用户名: 密码: 验证码:
溶胶凝胶法制备陶瓷结合剂金刚石砂轮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石是目前已知硬度最高的物质,要发挥金刚石的磨削性能,通常需借助结合剂和其他辅助材料将其制备成具有一定规格、性能和用途的磨具。
     陶瓷结合剂金刚石磨具由于具有良好的耐热、耐水、耐油、耐酸碱以及磨具形状保持性好、磨削效率高等优点,在机械加工领域有重要的应用价值和广阔的应用前景。但在磨具制备过程中,一方面由于人造金刚石磨料抗氧化温度相对较低,陶瓷结合剂磨具烧结时易引起金刚石强度的下降;另一方面则是共价键形态的金刚石磨料表面不易被熔融态的陶瓷结合剂所润湿,造成两者间的结合力较弱,上述两方面原因都对磨具整体性能产生不利影响。针对此问题,目前常采用金刚石磨料表面涂覆硅酸盐涂层或镀覆金属的方法,来提高金刚石磨料的抗氧化性能以及与陶瓷结合剂的结合强度。
     鉴于溶胶凝胶法在材料制备方面所展示的特点,本研究工作采用该方法制备低熔、高强和流动性较好的Na_2O-B_2O_3-Al_2O_3-SiO_2系陶瓷结合剂以及对金刚石磨料表面涂覆TiO_2/Al_2O_3薄膜,并将所制结合剂和经表面涂膜改性的金刚石磨料混合后制备成砂轮用于硬质合金(YG8)轴承内圆的磨削;最后采用溶胶喷雾干燥工艺制备轴承内圆抛光磨削用的陶瓷结合剂金刚石微粉砂轮。主要研究结果如下所示:
     (1)基于溶胶凝胶法,制备组分摩尔比Na_2O:B_2O_3:Al_2O_3:SiO_2=7.0:13.5:9.5:70.0的陶瓷结合剂,探讨了制备工艺参数对结合剂性能的影响。分析检测表明:结合剂的玻璃结构随温度的升高发生改变,在800℃时,结合剂玻璃相中有SiO_2晶体析出;计算求得溶胶凝胶法所制结合剂烧结激活能为99.991kJ/mol,小于玻璃熔炼法以及矿物混合法所制结合剂的激活能;结合剂的耐火度、玻璃转化温度等随Li_2O和K_2O量的增加而降低,流动性和热膨胀系数则增大;当Li_2O和K_2O添加量分别为2mol%时,结合剂抗弯强度较初始结合剂有小幅提高,并且结合剂随Li_2O量的增多析晶能力增强。
     (2)研究了采用溶胶凝胶法在金刚石表面涂覆TiO_2/Al_2O_3薄膜的方法,分析了TiO_2/Al_2O_3薄膜对金刚石性能改善的影响。结果表明:TiO_2/Al_2O_3薄膜晶相组成主要为锐钛矿、金红石、Al_2TiO_5及γ-Al_2O_3;推断出金刚石与TiO_2/Al_2O_3薄膜间以Ti-O-C化学键连接,TiO_2与Al_2O_3薄膜间则以Ti-O-Al化学键连接;涂膜后金刚石抗氧化温度较未涂膜金刚石有所提高,且涂膜金刚石经高温热处理后抗压强度和抗冲击强度仍保持较好;TiO_2/Al_2O_3薄膜改善了金刚石的亲水性以及高温条件下与陶瓷结合剂的润湿性,通过表面张力计算求得金刚石涂膜后烧结过程中陶瓷结合剂与金刚石固液界面张力γ_(sl)从65.7mJ·m~(-2)降低到44.2mJ·m~(-2);能谱分析说明TiO_2/Al_2O_3薄膜在烧结过程中通过扩散作用与陶瓷结合剂达到相互熔合。
     (3)采用溶胶凝胶法所制Li_2O-Na_2O-B_2O_3-Al_2O_3-SiO_2陶瓷结合剂与金刚石磨料(RVD140/170#)混合后制备成砂轮,并对硬质合金轴承内圆进行磨削。结果表明,在结合剂相同含量的条件下,涂覆TiO_2/Al_2O_3薄膜金刚石磨料所制砂轮的抗弯强度和硬度均高于未涂膜金刚石磨料砂轮;实际生产中使用的电镀金刚石砂轮在磨削轴承内圆的圆度、粗糙度以及磨削效率等方面要略好于本研究所制备的陶瓷结合剂金刚石砂轮;但在磨削工件数以及经济效益等方面,则陶瓷结合剂金刚石砂轮要优于电镀金刚石砂轮。
     (4)分析了常规制备方法和溶胶喷雾干燥方法对金刚石微粉与陶瓷结合剂的混合物料及所制砂轮组织结构的区别,检测结果表明,在相同结合剂含量条件下,溶胶喷雾干燥方法所制砂轮的抗弯强度和硬度都高于常规方法所制砂轮。通过对硬质合金轴承内圆的磨削实验,结果表明,溶胶喷雾干燥方法所制砂轮较常规方法所制砂轮磨削表面粗糙度低;与工厂实际使用的陶瓷结合剂绿碳化硅微粉砂轮相比,溶胶喷雾干燥方法所制金刚石微粉砂轮在磨削效率以及工件表面粗糙度等指标上都优于绿碳化硅砂轮。
Diamond is the highest hardness of the material, so it has important applicationvalue in the industry. To exert the diamond grinding performance, it is usuallyconsolidated by the bond or other auxiliary materials to manufacture a certainspecification, property and usage of grinding tool.
     Because vitrified bond diamond grinding tool is good heat resistance, waterresistance, oil resistance, acid/alkali resistance, shape stability and preferablegrinding efficiency, it has important application value in grinding the functionalceramics, hard alloy, refractory materials and stone. However, during the grindingwheel manufacture, for one thing, the synthetic diamond’s oxidation temperature isusually lower than the sintering temperature, making the the diamond’s intensityreduced. For another thing, the diamond is not easy to be wetted by the fused vitrifiedbond, leading to the weak bonding force between them, so the performance ofgrinding tool is not strong. For solving these problems, it often uses the specialdiamond that is coated with silicate coating or metal coating to improve the diamondoxidation resistance and the bonding strength with vitrified bond.
     Considering the characteristics of the sol-gel method in material preparation, inthis study, the diamond coated with the TiO_2/Al_2O_3film and theNa_2O-B_2O_3-Al_2O_3-SiO_2system vitrified bond was prepared by sol-gel method. Thenthe grinding wheel that was prepared by the vitrified bond and the coated diamondwas applied to grind the hard alloy bearing inner round. Last the vitrified bonddiamond fine powder grinding wheel was prepared by the sol spray drying method andused to accurately grind the hard alloy bearing inner round.The main research resultswere as follows:
     (1)Based on the sol-gel method, the parameter influences in the performance ofvitrified bond were discussed and the mole ratio of bond components wasselected(Na_2O:B_2O_3:Al_2O_3:SiO_2=7.0:13.5:9.5:70.0).The analysis results showed thatthe vitrified bond glass structure could be changed with the rising of temperature andthe SiO_2crystal could be crystallized in the vitrified bond at800℃. The sinteringactivation energy of vitrified bond prepared by the sol-gel method was99.991kJ/mol,less than that of the vitrified bond prepared by the glass melting and mineral mixingmethod. With the increasing amount of Li_2O or K_2O, the refractoriness and the glass transition temperature of the vitrified bond was decreasing, but the liquidity andcoefficient of thermal expansion was increasing. When the additive amount of Li_2O orK_2O was2mol%, the bending strength of the vitrified bond had a small increase andthe crystallization of vitrified bond was enhanced with the Li_2O amount increasing.
     (2)It was systematically studied that the diamond was coated with the TiO_2/Al_2O_3film by sol-gel method and discussed the effects of TiO_2/Al_2O_3film on the diamondperformance improvement. The results were shown that the crystal phases of theTiO_2/Al_2O_3film were anatase, rutile, Al_2TiO_5and γ-Al_2O_3. The chemical bondbetween the diamond and the TiO_2/Al_2O_3film was Ti-O-C and the chemical bondbetween the TiO_2and Al_2O_3film was Ti-O-Al. After coating TiO_2/Al_2O_3film, thediamond oxidation temperature was increased, the diamond’s compressive strengthand shock strength had maintained better than that of uncoated diamond at hightemperature. The TiO_2/Al_2O_3film could improve the hydrophilicity of diamond andalso markedly improve the wettability of fused vitrified bond on diamond surface. TheTiO_2/Al_2O_3film was fused into the vitrified bond through the diffusion effect insintering process. With the method of surface tension calculation, it was showed thatthe value ofγ_(sl)between the vitrified bond and diamond was reducing from65.7mJ·m~(-2)to44.2mJ·m~(-2).
     (3)The grinding wheel was prepared by the Li_2O-Na_2O-B_2O_3-Al_2O_3-SiO_2vitrifiedbond and RVD140/170#diamond. Under the same percent of vitrified bond, thebending strength and hardness of the grinding wheel prepared by the diamond coatingTiO_2/Al_2O_3film was better than that of the grinding wheel prepared by the uncoateddiamond. In grinding hard alloy bearing inner round, the qualified rate of theworkpiece processed by the coated diamond grinding wheel was better than that ofuncoated diamond grinding wheel. Compared with the plating diamond grindingwheel, the machining accuracy of the bearing inner round grinded by the platingdiamond grinding wheel was slightly better than that of vitrified bond diamondgrinding wheel, but in the grinding numbers and economic benefit, the vitrified bonddiamond grinding wheel was better than the plating diamond grinding wheel.
     (4)It was compared the distinction of the grinding wheel prepared by thetraditional preparation method and sol spray drying method. The test was shown that,under the same percent vitrified bond, the bending strength and hardness of thegrinding wheel with the sol spray drying process was better than that of the traditionalpreparation method. In the test of grinding bearing inner round, it was confirmed thatthe grinding surface roughness of the bearing inner round processed by the grinding wheel with the sol spray drying method was lower than that of the traditionalpreparation method.Compared with the green silicon carbide powder vitrified bondgrinding wheel, in the field of grinding efficiency and surface roughness of workpiece,the diamond grinding wheel with sol spray drying method was better than that of thegreen silicon carbide grinding wheel.
引文
[1]王秦生.超硬材料制造.北京:中国标准出版社,2002,13-14
    [2]李志宏.陶瓷磨具制造.北京:中国标准出版社,2000,3-5
    [3]邹文俊.有机磨具制造.北京:中国标准出版社,2001,2-4
    [4]方啸虎.超硬材料基础与标准.北京:中国建材工业出版社,1998,3
    [5] T nshoff HK, Hillmann-Apmann H, Asche J. Diamond tools in stone and civilengineering industry: cutting principles, wear and applications. Diamond andRelated Materials,2002,11:736-741
    [6] W. Li, Y. Wang, Shouhong Fan, et al. Wear of diamond grinding wheels andmaterial removal rate of silicon nitrides under different machining conditions.Materials Letters,2007,61:54-58
    [7]周志朝,杨辉,朱永花,等.无机材料显微结构分析.杭州:浙江大学出版社,2000,77-78
    [8]万隆,陈石林,刘小磐.超硬材料与工具.北京:化学工业出版社,2006,6-13
    [9] Bundy F P,Hall H T,Strong H M.Man-made diamond.Nature,1955,176:51-55
    [10] Devashish Choudhary, Jayesh Bellare.Manufacture of gem quality diamonds:areview.Ceramics International,2000,26:73-85
    [11]方啸虎,邓福铭,郑日升.现代超硬材料与制品(下).杭州:浙江大学出版社,2011,744
    [12]王秦生.超硬材料及制品.郑州:郑州大学出版社,2006,3-4
    [13]方啸虎.超硬材料科学与技术(上).北京:中国建材工业出版社,1998,33
    [14]臧建兵,赵玉成,王明智.超硬材料表面镀覆技术及应用.金刚石与磨料磨具工程.2000,3(117):8-12
    [15] Williams Carey T, Demetry, Chrysanthe, Li Rounan. Structure and strength ofinterfaces intitanium-coated diamond-glass composites. Ceramic Engineering andScience Proceedings,2000,21(3):697-704
    [16]王明智,王艳辉,赵玉成,等.超硬磨料表面镀覆(涂覆)的种类方法及用途(I).金刚石与磨料磨具工程,2004(5):68-72
    [17]张小福.微晶玻璃结合剂的研制及其与金刚石界面结合机理研究:[中南大学博士学位论文].长沙:中南大学,2007,7-8
    [18]王秦生,杨丽荣,方占江.超声波强化电镀过程及改善镀层质量的机理.金刚石与磨料磨具工程,2003,(4):30-32
    [19]关长斌,赵玉成,任艳军.超声波对镀镍金刚石性能的影响.物理测试,2006,24(2):10-12
    [20] X.L.Shi, G.Q.Shao, X.L.Duan, et al. The effect of tungsten buffer layer on thestability of diamond with tungsten carbide–cobalt nanocomposite powder duringspark plasma sintering.Diamond and Related Materials,2006,15(10):1643–1649
    [21] Y.F.Zhu, L.Wang, W.Q.Yao, et al.The interface diffusion and Reaction between CrLayer and Diamond Particle during Metallization. Applied Surface Science,2001,171:143-150
    [22] Y.F.Zhu, W.Q.Yao,B. Zheng, et al.Application of AES Line Shape Analysis fortheIdentification of Interface Species during the Metallization of DiamondParticles. Surface and Interface Analysis,1999,28(1):254-257
    [23]王岚,高学绪.金刚石-钛界面的扩散.硅酸盐学报,1998,26(2):270-273
    [24] V. F. Grishachev, V. P. Maslov, V. T. Vesna,et al. Metallization of diamonds in agas-eous atmosphere of molybdenum chlorides, Powder Metallurgy and MetalCeramics,1984,23(4):286-290
    [25] A.K. Chattopadhyay, H.E. Hintermann. On surface modification ofsuperabrasivegrits by CVD of chromium.CIRP Annals-Manufacturing Technology,1992,41(1):381-385
    [26]王艳辉.金刚石磨料表面镀钛层的制备结构性能及应用:[燕山大学工学博士].秦皇岛:燕山大学材料科学与工程学院,2002:1-87
    [27]王明智,王艳辉,张习敏.金刚石镀覆工艺与使用效果的关系.金刚石与磨料磨具工程,2003,1:39-42
    [28] Y.H.Wang, J.B.Zang, M.Z.Wang, et al. Properties and applications of Ti-coateddiamond grits. Journal of Materials Processing Technology,2002,250:41-45
    [29] Y.H.Wang, J.B.Zang, M.Z.Wang, et al. Relationship of interface microstructureand adhesion strength between Ti coating and diamond. Key EngineeringMaterials,2003,250:41-45
    [30] J.B.Zang, Y.H.Wang, X.H. Zhang, et al. study on properties and applicationofTi-coated diamond by measuring resistance. Key Engineering Materials,2003,250:78-82
    [31] V.G.Chuprina, I.M.Shalya, V.P.Umanskii.Oxidation of Nickel-Molybdenumcoatings on diamond. Soviet Powder Metallurgy and Metal Ceramics,1991,30(4):308-312
    [32] S.T.Lee.Modifying the Surface of Diamond Particles.United States Patent4063907,1977,12
    [33]向波,谢志刚,贺跃辉,等.金刚石表面镀覆金属钨的新方法.中国有色金属学报,2009,17(9):1511-1515
    [34] Else.Breval, Jiping Cheng, Dinesh K.Agrawal.Development of Titanium Coatingson Particulate Diamond. Journal of the American Ceramic Society,2000,83(8):2106-2108
    [35]项东,刘科高,王献忠.金刚石表面盐浴镀覆铬层结构及性能研究.兵器材料科学与工程,2009,32(3):8-11
    [36]张风林,魏析,王成勇.金刚石表面镀覆金属的性能研究(盐浴镀).工具技术,2002,36:26-29
    [37] Y. H. Wang, Y. C. Zhao, M. Z. Wang, et al. Structure and Properties of DiamondGrits Coated with Corundum Micron Powders, Key Engineering Materials,2003,250,94-98
    [38]王明智,王艳辉,赵玉成,等.超硬磨料表面镀覆(涂覆)的种类方法及用途(Ⅱ).金刚石与磨料磨具工程,2004(6):68-72
    [39]张习敏.陶瓷立方氮化硼磨具组织及性能的研究:[燕山大学工学硕士论文].秦皇岛:燕山大学材料科学与工程学院,2003:42-46
    [40] Zhang X, Lu. A. Effects of titanium coating on property of diamond. TransNonferr Met Soc China2007;17:715-719
    [41] B.Felde, A.Mehner, J.Kohlscheen, et al. Deposition of alumina coatings onmonocrystalline diamonds by sol-gel techniques. Diamond and Related Materials,2001,10:515-518
    [42]张向红.低熔高强陶瓷结合剂超硬磨具的研究:[燕山大学工学硕士论文].秦皇岛:燕山大学材料科学与工程学院,2004:54
    [43] J.B.Zang, J.Lu, X.H.Qi, et al. Characterization of silicon films grown by atomiclayer deposition on nanocrystalline diamond. Diamond and Related Materials,2006,15:1434-1437
    [44] Zhang X.H,Wang Y.H, Zang J.B, et al. Effect of Si coating on prevention ofdiamond degradation in diamond/glass composite. Surf Coat Technol,2010;204:2846-2850
    [45] X.P.Liu, L. Wan, W.D.Hu, et al. Effect of TiO2films on diamond:oxidationresistance and wear performance. Advances in applied ceramics,2009,108(8):501-505
    [46] Huang Z, Xiang B, He Y, Huang B. Thermal residual stress analysis of coateddiamond grits. Int J Miner Metall Mater2009;16:215-219
    [47] Morisada Y, Miyamoto Y, Moriguchi H, Tsuduki K, Lkegaya A. Growthmechanism of nanometer-sized SiC and oxidation resistance of SiC-coateddiamond particles. J Am Ceram Soc2004;87:809-813
    [48] Ioan D Marinescu,W Brian Rowe,Boris Dimotro et al.Tribology of AbrasiveMachining Processes,New York:2004:41
    [49] Kopac J, Krajnik P. High-performance grinding-a review. Journal of MaterialsProcessing Technology,2006,175:278-284
    [50] X.H.Zhang, Y.H.Wang, J.B.Zang, et al. Improvement of thermal stability ofdiamond by adding Ti powder during sintering of diamond/borosilicate glasscomposites. Journal of the European Ceramic Society,2011,31,1897-1903
    [51] Xianghong Zhang,Yanhui Wang, Jianbing Zang, et al.Depression Effects of Al onOxidation of Diamond During Sintering of Diamond/Borosilicate GlassComposites. International Journal of Applied Ceramic Technology,2012,9(1):143-148
    [52]王志起,万隆,胡伟达,等.Ti对陶瓷结合剂及金刚石磨具性能的影响.金刚石与磨料磨具工程,2011,31(2):50-54
    [53]王扎根,刘岩.PVB改性酚醛树脂的研究.金刚石与磨料磨具工程,1991,109(1):28-30
    [54]彭进,张琳琪,邹文俊等.双马来酰亚胺改性酚醛树脂的合成研究.金刚石与磨料磨具工程,2003,134(2):45-47
    [55]彭进,张琳琪,邹文俊,等.纳米端羧基丁腈橡胶增韧酚醛树脂及其在有机磨具中的应用研究.河北化工,2008,3l(3):4-6
    [56]张书森,尹学敏,袁显永.改进聚酰亚胺金刚石砂轮磨削性能的研究.金刚石与磨料磨具工程,2003,136(4):71-72
    [57]高越友,韩培文,韩宏等.聚酰亚胺树脂金刚石砂轮的特点与应用.金刚石与磨料磨具工程,2000,118(4):25-27
    [58]奥岛贤一.利用光固化成形技术开发树脂结合剂砂轮.磨料磨具通讯,2004,10:4-9
    [59]王德海,江棂.紫外光固化材料:理论与应用,北京:科学出版社,2001,15-18
    [60] T.Tanaka, Y. Isono. New development of a grinding wheel with resincuredbyultraviolet light. Journal of Materials Processing Technology,2001,113(1-3):385-391
    [61]姚春燕,彭伟,高涛.晶须增强光敏树脂结合剂超薄金刚石切割砂轮片的研究.金刚石与磨料磨具工程,2004,142(4):13-15
    [62] S.Malkin. Grinding Technology: Theory and Applications of Machining withAbrasives.Ellis Horwood, Chichester, UK:1989,197-221
    [63] Liao T W., Li K, S.B.McSpadden.Jr, et al. Wear of diamond wheels in creep-feedgrinding of ceramic materials I. Mechanisms. Wear,1997,211:94-103
    [64] Hsieh Y Z, Lin S T. Diamond tool bits with iron alloys as the binding matrices.Materials Chemistry and Physics,2001;72:121-125
    [65]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003,1-538
    [66] Z.B.Wu, H.J.Xu, B.Xiao. Microanalysis of interface between Ni-Cr alloy anddiamond (or steel). Key Engineering Materials,2001,202-203:143-146
    [67] H.Ohmori, T. Nakagawa. Utilization of Nonlinear Conditions in PrecisionGrinding with ELID (Electrolytic In-Process Dressing) for Fabrication of HardMaterial Components. CIRP Annals-Manufacturing Technology,1997,46(1):261-264
    [68] K.Suzuki, T. Uematsu, T. Yanase, et al.Development of a Simplified Electroche-mical Dressing Method with Twin Electrodes. CIRP Annals-ManufacturingTechnology,1991,40(1):178-182
    [69] H.S.Lim, K.Fathima A.Senthil Kumar, et al. A fundamental study on themechanism of electrolytic in process dressing (ELID) grinding. InternationalJournal of Machine Tools and Manufacture,2002,42(8):935-943
    [70] Wang Y, Zhou X J, Hu D J. An experimental investigation of dry-electricaldischarge assisted truing and dressing of metal bonded diamond wheel.International Joumal of Machine Tools and Manufacture,2006,46(3-4):333-342
    [71] J.Xie, J.Thmaki. An experimental study on discharge mediums used forelectro-contact discharge dressing of metal-bonded diamond grinding wheel.Journal of Materials Processing Technology.2008,208(1-3):239-244
    [72] R.Meneghello, G.Concheri, G. SaVio, et al. Surface and geometry error modelingin brittle mode grinding of ophthalmic lenses moulds. International Journal ofMachine tools and Manufacture,2006,46(12-13): l662-l670
    [73] Wan Daping, Wang Yan, Hu Dejin. In situ turing/dressing of diamond wheel forprecision grinding. Chinese Journal of Mechanical Engineering,2008,21(3):46-51
    [74]何琦,徐家文.电加工技术在修整金属结合剂超硬磨料砂轮中的应用.机械设计与制造工程,1998,27(4):1-2
    [75] Tomino H, Tsukuda A, Kondo Y, et al. Influence of Porosity on GrindingPerformance of Porous Cast-iron Bonded Diamond Grinding Wheel Made byPulse Electric Current Sintering Method. Journal of the Japan Society of Powderand Powder Metallurgy,1999,46(3):257-261
    [76]苏宏华,徐鸿钧.金属结合剂金刚石砂轮制造技术新发展.金刚石与磨料模具工程,2003,4:19-22
    [77]苏宏华,徐鸿钧,傅玉灿.多孔金属结合剂金刚石砂轮研究综述.机械科学与技术,2003,22(s1):11-13
    [78] S.H Truong, Y Isono, T Tanaka. Scanning electron microscopic study andmechanical property examination of a bond bridge: development of a porous metalbonded diamond wheel. Journal of Materials Processing Technology,1999,89-90:385-391
    [79]李菊丽,李长诗,郭健明.金属结合剂金刚石砂轮的研究进展.工具技术,2003,37(9):3-6
    [80] Chattopadhyay A.K, Chollet L, Hintermann H.E. Induction brazing of diamondwith Ni-Cr hardfacing alloy under argon atmosphere. Surface and CoatingsTechnology,1991,45,(1-3):293-298
    [81] Zang J B, Lu J, Wang Y H, Zhang X H, et al. Study of the wettability betweendiamond abrasive and vitrified bond with low melting point and high strength.Key Eng Mater,2008,359-360:11-14
    [82] Timonthy D D, Sheldon D, Erkey C. Highly porous vitrified bonded abrasivees bythe selective extraction of butyl carbamate from green grinding wheels withsupercritical CO2. Journal of the American Ceramic Society,2005,88(7):1729-1733
    [83]刘小磐.陶瓷结合剂金刚石砂轮的制备及磨削性能的研究:[湖南大学博士学位论文].长沙:湖南大学材料科学与工程学院.2011,10-11
    [84] Xiong D H, Cheng J S, Li H. Composition and crystallization kinetics ofR2O-Al2O3-SiO2glass-ceramics. Journal of Alloys and Compounds,2010,498:162-167
    [85] D.Herman.Glass and glass-ceramic binder obtained from waste material forbinding alundum abrasive grains into grinding wheels. Ceramics International,1998,24:515-520
    [86] A.M.Tsyvyan. Selection of the binder composition for abrasive electrocorunduminstruments. Glass and Ceramics,2002,59(1-2):30-33
    [87] A.M.Tsyvyan. The effect of the binder on the properties of electrocorundumabrasive tools, Glass and Ceramics,2003,60(7-8):219-221
    [88] M.Jackon, B.Mills. Materials selection applied to vitrified Alumina&CBNgrinding wheels, Journal of Materials Processing Technology,2000,108:114-124
    [89] Pascual M J, Durán A, Pascual L. Viscosity and thermal properties of glas-ses inthe system R2O-B2O3-SiO2, R=Li, K, Na. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B,2002,43(1):25-31
    [90] A.E.Shilo, E.K.Bondarev, S.A.Kukharenko. Sintering of low-melting glasspowders and glass-abrasive composites.Science of Sintering,2003,35:117-124
    [91] Yong-gai Hou, Gui-ying Qiao, Yong Shang, et al. Effect of porosity on thegrinding performance of vitrified bond diamond wheels for grinding PCD blades.Ceramics International,2012, Available online4May
    [92] Wang P F, Li Z H, Zhu Y M, et al. Effect of ZnO on the interfacial bond-ingbetween Na2O-B2O3-SiO2vitrified bond and diamond. Solid State Sciences,2009,11(8):1427-1432
    [93]赵彦钊,殷海荣.玻璃工艺学.北京:化学工业出版社,2006,29-30
    [94]王承遇,陈敏,陈建华.玻璃制造工艺.北京:化学工业出版社,2006,82-84
    [95]张书森.金刚石磨具低温结合剂的研究:[郑州大学硕士论文],郑州:郑州大学材料学院,2004,9-10
    [96] Daniela H, Jan K. Influence of vitrified bond structure on radial wear of cBNgrinding wheels.Journal of Materials Processing Technology,2009,209:5377-5386
    [97] Wang P F,Li Z H,Zhu Y M. Effect of CaO on the surface morphology and strengthof water soaked Na2O-B2O3-Al2O3-SiO2vitrified bond. Journal of Non-CrystallineSolids,2008,354:3019-3024
    [98] Wang P F,Li Z H,Zhu Y M. Influences of Alkaline-Earth Metal Oxides on theProperties of Vitrified Bond, Key Engineering Materials,2008,368-372:1405-1407
    [99]王鹏飞,李志宏,朱玉梅.碱金属氧化物对陶瓷结合剂性能的影响.稀有金属材料与工程,2007,36(s1):285-287
    [100]侯永改,彭进,邹文俊,等.磨PCD刀具陶瓷结合剂金刚石砂轮的研究.金刚石与磨料磨具工程,2007,6:51-53
    [101]张向红,王艳辉,臧建兵,等.低熔高强纳米陶瓷结合剂粗粒度超硬工具.金刚石与磨料磨具工程,2011,31(181):32-34
    [102] Lin KH, Peng SF, Lin. ST. Sintering parameters and wear performances ofvitrified bond diamond grinding wheels. Int J Refract Met Hard Mater2007:25-31
    [103]肖汉宁,孙涛,成茵,等.B2O3-Al2O3-SiO2系微晶玻璃析晶动力学研究,功能材料,2007,38:3700-3703
    [104] Tao Sun, Hanning Xiao, Yin Cheng, et al. Effects of MO(M=BaO,MgO, CaO)on the crystallization of B2O3-Al2O3-SiO2glass-ceramics, Ceramics Int-ernational,2009,35:1051-1055
    [105] D.Herman.Glass and glass-ceramic binder obtained from waste material forbinding alundum abrasive grains into grinding wheels. Ceramics International,1998,24:515-520
    [106] D.Herman, J Pliohta, T.Karpinski. Effect of glass-crystalline and amorphousbinder application to abrasive tools made of microcrystalline alumina grainstype SG.Wear,1997,209(1-2):213-218
    [107] Xiaofu Zhang, Anxian Lu, Yu Wang. New Vitrified Bond Diamond GrindingWheel for Grinding the Cylinder of Polycrystalline Diamond Compacts. J.Mater. Sci. Technol.,2007.23(5):672-676.
    [108] A.X.Lu, Z.B. Ke, Z.H. Xiao, X.F. Zhang, X.Y.Li. Effect of heat-treatmentconditi-on on crystallization behavior and thermal expansion coefficient ofLi2O-ZnO-Al2O3-SiO2-P2O5glass–ceramics. Journal of Non-Crystalline Solids.2007,353:2692-2697
    [109] Lu Anxian, Huang Guangfeng, Liu Shujiang,et al. Effects of different nu-cleating agents on crystallization behavior and properties of Li2O-ZnO-SiO2glasses. Journal of Central South University(Science and Techonology),2006,37(6):1031-1035
    [110]杨南如,余桂郁.溶胶-凝胶法的基本原理与过程.硅酸盐通报,1992,2:56-63
    [111]杨南如,余桂郁.溶胶凝胶法名词解释和测试方法.硅酸盐通报,1993,3:62-63
    [112]余桂郁,杨南如.溶胶凝胶法工艺过程.硅酸盐通报,1993,6:60-66
    [113] Sumio Sakka.Current sol-gel activities in Japan. Journal of sol-gel technology,2006,37:135-140
    [114] Masayuki Yamane. Unique commercial applicaitions of the sol-gel process inJapan. Journal of sol-gel technology,2006,40:273-279
    [115]黄剑锋.溶胶凝胶原理与技术.北京:化学工业出版社,2005,68-69
    [116] Xiang W D, Liang X J, Yang Y X. Sol-gel preparation and optical properties oftransparent sodium borosilicate glasses. Glass physics and chemistry,2010,36(1):36-40
    [117] Erdal Celik, Ibrahim Keskin, Isil Kayatekin et al. Al2O3-TiO2thin films onglass substrate by sol-gel technique. Materials Characterization,2007,58:349-357
    [118] You Y, Zhang S Y, Wan L, et al. Preparation of continuous TiO2fibers bysol–gel method and its photocatalytic degradation on formaldehyde, AppliedSurface Science,2012,258(8):3469-3474
    [119] Anirban Chowdhury, Jonathan Bould, Yifan Zhang, et al. Nano-powders ofNa0.5K0.5NbO3made by a sol-gel method. Journal of Nanoparticle Research,2010,12:209-215
    [120]王盘鑫.粉末冶金学.北京:冶金工业出版社:1997,1-54
    [121]林晨光.中国超细晶粒WC-Co硬质合金研究进展.稀有金属,2004,28(4):762-766
    [122]李晨辉,余立新,熊惟皓.WC的粒度对WC-Co硬质合金断裂韧性的影响.硬质合金,2001,18(3):138-142
    [123] Jia K, Fischer T E, Gallois B. Microstructure, hardness and toughness ofnanostructured and conventional WC-Co composites. Nanostructured materials,1998,10(5):875-891
    [124]任莹晖,张璧,周志雄,纳米结构硬质合金磨削的表面形貌和材料去除机理研究.中国机械工程,2009,20(8):896-901
    [125]任敬心,康仁科,王西彬.难加工材料磨削技术.北京:电子工业出版社,2011,1-388
    [126]朱从容,李伟,于天明.铸铁结合剂金刚石砂轮ELID磨削硬质合金的性能.金刚石与磨料磨具工程,2008,168:5-8
    [127] M.A.Villegas, J.M. Fernandez Navarro.Characterization and study ofNa2O-B2O3-SiO2glasses prepared by the sol-gel method, Journal of materialsscience,1988,23:2142-2152
    [128] Kenji Iimura, Toshiyuki Oi, Michitaka Suzuki, Mitsuaki Hirota, Preparation ofsilica fibers and non-woven cloth by electrospinning, Advanced PowderTechnology,2010,21(1):64-68
    [129] Anand Agarwal, Minoru Tomozawa. Correlation of silica glass properties withthe infrared spectra.J.Non-Cryst.Solids,1997,209:166-174
    [130] M.Tomozawa, J.-W.Hong, S.–R.Ryu. Infrared (IR) investigation of thestructuralchanges Silica glasses with fictive temperature. J.Non-Cryst.Solids.,2005,351(12-13):1054-1060
    [131] H.Darwish, M.M.Gomaa, Effect of compositional changes on the structure andproperties of alkali-alumino borosilicate glasses.J.Mater.Sci.:Materials inElectronics,2006,17:35-42
    [132]张爱菊.立方氮化硼基陶瓷复合材料的研究.[天津大学博士论文]天津:天津大学材料学院,2009,80-81
    [133]高朋召,王红洁,金志浩.SiO2溶胶-凝胶转变过程的动力学研究及应用.复合材料学报,2003,20(4):122-127
    [134] L.Stoch, M. roda. Infrared spectroscopy in the investigation of oxide glassesstructure.J.Mol.Struct,1999,511-512:77-84
    [135] E. I. Kamitsos, A. P. Patsis, M. A. Karakassides, et al. Infrared reflectancespectra of lithium borate glasses.J. Non-Cryst.Solids,1990,126:52-67
    [136]杨南如.无机非金属材料测试方法.武汉:武汉理工大学出版社.2008,91-92
    [137]陆佩文.无机材料科学基础.武汉:武汉工业大学出版社.1996,281-313
    [138] Singh V K,Densification of alumina and silica in the presence of a liquid phase,J Am Ceram Soc,1981,(64):133-136
    [139]李子成.纳米晶陶瓷刚玉磨料的制备及性能研究.[天津大学博士论文]天津:天津大学材料学院,2009,68-70
    [140] Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO2nanoparticles: optimization of the preparation conditions. J. Photochem.Photobiol. A: chemisty,2003,157:47-53
    [141]周武艺.纳米TiO2的掺杂改性及光催化性能的研究:[湖南大学博士学位论文].长沙:湖南大学,2005,21-25
    [142]王喜娜,敬承斌,赵修建.溶胶凝胶法制备致密α-Al2O3涂层的研究.材料科学与工艺,2005,13(1):1-3
    [143] Kusunoki I, M.Sakai, Y.Igari,et al. XPS study of nitridation of diamond andgraphite with a nitrogen ion beam. Surface Science,2001,493(3):315-328
    [144]覃礼钊,张旭,吴正龙.XPS表征类金刚石膜探讨.现代仪器,2005,6:18-20
    [145]胡煜艳,钱清华,李伟等.K2Ti6O3薄膜电极的制备及其光电化学.过程工程学报.2007,7(6):1236-1242
    [146] Sakthivel S, Kisch H. Daylight Photocatalysis by Carbon-modified TitaniumDioxide [J]. Angew. Chem. Int. Ed.,2003,42:4908-4911
    [147] Benjaram M. Reddy, Biswajit Chowdhury,Ettireddy P. Reddy,et al.An XPSstudy of dispersion and chemical state of MoO3on Al2O3-TiO2binary oxidesupport. Applied Catalysis A: General,2001,213:279-288
    [148] Wei Li, Shengxiang Li, Minghui Zhang, et al. The effect of phosphorus onnano-sized TiO2particles dispersed on Al2O3.Colloids and Surfaces A:Physicochem. Eng.Aspects,2006,272:189-183
    [149] Y.mizuno,F. K.King, Y.Yamauchi,et al. Temperature dependence of oxidedecomposition on titanium surfaces in ultrahigh vacuum, Journal of VacuumScience&Technology,2002,20(5):1716-1721
    [150] Hyeok Choi, Elias Stathatos, Dionysios D. Dionysiou, Sol-gel preparation ofmesoporous photocatalytic TiO2filmsand TiO2/Al2O3composite membranes forenvironmental applications. Applied Catalysis B: Environmental,2006,63:60-67
    [151] Benjaram M.Reddya, Biswajit Chowdhury, Panagiotis G. Smirniotis. An XPSstudy of the dispersion of MoO3on TiO2-ZrO2,TiO2-SiO2,TiO2-Al2O3,SiO2-ZrO2, and SiO2-TiO2-ZrO2mixed oxides, Applied Catalysis A: General,2001,211:19-30
    [152] C.D.Wagner, W.M.Riggs, L.E.Davis, et al.Handbook of X-Ray PhotoelectronSpectroscopy.Minnesota USA:Perkin-elmer Corporation Press,1979,50-51
    [153] F. álvarez, M. Reinoso, H. Huck, M. Rosenbusch,et al. Diamond deposition onsiliconized stainless steel, Applied Surface Science,2010,256:3962-3966
    [154] Jingjing Wang, Hong Yan, Yujun Deng, et al. The comparative study ondiamond film by near-field Raman spectroscopy and micro-Raman spectroscopy,Solid State Communications,2000,115:173-177
    [155]文潮,金志浩,刘晓新,等.炸药爆轰合成纳米金刚石的拉曼光谱和红外光谱研究,光谱学与光谱分析,2005,25(5):681-684
    [156] Yao-Hsuan Tseng, Chien-Sheng Kuo, Chia-Hung Huang, Yuan-Yao Li,et al.Visible-light-responsive nano-TiO2with mixed crystal lattice and its photoc-atalytic activity. Nanotechnology,2006,17:2490-2497
    [157]朱克荣,陈强,邓昱,等.低温拉曼光谱研究二氧化钛纳米晶的相变,光散射学报,2008,20(4):329-332
    [158]方萍,何迈,谢云龙,罗孟飞.γ-Al2O3高温相变的XRD和Raman光谱比较研究.光谱学与光谱分析,2006,26(11):2039-2042
    [159] Feng Z, Field J E.dynamic strengths of diamond grits.Industrial diamondreview,1989,49(3):104-108
    [160] Pocius A V. Adhesion and adhesion technology:An introduce.New York: MarcelDekker,2002:73-102
    [161] Robert N. Wenzel.Resistance of solid surfaces to wetting by water. Ind. Eng.Chem.,1936,28(8):988-994
    [162]曹晓平,蒋亦民.浸润接触线的摩擦性质与固体表面张力的Wenzel行为,物理学报,2005,54(5):2202-2205
    [163]赵天艺,张勇,刘欢,等.不同极性微量选择性溶剂对聚合物膜表面浸润性的控制,高等学校化学学报,2009,30(11):2301-2305
    [164] V. vor ík, Z. Kolská, T. Luxbacher, et al.Properties of Au nanolayer sputteredon polyethyleneterephthalate, Materials Letters,2010,64:611-613
    [165]罗晓斌,朱定一,乔卫,等.高表面能固体的润湿性实验及表面张力计算,材料科学与工程学报,2008,26(6):932-935
    [166]张远超,朱定一,许少妮.高聚物表面的润湿性实验及表面张力的计算,科学技术与工程,2009,9(13):3595-3597
    [167]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展,科学技术与工程,2007,7(19):4997-5004
    [168]盛永华,徐洁.磨削加工禁忌实例.北京:机械工业出版社,2007,147
    [169]黄宗响,李春光.CBN砂轮磨削薄壁球轴承内圈滚道的试验研究,金刚石与磨料磨具工程.2008,163:37-40
    [170]吴玉厚,张继鹏,李颂华,等.氮化硅陶瓷套圈内圆磨削表面质量的实验,沈阳建筑大学学报(自然科学版),2010,26(1):176-179
    [171]庄东汉.材料失效分析.上海:华东理工大学出版社,2009,28-32
    [172]曾令可,税安泽.陶瓷工业实用干燥技术与实例,北京:化学工业出版社,2008,96-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700