei, Retrum John, et al., Influence of IronOleate Complex Structure on Iron Oxide Nanoparticle Formation. Chemistryof Materials,2007.19(15): p.3624-32.
    30. Park Jongnam, An Kwangjin, Hwang Yosun, et al., Ultra-large-scale synthesesof monodisperse nanocrystals. Nat Mater,2004.3(12): p.891-5.
    31. de Faria D. L. A., Venancio Silva S. and de Oliveira M. T., Ramanmicrospectroscopy of some iron oxides and oxyhydroxides. Journal of RamanSpectroscopy,1997.28(11): p.873-8.
    32. Shebanova Olga N. and Lazor Peter, Raman spectroscopic study of magnetite(FeFe2O4): a new assignment for the vibrational spectrum. Journal of SolidState Chemistry,2003.174(2): p.424-30.
    33. Jung Chu W. and Jacobs Paula, Physical and chemical properties ofsuperparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran,ferumoxsil. Magnetic Resonance Imaging,1995.13(5): p.661-74.
    34. Park Yong Il, Piao Yuanzhe, Lee Nohyun, et al., Transformation ofhydrophobic iron oxide nanoparticles to hydrophilic and biocompatiblemaghemite nanocrystals for use as highly efficient MRI contrast agent. Journalof Materials Chemistry,2011.21(31).
    35. Wan Jiaqi, Cai Wei, Meng Xiangxi, et al., Monodisperse water-solublemagnetite nanoparticles prepared by polyol process for high-performancemagnetic resonance imaging. Chemical Communications,2007(47): p.5004–6.
    36. Lee Jung Woo, Viswan Ravindranath, Choi Yoon Jeong, et al., FacileFabrication and Superparamagnetism of Silica-Shielded MagnetiteNanoparticles on Carbon Nitride Nanotubes. Advanced Functional Materials,2009.19(14): p.2213-8.
    37. Kusakari Y., Kanomata T., Fukushima K., et al., Magnetic properties ofHeusler alloys Ru2xFexCrGe. Journal of Magnetism and Magnetic Materials,2007.310(2, Part2): p. e607-e9.
    38. Tromsdorf Ulrich I., Bigall Nadja C., Kaul Michael G., et al., Size and SurfaceEffects on the MRI Relaxivity of Manganese Ferrite Nanoparticle ContrastAgents. Nano Letters,2007.7(8): p.2422-7.
    39. Zhang Q., Li C., Chen Y., et al., Effect of metal grain size on multiplemicrowave resonances of Fe/TiO2metal-semiconductor composite. AppliedPhysics Letters,2010.97(13).
    40. Mercier D., Lévy J. C. S., Viau G., et al., Magnetic resonance in sphericalCo-Ni and Fe-Co-Ni particles. Physical Review B-Condensed Matter andMaterials Physics,2000.62(1): p.532-44.
    41. Zhang X. F., Dong X. L., Huang H., et al., Microstructure and microwaveabsorption properties of carbon-coated iron nanocapsules. Journal of PhysicsD: Applied Physics,2007.40(17): p.5383-7.
    42. Liu X. G., Geng D. Y., Meng H., et al., Microwave-absorption properties ofZnO-coated iron nanocapsules. Applied Physics Letters,2008.92(17).
    43. Zhang X. F., Dong X. L., Huang H., et al., Microwave absorption properties ofthe carbon-coated nickel nanocapsules. Applied Physics Letters,2006.89(5).
    44. Wu Nae-Lih, Wang Shi-Yu, Han Chih-Yu, et al., Electrochemical capacitor ofmagnetite in aqueous electrolytes. Journal of Power Sources,2003.113(1): p.173-8.
    45. Du Xuan, Wang Chengyang, Chen Mingming, et al., ElectrochemicalPerformances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor UsingKOH Electrolyte Solution. The Journal of Physical Chemistry C,2009.113(6):p.2643-6.
    1. Shimizu Kenichi, Sawabe Kyoichi and Satsuma Atsushi, Unique catalyticfeatures of Ag nanoclusters for selective NOx reduction and green chemicalreactions. Catalysis Science&Technology,2011.1(3): p.331-41.
    2. Shiraishi Yukihide and Toshima Naoki, Colloidal silver catalysts for oxidationof ethylene. Journal of Molecular Catalysis A: Chemical,1999.141(1-3): p.187-92.
    3. Mack Nathan H., Bailey James A., Doorn Stephen K., et al., MechanisticStudy of Silver Nanoparticle Formation on Conducting Polymer Surfaces.Langmuir,2011.27(8): p.4979-85.
    4. Musick Michael D., Keating Christine D., Lyon L. Andrew, et al., Metal FilmsPrepared by Stepwise Assembly.2. Construction and Characterization ofColloidal Au and Ag Multilayers. Chemistry of Materials,2000.12(10): p.2869-81.
    5. Choi Sungmoon, Dickson Robert M. and Yu Junhua, Developing luminescentsilver nanodots for biological applications. Chemical Society Reviews,2012.
    6. Xu Zhengxia, Gao Hanyang and Guoxin Hu, Solution-based synthesis andcharacterization of a silver nanoparticle–graphene hybrid film. Carbon,2011.49(14): p.4731-8.
    7. Wee Grace, Mak Wai F., Phonthammachai Nopphawan, et al., Particle SizeEffect of Silver Nanoparticles Decorated Single Walled Carbon NanotubeElectrode for Supercapacitors. Journal of The Electrochemical Society,2010.157(2): p. A179-A84.
    8. Lu Yizhong and Chen Wei, Size effect of silver nanoclusters on their catalyticactivity for oxygen electro-reduction. Journal of Power Sources,2012.197(0):p.107-10.
    9. Lee P. C. and Meisel D., Adsorption and surface-enhanced Raman of dyes onsilver and gold sols. The Journal of Physical Chemistry,1982.86(17): p.3391-5.
    10. Popa Monica, Pradell Trinitat, Crespo Daniel, et al., Stable silver colloidaldispersions using short chain polyethylene glycol. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007.303(3): p.184-90.
    11. Lin Xue Zhang, Teng Xaowei and Yang Hong, Direct Synthesis of NarrowlyDispersed Silver Nanoparticles Using a Single-Source Precursor. Langmuir,2003.19(24): p.10081-5.
    12. Hiramatsu Hiroki and Osterloh Frank E., A Simple Large-Scale Synthesis ofNearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizesand with Exchangeable Surfactants. Chemistry of Materials,2004.16(13): p.2509-11.
    13. Panác ek Ale, Kvítek Libor, Prucek Robert, et al., Silver ColloidNanoparticles: Synthesis, Characterization, and Their Antibacterial Activity.The Journal of Physical Chemistry B,2006.110(33): p.16248-53.
    14. Taleb A., Petit C. and Pileni M. P., Synthesis of Highly Monodisperse SilverNanoparticles from AOT Reverse Micelles: A Way to2D and3DSelf-Organization. Chemistry of Materials,1997.9(4): p.950-9.
    15. R mer Isabella, White Thomas A., Baalousha Mohammed, et al., Aggregationand dispersion of silver nanoparticles in exposure media for aquatic toxicitytests. Journal of Chromatography A,2011.1218(27): p.4226-33.
    16. Badawy Amro M. El, Luxton Todd P., Silva Rendahandi G., et al., Impact ofEnvironmental Conditions (pH, Ionic Strength, and Electrolyte Type) on theSurface Charge and Aggregation of Silver Nanoparticles Suspensions.Environmental Science&Technology,2010.44(4): p.1260-6.
    17. Huynh Khanh An and Chen Kai Loon, Aggregation Kinetics of Citrate andPolyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and DivalentElectrolyte Solutions. Environmental Science&Technology,2011.45(13): p.5564-71.
    18. Shin Hyeon Suk, Yang Hyun Jung, Kim Seung Bin, et al., Mechanism ofgrowth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone inγ-irradiated silver nitrate solution. Journal of Colloid and Interface Science,2004.274(1): p.89-94.
    19. Jeevanandam P., Srikanth Chamarthi K. and Dixit Suchi, Synthesis ofmonodisperse silver nanoparticles and their self-assembly through simplethermal decomposition approach. Materials Chemistry and Physics,2010.122(2-3): p.402-7.
    20. Lee Seung Joon, Han Sang Woo and Kim Kwan, Perfluorocarbon-stabilizedsilver nanoparticles manufactured from layered silver carboxylates. ChemicalCommunications,2002(5): p.442-3.
    21. Navaladian S., Viswanathan B., Viswanath R., et al., Thermal decompositionas route for silver nanoparticles. Nanoscale Research Letters,2007.2(1): p.44-8.
    22. Zhang Li, Shen Yuhua, Xie Anjian, et al., One-Step Synthesis of MonodisperseSilver Nanoparticles beneath Vitamin E Langmuir Monolayers. The Journal ofPhysical Chemistry B,2006.110(13): p.6615-20.
    23. Nadagouda Mallikarjuna N. and Varma Rajender S., Green and controlledsynthesis of gold and platinum nanomaterials using vitamin B2:density-assisted self-assembly of nanospheres, wires and rods. GreenChemistry,2006.8(6): p.516-8.
    24. Raveendran Poovathinthodiyil, Fu Jie and Wallen Scott L., Completely“Green” Synthesis and Stabilization of Metal Nanoparticles. Journal of theAmerican Chemical Society,2003.125(46): p.13940-1.
    25. Kumar Ashavani, Vemula Praveen Kumar, Ajayan Pulickel M., et al.,Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. NatMater,2008.7(3): p.236-41.
    26. Li Peng, Peng Qing and Li Yadong, Controlled Synthesis and Self-Assemblyof Highly Monodisperse Ag and Ag2S Nanocrystals. Chemistry–A EuropeanJournal,2011.17(3): p.941-6.
    27. Kovalenko Maksym V., Bodnarchuk Maryna I., Lechner Rainer T., et al., FattyAcid Salts as Stabilizers in Size-and Shape-Controlled Nanocrystal Synthesis:The Case of Inverse Spinel Iron Oxide. Journal of the American ChemicalSociety,2007.129(20): p.6352-3.
    28. Park Jongnam, An Kwangjin, Hwang Yosun, et al., Ultra-large-scale synthesesof monodisperse nanocrystals. Nat Mater,2004.3(12): p.891-5.
    29. Lu Yongqiang and Miller Jan D., Carboxyl Stretching Vibrations ofSpontaneously Adsorbed and LB-Transferred Calcium Carboxylates asDetermined by FTIR Internal Reflection Spectroscopy. Journal of Colloid andInterface Science,2002.256(1): p.41-52.
    30. Bronstein Lyudmila M., Huang Xinlei, Retrum John, et al., Influence of IronOleate Complex Structure on Iron Oxide Nanoparticle Formation. Chemistryof Materials,2007.19(15): p.3624-32.
    31. S derlind Fredrik, Pedersen Henrik, Petoral Jr Rodrigo M., et al., Synthesisand characterisation of Gd2O3nanocrystals functionalised by organic acids.Journal of Colloid and Interface Science,2005.288(1): p.140-8.
    32. LaMer Victor K. and Dinegar Robert H., Theory, Production and Mechanismof Formation of Monodispersed Hydrosols. Journal of the American ChemicalSociety,1950.72(11): p.4847-54.
    33. Privman Vladimir, Goia Dan V., Park Jongsoon, et al., Mechanism ofFormation of Monodispersed Colloids by Aggregation of Nanosize Precursors.Journal of Colloid and Interface Science,1999.213(1): p.36-45.
    34. Park Jongsoon, Privman Vladimir and Matijevi Egon, Model of Formation ofMonodispersed Colloids. The Journal of Physical Chemistry B,2001.105(47): p.11630-5.
    35. Robb Daniel T. and Privman Vladimir, Model of Nanocrystal Formation inSolution by Burst Nucleation and Diffusional Growth. Langmuir,2007.24(1):p.26-35.
    36. Hessel Colin M., Wei Junwei, Reid Dariya, et al., Raman Spectroscopy ofOxide-Embedded and Ligand-Stabilized Silicon Nanocrystals. The Journal ofPhysical Chemistry Letters,2012.3(9): p.1089-93.
    37. García-Vidal F. J. and Pendry J. B., Collective Theory for Surface EnhancedRaman Scattering. Physical Review Letters,1996.77(6): p.1163-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700