用户名: 密码: 验证码:
多孔材料对瓦斯爆炸抑制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是中国主要能源,在未来较长时期内在能源结构中仍将居主体地位。我国煤矿95%以上属于井工开采煤矿,且多数为有瓦斯涌出矿井,随着煤炭需求量的激增,煤矿生产规模加大,产能和开采深度增加,使煤矿瓦斯涌出量大幅增高,煤矿重特大瓦斯事故的频繁发生,严重威胁着煤矿安全生产和工人的生命安全。目前控制或减弱瓦斯爆炸破坏的传统矿用阻隔爆设施尚不能达到有效抑爆的效果,因此,开展新型瓦斯爆炸阻隔爆材料及装置的研究迫在眉睫。近年来,多孔材料因其多孔、轻质、高比强度、减振、阻尼、吸音、隔音、散热、吸收冲击能等多种物理性能而受到关注,已在民用工程防护和军事领域得到了广泛的应用,国内外学者对其性能进行了广泛研究,并取得了大量的研究成果。本论文以煤矿为背景,通过理论分析、模拟管道实验、数学建模、设计及预测等方法,对多孔材料抑制瓦斯爆炸作用及应用技术进行研究,具体来讲,本文在以下几个方面进行了探索和研究:
     自行设计制作了断面为30cm×30cm方形实验管道,为目前国内所见报道进行管道内瓦斯爆炸研究断面较大的方形管道装置,采用火焰温度传感器对管道内爆炸火焰进行研究,拓宽了对管道内爆炸火焰的研究思路,实现了计算机同步采集各测点的火焰温度和压力数据,从而能够研究火焰温度与压力传播发展的过程。对管道内定量瓦斯气体爆炸传播进行了实验研究,获得了压力、火焰温度的传播规律。
     对泡沫陶瓷(5cm厚度以上)和金属丝网(30目和40目)抑制管道内瓦斯爆炸进行了实验研究,实验现象表明,泡沫陶瓷和金属丝网材料都具有一定的阻火能力,泡沫陶瓷具有优异的消声性能。泡沫陶瓷抗烧结性能良好,抗爆炸冲击波损毁性能较差。金属丝网抗烧结性能较差,抗爆炸冲击波损毁性能良好。对管道火焰温度的研究表明,泡沫陶瓷和金属丝网都对火焰温度有一定的衰减效果,降低了与相同无障碍物条件下的火焰温度,通过火焰温度数据的对比,金属丝网对火焰温度的衰减效果优于泡沫陶瓷。对管道爆炸超压的研究表明,泡沫陶瓷和金属丝网都对爆炸超压具有一定的衰减效果,降低了与相同条件下无障碍物的爆炸强度,通过衰减超压数据对比,泡沫陶瓷材料对爆炸超压的衰减效果优于金属丝网材料。从实验结果来看,金属丝网的层数与目数参数对抑爆效果影响较大。泡沫陶瓷的厚度参数对抑爆效果影响较大,泡沫陶瓷材质对抑爆效果影响较小。通过实验结果和机理分析了材料自身参数对抑爆效果的影响,总结了泡沫陶瓷与金属丝网阻隔管道内瓦斯爆炸的优、缺点。
     对多孔泡沫铁镍金属抑制管道内瓦斯爆炸进行了实验研究,实验现象表明,多孔泡沫铁镍金属具有优异的消声性能和阻火能力,还具有良好的抗冲击波损毁性能和抗烧结性能。对管道火焰温度和爆炸超压的研究表明,多孔泡沫铁镍金属能够抑制爆炸波能量的传播,对火焰温度和爆炸超压具有一定的衰减效果,降低了与相同无障碍物条件下的火焰温度和爆炸强度。通过火焰温度和超压衰减数据对比,多孔泡沫铁镍金属对火焰温度、爆炸超压衰减效果优于泡沫陶瓷和金属丝网。测点四,多孔泡沫铁镍金属相比40目40层金属丝网对最大火焰温度的衰减率提高了38.8%,相比Al2O37cm大孔泡沫陶瓷提高了29.5%。测点七,多孔泡沫铁镍金属相比40目40层金属丝网体对爆炸超压的衰减率提高了29.9%,相比SIC5cm大孔泡沫陶瓷提高了22.4%。从实验结果来看:多孔泡沫铁镍金属的孔径、厚度及相对体积密度对抑爆效果影响较大,多孔泡沫铁镍金属的基体材料组分对抑爆效果影响较小。研究了多孔泡沫铁镍金属衰减瓦斯爆炸压力和火焰波的机理,通过实验结果和机理分析了多孔泡沫铁镍金属自身参数对抑爆效果的影响,采用多孔材料抑爆时,应考虑材料在管道中阻塞比,合理配置参数,才能达到减少材料损毁程度,加强抑爆效果的目的。
     研究了多孔材料衰减爆炸超压和阻隔火焰的机理,结合实验结果对比分析了金属丝网、泡沫陶瓷、多孔泡沫铁镍金属抑制瓦斯爆炸的机理及作为抑爆材料的优劣势。将衰减爆炸超压和衰减火焰温度评估方法相结合,提出了一种抑爆效果综合定量评估算法,并建立了基于爆炸超压、火焰温度和熄爆参数法的多孔材料阻隔爆效果评估数学模型,用以进行抑爆效果评估,为多孔材料在实验和工程应用过程中的性能评定提供科学依据。
     设计了基于多孔材料的煤矿采掘工作面阻隔爆装置与瓦斯抽放管道阻隔爆装置,有望解决现有被动和自动阻隔爆技术的局限性,从而抑制二次爆炸和多次爆炸。通过ABAQUS有限元软件对阻隔爆装置在井下瓦斯爆炸过程中的受力情况进行了分析,模拟瓦斯爆炸破坏力对多孔材料的受力响应,结果显示,多孔材料作为抑爆材料可承受瓦斯爆炸冲击力作用。对多孔材料阻隔爆装置动作时间控制问题进行了探讨,提出预测控制理念,建立了基于马尔科夫链和灰色动态理论的煤矿瓦斯涌出量预测模型。实例分析表明:马尔科夫链和灰色动态预测法预测精度较高,具备应用可行性。最后构建了煤矿瓦斯涌出量的预测控制体系。
Coal is the primary energy in China, it will remain the principal place in theenergy structure over a long period in the future. Our coal mine more than95%is pitmining, and most of them belong to the gas emission mine. Coal mine severe gasaccident occurs frequently, it has serious threat with coal mine safety and workers oflife security. Traditional barrier burst facility which currently used to control orreduce gas explosion damage has not been able to achieve effective explosion effect.Thus, study on a new block of explosive materials and devices have been alreadyextremely urgent. In recent years, the porous material was concerned because of avariety of physical properties, such as porous, lightweight, high strength, vibration,damping and sound absorption, sound insulation, heat sinks and absorption ofimpact energy. It has been used in the field of civil works and military widely.Scholars have conducted extensive research on its performance at home and abroad,and has made a large number of research results. Bases on coal mine, the articleresearches on porous materials on the effect of barrier gas explosion propagation byusing theoretical analysis, experiment, mathematical modeling and Design andprediction method. In particular, the article have explorations and research on:
     Experimental pipeline, which section is30cm x30cm square, has designed tobroaden the pipe explosion of the flame of perspective, realized computersynchronous collection of the point pressure and the flame temperature data, so youcan study on flame temperature and pressure process of development ofcommunication. which is the largest gas explosion research section square pipeworkfor the current domestic pipeline seen within the reports and lead used flametemperature sensor on pipeline within explosion flame for research. Obtain thepressure, the temperature of flame propagation law, based on the experimentalresearch of quantitative gas explosion transmission in pipe.
     The ceramic foams (thickness5cm above) and metal mesh (30meshes and40meshes) restrain in the piping gas explosion was investigated. The experimentphenomenon shows that two kinds of materials have certain fire resistances, theanti-explosive shock wave damage performance of foamed ceramics is poorer butanti-agglutination is favorable. Anti-explosive shock wave damage performance ofmetal mesh is favorable but anti-agglutination is poorer. Study on flame temperatureof the pipe indicates that ceramic foam and wire mesh for flame temperature tomake the attenuation effect, reduces the flame temperature with the same conditionwithout obstruction, by comparison of flame temperature data, wire meshattenuation effects on flame temperature is better than ceramic foam. On the pipeline explosion overpressure of studies have shown that ceramic foam and wire mesh onexplosion overpressure with a certain degree of attenuation effect, reduces thestrength of the explosion and no obstructions under the same conditions, byattenuation of overpressure data comparison, foam ceramic material on theattenuation of blast overpressure effect is better than wire mesh materials. From theexperimental results, Layer and mesh of wire mesh, thickness and aperture ofceramic foam all have a great influence on effectiveness of explosion suppression,foam ceramic material on explosion suppression effect is small. Based on themechanism of experimental results and analysis of the influence of materialparameters on the explosion itself, the wire mesh and foam ceramic barrier pipe gasexplosion of pros and cons was summarized.
     The porous foam iron-nickel metal restrain in the piping gas explosion wasinvestigated. The experiment phenomenon shows that porous foam iron-nickel metalhas excellent acoustic attenuation performance, fire resistances, anti-shock wavedamaged performance and anti-sintering performance. Results of explosion flametemperature and overpressure on pipeline indicates that porous foam iron-nickelmetal can inhibition explosion wave energy of spread, reduces the explosionstrength with the same condition that without obstruction. Through the comparisonof the experimental data, the porous foam of Fe-NI metal is better than foamceramics and metal mesh on attenuation effect of flame temperature and explosiveoverpressure.Measuring point four, porous foam iron-nickel metal compared to40head40-wire mesh for maximum flame temperature decay rate increases38.8percent, than Al2O3ceramic foam that7cm large hole increases29.5percent. Onmeasuring point seven, porous foam iron-nickel metal compared to40head40-wiremesh on explosion overpressure decay rate increases29.9percent, compared to SICceramic foam that5cm large hole increases22.4percent. From the experimentalresults, the pore size, thickness and relative bulk density of porous foam iron-nickelmetal have a great influence on effectiveness of explosion suppression, material ofiron-nickel metal components on explosion effects is small. Porous foam iron-nickelmetal attenuation mechanism of pressure and gas explosion flame wave wasanalyzed. Based on the results of the experiment and mechanism analysis of porousfoamed iron-nickel metal influence of parameters on the explosion itself, whenusing the porous material to explosion suppression, you should consider blockageratio and reasonable configuration parameters of materials in pipeline to achieve thereduction of material damage and strengthen the purpose of the explosion.
     Study on the mechanism of porous material attenuation overpressure andblocking flame, with experimental results comparative analysis of wire mesh,ceramic foam,bubble iron-nickel metal inhibition mechanism of gas explosion andexplosion suppression material advantages and disadvantages. Combined assessment method of attenuation explosion overpressure and flame temperature, acomprehensive quantitative evaluation algorithm of explosion suppression effectwas proposed, Established based on explosion overpressure, flame temperature andquenching parameters method of porous material cut blasting effect evaluationmathematical model, that will used for explosion effects assessment, offer scientificbasis for porous materials in experiment and its application in performanceassessment.
     Based on porous material, coal mining face blocked explosive devices and gasdrainage pipeline blocked explosive solid devices were designed. The device isexpected to address the limitations of existing passive and automatic barrier bursttechnology, it has explosion effect for secondary explosion and a series ofexplosions in coal mine underground.Using ABAQUS finite element analysissoftware for mechanical analyzing of porous materials, simulations in porousmaterials under conditions of underground gas explosion, simulation results showthat porous foam iron-nickel metal as a gas explosion suppression material canwithstand impact.The subject has discussed the action time control of porous barrierexplosive devices, predictive control concept was proposed. Coal mine gas emissionprediction model that based on Markov chains and gray dynamic theory wasestablished. Instance analysis shows that: Dynamic prediction of Markov chains andgrey prediction of high precision, with application. Finally the paper constructs apredictive control of coal mine gas emission rate.
引文
[1]王从银,何学秋.瓦斯爆炸阻隔爆装置失效原因的实验研究[J].中国安全科学学报,2001,11(2):60-64.
    [2]张如明,何学秋,聂百胜.煤矿瓦斯爆炸阻隔爆技术现状及展望[J].中国安全生产科学技术,2011,7(7):15-19.
    [3]陈月琴,蒋曙光,吴征艳等.煤矿用阻隔爆技术综述[J].煤矿机械,2009,30(3):4-6.
    [4]孙建华,赵景礼,曲征等.一种用于矿井中的多孔泄压阻隔爆自动风门[J].中国矿业,2011,20(3):105-108.
    [5] Jiang Bingyou,Lin Baiquan,Shi Shulei,et al. Numerical Analysis onPropagation Characteristics and Safety Distance of Gas Explosiona[J].Procedia Engineering,2011,26:271-280.
    [6] Jiang Bingyou,Lin Baiquan,Shi Shulei,et al. Theoretical Analysis on theAttenuation Characteristics of Strong Shock Wave of Gas Explosiona[J].Procedia Engineering,2011,(24):422-425.
    [7] Liang Yuntao,Zeng Wen,Hu Erjiang. Experimental study of the effect ofnitrogen addition on gas explosion[J]. Journal of Loss Prevention in theProcess Industries,2012:1-9.
    [8] Furukawa J. Flame front configuration of turbulent premixed flames[J]. Combustion and Flame,1998,(112):293-301.
    [9] Gulder O L. Flame front surface characteristics in turbulent premixed propance/air combustion[J]. Combustion and Flame,2000,(120):407-416.
    [10] Starke R,Roth P. An Experimental Investigation of Flame Behavior DuringExplosions in Cylindrical Enclosures with Obstacles[J]. Combustion andFlame,1989,(75):111-118.
    [11] Ibrahim S S,Masri A R. The effects of obstructions on overpressure resultingfrom premixed flame deflagration[J]. Journal of Loss Process Industries,2001,14:213-221.
    [12] Kasmani R M,Andrews G E,Phylaktou H N. The Influence of Vessel Volumeand Equivalence Ratio in Vented Gas Explosions[J]. Chemical EngineeringTransactions,2010,19:463-468.
    [13] Chumakov Y A,Knyazeva A G. Thermal Explosion of a Gas Mixturein aPorous Hollow Cylinder[J]. Combustion, Explosion,and Shock Waves,2010,5(1):507-514.
    [14]徐景德,周心权,吴兵.瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析[J].煤炭科学技术,2001,29(11):15-17.
    [15]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001,11(6):36-40.
    [16] Maremonti M,Rueeo G,Salano E. Numerical simulation of gas explosion inlinked vessles[J]. Journal of Loss Prevention in the Process Industries,1999,12(3):189-194.
    [17]刘玉华,丁以斌.立体结构障碍物不同阻塞比对火焰传播的影响[J].湖南有色金属,2008,24(1):1-4.
    [18] Yang Yi,He Xueqiu,Luo Geng,Wang Hui.Effect of meshy obstacle onmethane gas explosion[J]. Procedia Engineering,2011,(26):70-74.
    [19] Zhu Chuanjie,Lin Baiquan,Ye Qing,Zhai Cheng. Effect of roadway turningson gas explosion propagation characteristics in coal mines[J]. MiningScience and Technology (China),2011,(21):365-369.
    [20] Ye Qing,Lin Baiquan,Jia Zhenzhen,et al.Propagation law and analysis ofgas explosion in bend duct[J]. Procedia Earth and Planetary Science,2009,(1):316-321.
    [21] Valeria D S,Almerinda D B,Gennaro R.Using Large Eddy Simulation forunderstanding vented gas explosions in the presence of obstacles[J]. Journalof Hazardous Materials,2009,169:435-442.
    [22] Wang Cheng,Ma tianbao,Lu Jie. Influence of obstacle disturbance in a ducton explosion characteristics of coal gas[J]. Science chinaphysics,mechanics&astronomy february,2010,2(1):269-278.
    [23] Phylaktou H,Andrews G E. Gas explosions in linked vessels[J]. Journal ofloss prevention in the process industries,1991,6(1):15-19.
    [24] Liu Qingming,Bai Chunhua,Li Xiaodong,et al. Coal dust/air explosions ina large-scale tube[J]. Contents lists available at Science Direct Fuel,2010,(89):329-335.
    [25]张莉聪.瓦斯爆炸火焰与压力波伴生关系的数值研究[J].华北科技学院学报,200,3(1):5-8.
    [26] Dal J P,Young S L,Anthony R G. Prediction for vented explosions inchambers with multiple obstacles[J].J ournal of Hazardous Materials,2008,155:183-192.
    [27]丁广骧.煤矿巷道瓦斯爆轰理论分析和参数计算[J].中国矿业大学学报,2000,29(1):37-40.
    [28] Xu jingde,Xu Shengli,Zhang Yulong,et al. Study on the development of theMedium-scale Gas Explosion Integrated Testing System[J]. ProcediaEngineering,2011,26:1305-1313.
    [29] Kasmani R M,Andrews G E,Phylaktou H N. The influence of vessel volumeand equivalence ratio in vented gas explosions [J]. Chemical EngineeringTransactions,2010:463-468.
    [30]司荣军.管道内瓦斯爆炸传播试验研究[J].煤炭科学技术,2009,37(2):47-50.
    [31] Pang Lei,Tian Jialei,Yao Wei,et al. Hazard Characteristics from GasExplosion in Underground Constructions[J].Procedia Engineering,2012,43:293-296.
    [32] Ferrara G,Willacy S K,Phylaktou H N,et al. Venting of gas explosionthrough relief ducts:Interaction between internal and external explosions[J].Journal of Hazardous Materials,2008,155:358-368.
    [33]毕明树,尹旺华,丁信伟.圆筒形容器内可燃气体爆燃过程的数值模拟[J].天然气工业,2004,24(4):94-96.
    [34] Zhang Xiuhua,Wu Yanyan. Numerical Analysis of Shock Wave PropagationLaw of Internal Gas Explosion[J]. Applied Mechanics and Materials,2012:105-107,299-302.
    [35] Nishimura I,Mogi T,Dobashi R.Simple method for predicting pressurebehavior during gas explosions in confined spaces considering flameinstabilities[J]. Journal of Loss Prevention in the Process Industries xxx,2011:1-4.
    [36] Zhang Jiuling,Zhou Xinquan,Gong Wu,et al. Numerical Simulation on InertGas Injection Applied to Sealed Fire Area[J]. International Conference onInformation Computing and Applications,2010,(105):347-353.
    [37] Catlin C A,Fairweather M,Ibraiim S S.Predictions of turbulent, premixedflame propagation in explosion tubes[J].Combustion and Flame,1995,(102):115-128.
    [38] Ulrich Bielert,Martin Sichel.Numerical simulation of premixed combustionprocesses in closed tubes[J]. Combustion and Flame,1998,(114):397-419.
    [39] Paris L,Christophe C,Iddir O. Innovative design of an LDPE reactor bayagainst gas explosion usinga risk-based approach coupled with high fidelitycomputer tools[J]. Journal of Loss Prevention in the Process Industries,2010,(23):561-573.
    [40] Huang Zhian,Liu Zhigang,Chen Shengguo,et al. Numerical simulation andstu,y on the transmission law of flame and pressure wave of pipeline gasexplosion[J]. Safety Science,2012,(50):806-810.
    [41] Zhang Licon,Zhang Yulong,Xu Jingde,et al. Numerical Simulation of ShockWave Structure in Gas Explosion[J]. Procedia Engineering,2011,(26):1322-1329.
    [42] Yan Aihua,Nie Baisheng,Dai Linchao,et al. Numerical Simulation on theGas Explosion Propagation Related to Roadway[J].Procedia Engineering,2011,(26):1563-1570.
    [43]卢捷,宁建国,王成等.煤气火焰传播规律及其加速机理研究[J].爆炸与冲击,2004,24(4):305-311.
    [44]周凯元,李宗芬.丙烷-空气爆燃火焰通过平行板狭缝时的淬熄研究[J].爆炸与冲击,1997,17(2):111-118.
    [45]周凯元,李宗芬,周自金.波纹板阻火器对爆燃火焰淬熄作用的实验研究[J].中国科学技术大学学报,1997,27(4):449-454.
    [46]杨艺,何学秋.瓦斯爆燃火焰内部流场分形特性研究[J].爆炸与冲击,2004,24(1):30-36.
    [47]曲志明,周心权,汪洋等.瓦斯爆炸气相爆轰参数的数值计算与分析[J].西安科技大学学报,2006,26(3):321-324.
    [48]曲志明,周心权,王海燕等.瓦斯爆炸冲击波超压的衰减规律[J].煤炭学报,2008,33(4):410-414.
    [49]曲志明,周心权,张祎恺等.掘进巷道瓦斯爆炸动态数学模型及数值分析[J].北京科技大学学报,2006,28(10):907-916.
    [50] Qu Zhiming. Damage Effect of Shock Wave on Ventilation Structuresduring Gas Explosion[J]. Applied Mechanics and Materials,2010(29-32):118-124.
    [51]曲志明,周心权,和瑞生等.掘进巷道瓦斯爆炸衰减规律及特征参数分析[J].煤炭学报,2006,31(3):324-328.
    [52] Zhai Cheng,Lin Baiquan,Ye Qing,et al. Influence of geometry shape on gasexplosion propagation laws in bend roadways[J]. Procedia Earth andPlanetary Science,2009,1:193-198.
    [53]林柏泉,营从光,支晓伟.瓦斯爆炸机理及湍流对火焰传播速度的影响[J].北京理工大学学报,2003,23:120-126.
    [54]林柏泉,菅从光,周世宁.湍流的诱导及对瓦斯爆炸火焰传播的作用[J].中国矿业大学学报,2003,32(2):107-110.
    [55]林柏泉,叶青,翟成等.瓦斯爆炸在分岔管道中的传播规律及分析[J].煤炭学报,2008,33(2):136-139.
    [56]林柏泉,陈伯辉.瓦斯爆炸过程中火焰厚度的实验室测定及其分析[J].中国矿业大学学报,2000,29(1):45-47.
    [57]林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [58]林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报,2002,31(1):6-9.
    [59]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,24(1):56-59.
    [60]林柏泉,周世宁,张仁贵.瓦斯爆炸过程中激波的诱导条件及其分析[J].实验力学,1998,13(4):463-468.
    [61]林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报,2002,31(1):6-9.
    [62]林柏泉,菅从光,周世宁等.受限空间瓦斯爆炸反射波及对火焰传播的影响[J].中国矿业大学学报,2005,34(1):1-5.
    [63]翟成,林柏泉,菅从光等.壁面粗糙度对瓦斯爆炸火焰波传播的影响[J].中国矿业大学学报,2006,35(1):39-43.
    [64]菅从光,林柏泉,翟成.瓦斯爆炸过程中爆炸波的结构变化规律[J].中国矿业大学学报,2003,32(4):363-366.
    [65] Jiang Bingyou,Lin Baiquan,Shi Shulei,et al. A numerical simulation of theinfluence initial temperature hason the propagation characteristics of andsafe distance from,a gas explosion.International Journal of Mining Scienceand Technology,2012,22:307-310.
    [66] Li Qingzhao,Lin Baiquan,Dai Huaming,et al. Explosion characteristics ofH2/CH4/air and CH4/coal dust/air mixtures[J]. Powder Technology,2012,229:222-228.
    [67] Hong Chen,Hui Qi,Qun Feng. Characteristics of direct causes and humanfactors in major gas explosion accidents in Chinese coal mines:Case studyspanning the years1980e2010[J].Journal of Loss Prevention in the ProcessIndustries,2012:1-7.
    [68] Su Huayou,HuangJin,Xiao Dingjun,et al. Analysis of Characteristics ofCompound Vibration and Effects to Surrounding Gas Pipeline Caused byImpact and Explosion[J]. Procedia Engineering,2011,(26):1835-1843.
    [69] Ning Youjun,Yang Jun,Ma Guowei,et al. Modelling Rock BlastingConsidering Explosion Gas Penetration Using Discontinuous DeformationAnalysis[J]. Rock Mech Rock Eng,2011,(44):483-490.
    [70] Dobashi R,Kawamura S,Kuwana K,et al. Consequence analysis of blastwave from accidental gas explosions[J]. Proceedings of the CombustionInstitute,2011,(33):2295-2301.
    [71] Chen Wanxiang,Guo Zhikun. Experimental Study on Explosion OverpressureCharacteristics and Failure Mode of Mine Roadway[J]. Advances inIntelligent Systems Research,2010,(12):136-145.
    [72] Fan Xiaohua,Yi Jun,Bao Zhengqing. Research on safety input researchmodel for preventing coal gas explosion[J]. Procedia Engineering,2011,(26):2012-2017.
    [73] Zhang Qi, Pang Lei, Liang Huimin. Coupling Relation Between AirShockwave and High-Temperature Flow from Explosion of Methane inAir[J]. Flow turbulence and combustion,2012,1(89):1-12.
    [74] Q Zhang, L Pang, S X Zhang. Effect of scale on flame speeds ofmethane-air[J]. Journal of Loss Prevention in the Process Industries,2011,(24):705-712.
    [75] Jerome T. Correlations for blast effects from vented dustexplosions[J].Journal of Loss Prevention in the Process Industries,2010,(23):15-29.
    [76] Wang Kai,Jiang Shuguang,Zhang Weiqing,et al. Destruction mechanism ofgas explosion to ventilation facilities and automatic recovery technology[J].International Journal of Mining Science and Technology,2012,(22):417-422.
    [77] Andrey N P,Evgeniy S P,Vladimir G K,et al. Experimental InstallationforTest of Automatic Fire Gas Explosion Suppression System,10thinternationalconference and seminar edm '2009,2009:332-334.
    [78] Xu Hongli,Wang Xishi,Gu Rui,et al.Experimental Study on Characteristicsof Methane-Coal-Dust Mixture Explosion and Its Mitigation by Ultra-FineWater Mist[J].Journal of Engineering for Gas Turbines and Power,2012,6(134):1401-1407.
    [79] Li Zhenfeng,Cao Shaolong,An An,et ai. Experimental study on inhibitingthe gas and coal dust explosion by water mist in tube with obstacle[J].Procedia Engineering,2011,26:1851-1856.
    [80] Poli M,Gratz R,Schroder V.An experimental study on safety-relevantparameters of turbulent gas explosion venting at elevated initial pressure[J].Procedia Engineering,2012,42:109-120.
    [81]蔡周全,夏自柱,廖继卿. ZYB-S型实时产气式自动抑爆器的研究[J].煤炭工程师,1997,(4):11-14.
    [82] Liang Yuntao,Zeng Wen. Numerical study of the effect of water addition ongas explosion[J]. Journal of Hazardous Materials,2010,174:386-392.
    [83] You Hao,Yu Minggao,Zheng Ligang,et al. Study on suppression of the coaldust/methane/air mixture explosion in experimental tube by watermist[J].Procedia Engineering,2011,(26):803-810.
    [84] Yu Minggao,Wang Tianzheng,You Hao,et al. Study on the effect of thermalproperty of powder on the gas explosion suppression[J]. ProcediaEngineering,2011,(26):1035-1042.
    [85] Qu Lina,Wang Haiyan,Zuo Dongfang,et al. The experimental study of typeK or S condensed aerosol on inhibition of gas explosion[J]. ProcediaEngineering,2011,(26):582-587.
    [86] Jiang Shuguang, Wu Zhengyan, Li Qinghua, et al. Vacuum chambersuppression of gas-explosion propagation in a tunnel[J]. Journal of chinauniversity of mining&technology,2008,(18):0337-0341.
    [87] Wu Zhengyan,Jiang Shuguang,Wang Lanyun,et al. Experimental study onexplosion suppression of vacuum chambers with different scales[J]. ProcediaEarth and Planetary Science,2009,(1):396-401.
    [88] Wu Zhengyan,Jiang Shuguang,Shao Hao,et al. Experimental study on thefeasibility of explosion suppression by vacuum chambers[J]. Safety Science2012,(50):660-667.
    [89] Wen Xiaoping, Yu Minggao, Liu Zhichao. Dynamic Prediction andMeasurement of Overpressure For Venting of Gas Explosion[J]. AdvancedMaterials Research,2011,(301-303):1226-1230.
    [90] Spath H,Albert S Y,Niu Dewen. A New Dimension in Coal Mine Safety:ExploSpot, Active Explosion Suppression Technology[J]. ProcediaEngineering,2011,(26):2191-2198.
    [91] Zhang Ruming,Nie Baisheng,He Xueqiu,et al. Different gas explosionmechanic sms and explosion suppression techniques[J]. ProcediaEngineering,2011,(26):1467-1472.
    [92] Ma Li,Xiao Yang,Deng Jun,et al. Effect of CO2on explosion limits offlammable gases in goafs[J]. Mining Science and Technology2010,(20):0193-0197.
    [93] Kosinski P. Explosion suppression by a cloud of particles: Numerical analysisof the initial processes[J].Applied Mathematics and Computatio,2011,(217):5087-5094.
    [94]唐建军.细水雾抑制瓦斯爆炸实验与数值模拟研究[D].西安:西安科技大学,2009:22-40.
    [95]唐建军.水抑制瓦斯爆炸的实验综述[J].陕西煤炭,2008(6):38-39
    [96]邢晓江,范宝春,杨宏伟.管内粉尘抑爆效果的实验研究[J].弹道学报,2006,12(4):72-75.
    [97]陆守香,刘晅亚.管道内甲烷火焰穿越水雾区的传播特性[J].热科学与技术,2004,3(2):125-128.
    [98]张辉,王威,邓军.矿井瓦斯爆炸纳米粉体控制技术的探讨[J].煤矿现代化,2005,(2):43-44.
    [99]于不凡.煤炭瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000:90-93.
    [100]纪晨润.阻隔煤矿瓦斯爆炸传播的新技术研究[J].煤炭技术,2010(03):110-113.
    [101] Davy H, Phil. Trans[J].1816,(106):1-24.
    [102]津田健,北條英光.多層金刚形フレ-ムアレスタ-の消炎性能.安全工程学.1989,8(5):279-284.
    [103]王振成,小川辉繁.金属网阻火器设计参数的优化选择[J].中国安全科学学报,1995,(5):176-182.
    [104] Edwards K L,Norris M J. Materials and constructions used in devices toprevent the spread of flames in pipelines and vessels[J]. Materials andDesign,1999,(20):245-252.
    [105] Dae K M, Hyun D S. Laminar premixed flame stabilized inside ahoneycomb ceramic[J]. Int J Heat Mass Transf,1991,34(2):341-356.
    [106] Ciccarelli G. Effect of obstacle size and spacing on the initial stage of flameacceleration in arough tube[J]. ShockMaves,2005,14(3):161-166.
    [107] Nobuyuki Gokon, Yuhei Yamawaki, Daisuke Nakazawa, et al.Ni/MgO-Al2O3and Ni-Mg-O catalyzed SiC foam absorbers for hightemperature solar reforming of methane[J]. International journal of hydrogenenergy,2010,(35):7441-7453.
    [108] Song Zhengchang,Lin Boquan. Numerical simulation of excess-enthalpycombustion flame propagation of coal mine methane in ceramic foam[C].Mining Science and Technology,2010,(20):0248-0253.
    [109] Zhang Jufeng,Liang Ximing,Ma Zhongyuan,et al. Study on Chain Scissionof Gas Explosion Reaction in Foam Ceramics[C]. Procedia Engineering,2011,(26):2369-2375.
    [110]聂百胜,何学秋,张金锋等.泡沫陶瓷对瓦斯爆炸过程影响的实验及机理[J].煤炭学报,2008,33(8):903-907.
    [111]聂百胜,何学秋,张金锋等.泡沫陶瓷对瓦斯爆炸火焰传播的影响[J].北京理工大学学报,2008,28(7):573-576.
    [112] Zhang Dong,Nie Baisheng,Wang Chao,et al. Preliminary Research onPorous Foam Ceramics against Gas Explosions in Goaf[C]. ProcediaEngineering,2011,(26):1330-1336.
    [113] Nie Baisheng,Zhang Ruming,He Xueqiu,et al. Potential applications offoam ceramics in gas explosion prevention[C]. Advanced MaterialsResearch,2011,(284-286):1330-1334.
    [114] Nie Baisheng,He Xueqiu,Zhang Ruming,et al. The roles of foam ceramicsin suppression of gas explosion overpressure and quenching of flamepropagation[C]. Journal of Hazardous Materials,2011,(192):741-747.
    [115] Zhang Jinfeng,Sun Zhongqiang,Zheng Yanmin,et al. Coupling effects offoam ceramics on the flame and shock wave of gas explosion[C]. SafetyScience,2012,(50):797-800.
    [116] Radulescu,M.I,Matsuo,A, Law,C.K.A convective-diffusive reac tion zonestructure model for turbulent detonations[J].Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting,2006,(15):11392-11401
    [117] Payman W,Wheller R V. The Propagation of Flame Through Tubes of SmallDiameter[J]. Chem Soc,1918,(113):656-666;ibid,1919,(115):36-45.
    [118] Holm J M. On the Initiation of Gaseous Explosions by small Flames[J].Phi1Mag,1932,(14):18-56.
    [119] Vasil′ev A A. Near limiting detonation in channels with porous walls[J].Combustion Explosion and ShockWaves,1994,(30):101-106.
    [120]郭长铭,李剑.爆轰波在阻尼管道中声吸收的实验研究[J].爆炸与冲击,2000,20(4):289-295.
    [121]喻建良,毕明树,陈彦则等.一种干式热管阻火器[P].中国,ZL03214250.1.2004,8.
    [122]喻健良,胡春明,李江涛等.平板阻火单元温度变化对火焰淬熄的影响[J].燃烧科学与技术,2007,13(1):1-4.
    [123]喻健良,陈鹏.惰性气体对爆燃火焰淬熄的影响[J].燃烧科学与技术,2008,14(3):193-198.
    [124]周凯元,李宗芬,周自金.波纹板阻火器对爆燃火焰淬熄作用的实验研究[J].中国科学技术大学学报,1997,27(4):449-454.
    [125]周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击,2000,20(2):137-141.
    [126] Eder A,Brehmn. Analytical and experimental insights into fast deflagrations,detonations and deflagration to detonation transition process[J]. Heat andMass Transfer,2001,(37):543-548.
    [127]吴征艳,蒋曙光,程国平.抑制煤矿瓦斯爆炸传播的新技术设想[J].工业安全与环保,2007,33(1):1-3.
    [128]王宝兴,李振颜.可燃气体爆炸泄压过程中声振动不稳定燃烧压力峰减弱方法的研究[J].爆炸与冲击,1989),9(2):130-136.
    [129]王宝兴,经建生,龚允怡等.煤矿瓦斯强烈爆炸的试验研究[J].消防科学与技术,2004,23(6):513-516.
    [130]张铱鈖,赵隆茂.非均匀泡沫金属材料在冲击载荷下的变形模拟[J].爆炸与冲击,2006,26(1):33-38.
    [131] Sun Jianhua,Zhao Yi,Wei Chunrong,et al. The comparative experimentalstudy of the porous materials suppressing the gas explosion[J]. Ismsse2011,(10):1049-1055.
    [132] Palmer K N,Tonkin P S. The Quenching of Propane-air Explosions byCrimped-ribbon Flame Arresters[J]. Second Symposium on ChemicalProcess Hazards,1963:15-20.
    [133] Tadao T,Koji H. Effects of solid length and heat loss on an excess enthalpyflame[J]. Combust SciTech,1983,(31):207-215.
    [134] Sathe S. An Experimental and Theoretical study of porons Radiant BurnerPenformance23rd Syinposium(Intern) on Combustion[J]. Pittsburgh,1990:1011-1018.
    [135] Diamantis D J,Mastorakos E,Goussis D A. Simulations of premixedcombustion in porous media[J]. Combust Theory Model,2002,6(3):383-411.
    [136] Ciccarelli,G. Explosion propagation in inert porous media[C]. Philosophicaltransactions of the royal society a-mathematical physical and engineeringsciences,2012,(370):647-667.
    [137] Gvozdeva L G. Normal shock waves reflection on porous compressiblematerials [J]. Dynamics of explosions,1986,(106):155-165.
    [138] Getal D. Propagation of detonation waves in acoustic absorbing walled tube[J]. Dynamics of explosions,1988,(114):248-263.
    [139] Vasil′ev A A. Near limiting detonation in channels with porous walls[J].Combustion Explosion and Shock Waves,1994,(30):101-106.
    [140] Streng A G,Gross A V. The Quenching Diameter of Ozone Flames[J].Combustion and Flame,1961,(5):81-86.
    [141] Maekawa M. Flame Quenching by Rectangular Channels as a Function ofChannel Length for Methane-Air Mixture[J]. Combustion Science andTechnology,1975,(11):141-145.
    [142] Gvozdeva L G. Normal shock waves reflection on porous compressiblematerials [J]. Dynamics of explosions,1986,(106):155-165.
    [143] Fedorov A V,Fedorchenko I A.Interaction of a Normally Incident ShockWave with a Porous Material Layer on a Solid Wall[C]. Combustion,Explosion, and Shock Waves,2010,46(1):89-95.
    [144] Birk A M. Review of expanded aluminum products for explosionsuppression in containers holding flammable liquids and gases[C]. Journal ofLoss Prevention in the Process Industries,2008,(21):493-505.
    [145] Zheng Chenghang,Cheng Leming,Li Tao,et al. Filtration combustioncharacteristics of low calorific gas in SiC foams[C]. Contents lists availableat ScienceDirect Fuel,2010,(89):2331-2337.
    [146] Vogta U F,Gorbar M,Dimopoulos E P,et al. Improving the properties ofceramic foams by a vacuum infiltration process[C]. Journal of the EuropeanCeramic Society,2010,(30):3005-3011.
    [147]王永刚,胡时胜,王礼立.爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J].爆炸与冲击,2003,23(6):516-522.
    [148]王海富,冯顺山.爆炸载荷下聚氨酯泡沫材料中冲击波压力特性[J].爆炸与冲击,2001,21(2):81-88.
    [149]汪泉.管道中甲烷-空气预混气爆炸火焰传播的研究[D].淮南:安徽理工大学,2006:2-3.
    [150]童宇.井下巷道内瓦斯爆炸阻爆技术研究[D].太原:中北大学,2009:15-16.
    [151]营从光,林柏泉等.湍流的诱导及其对瓦斯爆炸过程中火焰和爆炸波的作用[J].实验力学,2004,(19):39~44.
    [152]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:139-143.
    [153]万俊华.燃烧理论基础[M].哈尔滨:哈尔滨船舶工程学院出版社,1992:63-86.
    [154]赵新胜.矿井瓦斯爆炸再现技术研究[D].长春:长春理工大学,2006:14-15.
    [155]张辉.矿井瓦斯爆炸控制材料的实验研究[D].西安:西安科技大学,2005:16-17.
    [156]林柏泉,菅从光.爆炸波能量变化特征及壁面热效应[J].煤炭学报,2004,29(4):429-433.
    [157]岑可法.燃烧流体力学[M].北京:水利水电出版社,1991:6-8.
    [158]傅维镳.燃烧学[M].北京:高等教育出版社[M],1989:89-95.
    [159]林滢,李孝斌,宋久壮.超细水雾抑制瓦斯爆炸的可行性研究[J].矿业安全与环保,2006,33(4):15-20.
    [160]李润之,司荣军.点火能量对瓦斯爆炸压力影响的实验研究[J].矿业安全与环保,2010,37(2):14-20.
    [161]仇锐来,张延松,司荣军等.点火能量对瓦斯爆炸传播影响的实验研究[J].矿业安全与环保,2011,38(1):6-10.
    [162]贾智伟,刘彦伟,景国勋.瓦斯爆炸冲击波在管道拐弯情况下的传播特性[J].煤炭学报,2011,36(1):97-100.
    [163]侯玮,曲志明,骈龙江.瓦斯爆炸冲击波在单向转弯巷道内传播及衰减数值模拟[J].煤炭学报,2009,34(4):509-513.
    [164] Moen I O,Bjerketvedt D,Rinnan A,et al.Deflagration of detonation fromtubes into a large fuel-air explosive cloud[A].Symposium (International) onCombustion,1982,(41):635-644.
    [165] Fair W M. Studies of premixed flame propagation in explosion tubes[J].Combustion and Flame,1996,(116):504-518.
    [166] Fairweather M. Ibrahim S S, Jaggers H, rt al. Turbulent premixed flamepropagation in a cylindrical vessel[C]. Twenty-sixth SymposiumInternational on Combustion, Pittsburgh, The Combustion Institute,1996,26(1):365-371.
    [167]林柏泉,菅从光,周世宁.湍流的诱导及对瓦斯爆炸火焰传播的作用[J].中国矿业大学学报,2003,32(2):107-110.
    [168]江丙友,林柏泉,朱传杰等.匀强电场对瓦斯爆炸过程中火焰和爆炸波的影响[J].2010(沈阳)国际安全科学与技术学术研讨会论文集,2010:267-272.
    [169]段玉龙,周心权,姜伟等.关于矿井瓦斯爆炸超压规律的预测和分析[J].煤矿安全,2009,12:1-4.
    [170]胡铁柱.瓦斯爆炸传播规律数值模拟研究[D].北京:中国矿业大学(北京),2008:17-19.
    [171]徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D].北京:中国矿业大学(北京),2002:61-62.
    [172]纪晨润,孙建华,魏春荣.ZrO_2泡沫陶瓷对瓦斯爆炸的影响[J].黑龙江科技学院学报,2010,3(20):194-198.
    [173]周崇,喻健良,刘润杰等.多层网孔结构抑爆性能的研究进展[J].煤矿安全,2004,(3):6-8.
    [174]赵增典,张勇,李杰.泡沫金属的研究及其应用进展[J].轻合金加工技术,1998,26(11):1-10.
    [175]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技,2006,22(6):117-121.
    [176]刘三星.泡沫金属冲击动力学性能研究[D].太原:太原科技大学,2009:25-26.
    [177]周凯元,李宗芬.丙烷-空气爆燃火焰通过平行板狭缝时的淬熄研究[J].爆炸与冲击.1997,(2):111-118.
    [178]喻健良.预混火焰在微小通道中传播和淬熄的研究[D].大连:大连理工大学,2008:52-53.
    [179]周丹,王冬,陈长江.浅析HAN阻隔防爆材料的性能与应用[J].消防技术与产品信息,2002,(7):74-75.
    [180]林柏泉,菅从光.爆炸波能量变化特征及壁面热效应[J].煤炭学报,2004,29(4):429-433.
    [181]张金锋.多孔材料对瓦斯爆炸传播影响规律的实验及机理研究[D].北京:中国矿业大学(北京),2007:68-71.
    [182]蔡周全,李惠民.产气式快速阻爆装置的研究[J].矿业安全与环保.2006,12,33(6):15-17.
    [183]王英,任瑞云,江红雨.煤矿井下电动风门的研制与应用[J].矿山机械,2005,33(9):30-31.
    [184]邴吉杰.浅议瓦斯管路系统中阻爆装置的应用[J].煤矿安全,2000,(7):11-12.
    [185]王海福,冯顺山.防爆学原理[M].北京:北京理工大学出版社,2004:119-121.
    [186]刘纪坤,王翠霞,崔永国等.高低负压结合的西冯街煤矿瓦斯抽放系统设计[J].煤矿安全,2001(3):55-58.
    [187]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,24(1):56-59.
    [188]蒂吉斯切HP,克雷兹特B.多孔泡沫金属[M].左孝青,周芸,译.北京:化学工业出版社,2005:147-155
    [189]章晨.基于马尔科夫链的股票价格涨跌幅的预测[J].商业经济,2010,(11):68-70.
    [190]台文志.利用马尔科夫链模型预测股票市场的近期走势[J].云南民族大学学报,2008,34(3):477-481.
    [191]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002:71-76.
    [192]伍爱友,田云丽,宋译等.灰色系统理论在矿井瓦斯涌出量预测中的应用[J].煤炭学报,2005,30(5):589-592.
    [193]梁杰,常建,刘淑琴等.煤炭地下气化过程灰色预测[J].中国矿业大学学报,2003,32(6):608-611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700