用户名: 密码: 验证码:
脉冲磁场对取向硅钢初次再结晶组织织构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁场作为一种重要的物理场在调控材料组织结构领域得到了日益广泛的应用。将磁场与传统生产工艺相结合,可以制备新材料、开发新工艺从而得到性能更优的产品。其中,磁场热处理是前沿热点问题之一,具有广阔的创新空间。由于稳恒强磁场设备复杂、维护运行成本高,难以在工业生产中广泛应用,而脉冲磁场装备简单、能量密度大、运行成本低廉,具有广泛的工业应用前景。取向硅钢是一种重要的软磁功能材料,主要用于制作各种变压器铁芯,在电力电子、国防、民生等领域具有重要地位。再结晶微观组织、织构的控制是取向硅钢生产的核心技术,值得深入探索和研究。
     本文选用商业生产普通取向硅钢(CGO钢)及高磁感取向硅钢(Hi-B钢)冷轧钢板为实验原料,利用课题组现有高压脉冲磁场设备及自研热处理装置进行不同热处理工艺下的非磁场与脉冲磁场热处理对比实验,借助电子背散射衍射(EBSD)技术对取向硅钢初次再结晶微观组织、晶体学取向以及晶界结构进行分析,研究了在不同热处理条件下,脉冲磁场对不同种类取向硅钢冷轧板初次再结晶组织及织构的影响规律。不同工艺条件下的热处理实验结果表明,脉冲磁场能够影响取向硅钢初次再结晶晶粒尺寸及分布、织构、晶界结构,磁场作用特点在不同热处理工艺中有所不同。本文通过磁有序作用及硅钢晶粒的磁自由能各向异性原理提出磁场作用机理假设,与实验结果能够较好地吻合。
     Hi-B钢730℃等温退火过程中沿轧向施加1T脉冲磁场,退火时间少于80min时磁场使晶粒尺寸增加,退火时间大于80min时磁场使晶粒尺寸减小。磁有序抑制形核作用使磁场退火样品晶粒尺寸分布不均匀,出现混晶。磁场退火对{111}<110>、{001}<110>织构起抑制作用,对{111}<112>、{001}<120>织构起促进作用。脉冲磁场减少小角度晶界、增加高能晶界,在较短的退火时间效果更加明显。磁场减少整体CSL晶界,减少Goss晶粒周围小角晶界,增加其高能晶界,可能使Goss晶粒具备快速长大的潜力,为二次再结晶晶粒异常长大做组织准备。
     CGO钢等时变温退火实验中沿轧向施加1T脉冲磁场,使平均晶粒尺寸增加,退火温度越高效果越弱。磁场退火样品晶粒尺寸分布不均匀,出现混晶。磁场抑制{111}<110>取向,增强{111}<112>取向;强烈抑制{001}<110>取向。高温磁场退火明显增加{001}<120>取向的体积含量。磁场减少整体小角度晶界、CSL晶界,增加高能晶界,较低退火温度下效果更加明显。磁场减少Goss晶粒周围小角晶界,增加高能晶界,增加CSL晶界,能使Goss晶粒在二次再结晶中获得快速长大的优势。
     CGO钢连续退火实验中沿轧向施加2T脉冲磁场,使样品平均晶粒尺寸增加,增加幅度随退火温度和时间的增加而增加,760℃与780℃磁场促进晶粒长大作用最明显。磁场退火样品晶粒尺寸分布不均匀,出现混晶。随着退火温度和退火时间的增加,磁场抑制{111}<110>取向、{001}<110>取向,促进{111}<112>取向、{001}<120>取向、{110}<001>取向。对{111}<112>取向促进作用较为稳定,对{111}<110>取向抑制作用不稳定。磁场减少小角度晶界、增加高能晶界,760℃、780℃作用效果最明显。磁场在较低温度下减少整体CSL晶界,较高温度下增加整体CSL晶界。磁场减少Goss取向周围小角晶界,增加高能晶界,作用效果不如CGO钢等时变温退火明显。
     CGO钢退火过程中施加不同方向脉冲磁场,将改变磁场方向与主要织构晶向的相对位置,即改变了主要织构在磁场中的自由能状态,从而对硅钢再结晶织构产生不同的影响。轧向磁场对Goss取向促进作用最强,相对促进{001}<120>取向形核生长,其次促进{111}<112>取向,相对抑制{111}<110>取向、{001}<110>取向。横向磁场相对促进{001}<120>取向形核生长,其次将促进{111}<110>取向形核生长,相对而言抑制{111}<112>取向、{001}<110>取向、Goss{110}<001>取向形核生长。法向磁场显著抑制γ织构,同时促进{001}<110>取向、{001}<120>取向、{001}<100>取向。2T磁场比1T磁场作用效果更加明显。
Magnetic field, as a significant physical field, has been widely applied to controlmaterial structure increasingly. Combined with the traditional process, it can be usedto prepare advanced material and develop new technology, manufacturebetter-performing products consequently. Magnetic heating treatment is one of thefrontier hotspots which has broad space and excellent prospect in innovation andapplication. The wide application of steady high-intensity magnetic field in industrycannot be realized because of its complicated infrastructure and high maintenancecosts, while the pulsed magnetic field used in this article has a prospect of wideindustry application because of its simple equipment, high-energy density andlow-running costs. Grain-oriented silicon steel is an important soft magnetic materialmainly be used in production of various kinds of iron core. Silicon steel plays a veryimportant role in power electronics, national defense and livelihoods. The control ofrecrystallization microstructure and texture, as core technology of oriented siliconsteel production, deserves our in-depth exploration and researching.
     Cold plates for commercial common grain-oriented silicon steel (CGO) and highmagnetic-induction grain-oriented silicon steel (Hi-B) were chosen as experimentalmaterial. The existing high-voltage pulsed magnetic field device and self-madeheating treatment furnace were used to carry out comparative experiments with andwithout pulsed magnetic field in different heating treatment conditions.Microstructure, crystal orientation and grain boundary structure of silicon steel wereanalyzed using electron back scattering diffraction (EBSD). The effect of pulsedmagnetic field on primary recrystallization microstructure and texture of orientedsilicon steel in different heating treatment conditions was studied. Experimentalresults show that pulsed magnetic field annealing can affect the primary recrystallization grain size and distribution, texture and grain boundary structure. Themagnetic field effects is different under different conditions. Based on the magneticorder and anisotropy energy of silicon steel grain during magnetic annealing, ahypothesis about magnetic field action mechanism is proposed, which is fairlysupported by almost all of the experimental results in this work.
     When cold rolled Hi-B specimens were annealed at730℃for different timewithout and with1T magnetic field parallel to rolling direction of specimens, grainsize of magnetic annealing specimens is bigger than that of the non-magneticannealing for the annealing time less than80min, while a opposite result is obtainedwhen the annealing time more than80min. The magnetic annealing specimens havemischcrystal structure because of magnetic ordering in nucleation. Magneticannealing inhibits {111}<110>,{001}<110> texture and facilitates {111}<112>,{001}<120> texture. Magnetic annealing reduces low-angle grain boundary and CSLgrain boundary and, at the same time increases high-energy grain boundary in all ofthe grains,especially in the case of shorter time annealing. Magnetic annealingreduces low-angle grain boundary and increases high-energy grain boundary aroundGoss texture, which might possess the Goss grains a priority in grain growth duringsecondary recrystallization.
     Whencold rolled CGO specimens were annealed at different temperature for60min without and with1T pulsed magnetic field in rolling direction, the averagegrain size of magnetic annealing specimens is bigger than non-magnetic annealingones, the effect is weakened with the annealing temperature rises. The magneticannealing specimens have mischcrystal structure. Magnetic annealing restrains{111}<110> texture and facilitates {111}<112> texture a little, meanwhile, restrains{001}<110> texture and facilitates {001}<120> texture strongly. Magnetic annealingreduces low-angle grain boundary and CSL grain boundary,meanwhile increaseshigh-energy grain boundary in all of the grains and the impact is more pronounced inlower annealing temperature. Magnetic annealing reduces low-angle grain boundarymeanwhile increases high-energy grain boundary and CSL grain boundary aroundGoss texture, making Goss texture has advantage in grain growth during secondaryrecrystallization.
     When cold rolled CGO specimens were annealed at20℃/h from700℃to different temperature without and with2T rolling direction magnetic field, magneticannealing increases average grain size, and the grain size increases with the increasingannealing time and temperature. The most obvious effect of increasing grain sizeappears at760℃and780℃. The magnetic annealing specimens have mischcrystalstructure. Magnetic annealing restrains {111}<110> texture and {001}<110> texture,meanwhile facilitates {111}<112> texture and {001}<120> texture and Goss texturealong with the increasing annealing time and temperature. The magnetic promotioneffect of {111}<112> is stable and the magnetic inhibition effect of {111}<110> isunstable relatively. Magnetic annealing reduces low-angle grain boundary,meanwhileincreases high-energy grain boundary in all of grains and the impact is morepronounced at760℃and780℃. Magnetic annealing decreases CSL grain boundaryat lower temperature and increases CSL grain boundary at higher temperature in all ofgrains. Magnetic annealing reduces low-angle grain boundary and increaseshigh-energy grain boundary around Goss texture, but the effect is not obvious.
     When CGO was annealed in magnetic field along different directions withrespect to the sample coordinate system, magnetic field has different effects onrecrystallization texture of silicon steel because it changes the free energy of maintextures. Magnetic field along rolling direction facilitates {001}<120> texture and{111}<112> nucleation and grain growth, meanwhile restrains {111}<110> textureand {001}<110> texture. Magnetic field along transverse direction facilitates{001}<120> texture and {111}<110> nucleation and grain growth, meanwhilerestrains {111}<112> texture,{001}<110> texture and Goss texture. Magnetic fieldalong normal direction facilitates {001}<120> texture,{001}<110> texture and{001}<100> texture, meanwhile restrains γ texture strongly. The2T magnetic field ismore efficient than1T magnetic field.
引文
[1]Xia Z., Kang Y., Wang Q. Developments in the production of grain-oriented electrical steel [J],J. Magn.Magn.Mater.,2008;320:3229-3233.
    [2]何忠治.电工钢[M].冶金工业出版社,1997:1.
    [3]夏强强,李莉娟,刘立华等.取向硅钢生产工艺研究进展[J],材料导报,2010;24(3):85-88.
    [4]何忠治.电工钢[M].冶金工业出版社,1997:546.
    [5]Goss N.P. Electrical sheet and method and apparatus for its manufacture and test [P], US Patent,1934; No.1,965,559.
    [6]Bozorth R.M. The Orientation of crystals in silicon iron [J], Trans. Am. Soc. Metals.,1935;23:1107.
    [7]Dunn C.G. Cold working of metals [C], American Society for Metals, Cleveland, OH,1949:113.
    [8]Beck P.A. Annealing of cold worked metals [J], Adv. Phys.,1954;3(11):245.
    [9]May J.E., Turnbull D. Secondary recrystallization in silicon iron [J], Trans. Metall. Soc. AIME,1958;212:769.
    [10]Fiedler H.C.(110)[001] secondary recrystallization texture in three percent silicon-iron[J], J.Appl. Phys.,1958;29:361.
    [11]Dunn C.G. Secondary recrystallization textures and their origin in cold-rolled single crystalsof silicon iron [J], Acta Metall.,1953;1(2):163.
    [12]Tanino M., Matsuo M., Shindo T., et al. Proc.6thInternational conference on texture ofmaterials, ISIJ, Tokyo,1981:928.
    [13]Taguchi S., Sakakura A., Matsumoto F., et al.The development of grain-oriented silicon steelwith high permeability [J], J. Magn.Magn.Mater.,1976;2:121.
    [14]Matsuo M. Origin and development of inhomogeneous structure in rolled steel sheets-17%chromium and3%silicon steels [J], J. Iron Steel Inst. Jpn.,1984;70:2090.
    [15]Park J.Y., Han K.S., Woo J.S., et al. Influence of primary annealing condition on texturedevelopment in grain oriented electrical steels [J], Acta Mater.,2002;50(7):1825.
    [16]Kumano T., Haratani T., Ushigami Y. The relationship between primary and secondaryrecrystallization texture of grain oriented silicon steel [J], ISIJ Int.,2002;42(4):440.
    [17]Hayakawa Y., Kurosawa M. Orientation relationship between primary and secondaryrecrystallized texture in electrical steel [J], Acta Mater.,2002;50(18):4527.
    [18]Hayakawa Y., Szpunar J.A. The role of grain boundary character distribution in secondaryrecrystallization of electrical steels [J], Acta Mater.,1997;45:1285.
    [19]Rajmohan N., Szpunar J.A., Hayakawa Y. A role of fractions of mobile grain boundaries insecondary recrystallization of Fe-Si steels [J], Acta Mater.,1999;47:2999.
    [20]Rajmohan N., Szpunar J.A., Hayakawa Y. Goss texture development in Fe-Si steels [J],Textures and Microstructures,1999;32:153.
    [21]Titorov D.B. Orientation relations between the textured matrix in the Alloy Fe-3%Si and thegrains growing into it [J], Phys. Met.Metallogr.,1973;35(6):165.
    [22]Titorov D.B. Prediction of recrystallization texture [J], Phys. Met.Metallogr.,1973;36(1):82.
    [23]Hayakawa Y., Muraki M., Szpunar J.A. The changes of grain boundary character distributionduring the secondary recrystallization of electrical steel [J], Acta Mater.,1998;46:1063.
    [24]Hayakawa Y., Szpunar J.A., Palumbo G., et al. The role of grain boundary characterdistribution in Goss texture development in electrical steels [J], J. Magn. Magn.Mater.,1996;160:143.
    [25]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:260-291.
    [26]Watanabe, T. Grain boundary design for advanced materials on the basis of the relationshipbetween texture and grain boundary character distribution (GBCD)[J], Textures andMicrostructures,1993;20:195.
    [27]Pender H., Jones R.L. The annealing of steel in an alternating magnetic field [J], PhysicalReview,1913;1(4):259.
    [28]Masahashi N., Matsuo M., Watanabe K. Development of preferred orientation in annealing ofFe-3.25%Si in a high magnetic field [J], J. Mater. Res.,1998;13(2):457.
    [29]Watanabe T., Suzuki Y., Tanii S., et al. The effects of magnetic annealing on recrystallizationand grain-boundary character distribution (GBCD) in iron–cobalt alloy polycrystals [J], Phil. Mag.Lett.,1990;62:9
    [30]Markov Y.N., Adamescu R.A. Effect of a magnetic field on structural changes in Fe-Si alloysfor annealing temperatures above the Curie point [J], Fizika Metallov Metallovedenie,1971;32(4):800.
    [31]Kim B.G., Park S.D. The changes of texture by high field magnetic annealing in Fe-3.2%Sielectric steel [J], Journal of the Korean Institute of Metals and Materials,2001;39(11):1284.
    [32]Bacaltchuk C.M.B. Effect of magnetic annealing on texture and microstructure developmentin silicon steel [D]. Tallahassee: The PHD dissertation of Florida State University,2004.
    [33]Ohtsuka H., Ito K. Wada H., et al. Effects of strong magnetic field on recrystallization andcoarsening of grains during annealing in3%silicon steel [J], Journal of the Magnetics Society ofJapan,2000;24(4-2):651.
    [34]Bacaltchuk C.M.B., Castello-Branco G.A., Garmestani H. Magnetic field effect on themicrostructure of low silicon steel [J], Mater. Sci. Forum,2005;495-497:1165.
    [35]Bacaltchuk C.M.B., Castello-Branco G.A., Garmestani H. High magnetic field effect ontexture and grain growth of GNO silicon steel [J], Mater. Sci. Eng. Technol.,2005;36(10):561.
    [36]Martikainen H.O., Lindroos V.K. Observations on the effect of magnetic field on therecrystallization in ferrite [J], Scand. J. Metall.,1981;10(1):3.
    [37]Bacaltchuk C.M.B., Castello-Branco G.A., Ebrahimi M., et al. Effect of magnetic fieldapplied during secondary annealing on texture and grain size of silicon steel [J], Scripta Mater.,2003;48(9):1343.
    [38]Zhang Y.D., Esling C., Lecomte J.S., et al. Grain boundary characteristics and textureformation in a medium carbon steel during its austenitic decomposition in a high magnetic field[J], Acta Mater.,2005;53(19):5213.
    [39]Harada K., Tsurekawa S., Watanabe T., et al. Enhancement of homogeneity of grain boundarymicrostructure by magnetic annealing of electrodeposited nanocrystalline nickel [J], Scripta Mater.,2003;49(5):367.
    [40]Watanabe T., Tsurekawa S., Zhao X., et al. Grain boundary engineering by magnetic fieldapplication [J], Scripta Mater.,2006;54(6):969.
    [41]Molodov D.A., Bhaumik S., Molodov X., et al. Annealing behavior of cold rolled aluminumalloy in a high magnetic field [J], Scripta Mater.,2006;54(12):2161.
    [42]Molodov D.A., Sheikh-Ali A.D. Effect of magnetic field on texture evolution in titanium [J],ACTA Mater.,2004;52(14):4377.
    [43]Asai S., Sassa K., Tahashi M. Crystal orientation of non-magnetic materials by imposition of ahigh magnetic field [J], Sci. Technol. Adv. Mat.,2003;4(5):455.
    [44]Tanaka K., Ichitsubo T., Koiwa M. Effect of external fields on ordering of FePd [J], Mat.Sci.Eng. A,2001;312:118.
    [45]Molodov D.A., Konijnenberg P.J., Bozzolo N., et al.Magnetically affected texture and grainstructure development in titanium [J], Mat. Lett.,2005;59:3209.
    [46]Bhaumik S., Molodova X., Molodov D.A., et al. Magnetically enhanced recrystallization in analuminum alloy [J], Scripta Mater.,2006;55:995.
    [47]Mullins W.W. Magnetically induced grain-boundary motion in Bismuth [J], Acta Metall.,1956;4(4):421.
    [48]Sheikh-Ali A.D., Molodov D.A., Garmestani H. Magnetically induced texture development inzinc alloy sheet [J], Scripta Mater.,2002;46:857.
    [49]Molodov D.A., Gottstein G., Heringhaus F., et al.Motion of planar grain boundaries inbismuth-bicrystals driven by a magnetic field [J], Scripta Mater.,1997;37(8):1207.
    [50]Sheikh-Ali A.D., Molodov D.A., Garmestani H. Boundary migration in Zn bicrystal inducedby a high magnetic field [J], Appl. Phys. Lett.,2003;82:3005.
    [51]宫明龙.强磁场对Fe-C相图及高碳钢显微组织的影响[D].沈阳:东北大学博士论文,2009.
    [52]王西宁,陈铮,刘兵.磁场对材料固态相变影响的研究进展[J],材料导报,2002;16(2):25.
    [53]Ma Y., Xiao L., Yan L. Application of high magnetic fields in advanced materials processing[J], Chinese Sci. Bull.,2006;51(24):2944.
    [54]王守晶.强磁场下高纯Fe-C合金先共析铁素体显微组织形貌的形成与演变机理[D].沈阳:东北大学博士论文,2008.
    [55]Yasuda H., Ohnaka I., Kawakami O., et al. Effect of magnetic field on solidification in Cu-Pbmonotectic alloys [J], ISIJ Intern.,2003;43:942.
    [56]Li X., Ren Z.M., Sun Y., et al. Effect of high longitudinal magnetic field on the microstructureof directionally solidified Al-4.5%Cu alloy [J], Acta Metall. Sinica,2006;42:147.
    [57]杨钢,冯光宏.稳恒磁场对低碳锰铌钢γ→α相变的影响[J],钢铁研究学报,2000;12(5):31.
    [58]大冢秀幸.磁场对相变形核的影响[J],金属材料研究,1999;25(2):63.
    [59]Dorfman S., Fuks D., Gordon A., et al. Phase growth of smart materials in a magnetic field. J.Mater. Sci. Lett.,1996;15:2023.
    [60]李传军,,任忠鸣.强磁场下相变研究进展[J],上海大学学报(自然科学版),2011;17(1):21.
    [61]Zhang Y., Gey N., He C., et al. High temperature tempering behaviors in a structural steelunder high magnetic field [J], Acta Mater.,2004;52(12):3467.
    [62]Fujii T., Ono T., Kato M. Effects of magnetic field on precipitation and growth offerromagnetic Co particles in Cu-Co single crystals [J], J. Japan Inst. Metal.,1997;61(4):267.
    [63]Tsurekawa S., Kawahara K., Okamoto K., et al. Application of magnetic field to the control ofgrain boundary segregation in iron [J], Mat. Sci. Eng. A,2004;387:442.
    [64]Satyanarayan K.R., Eliasz W., Miodownik A.P. The effect of a magneticfield on the martensitetransformation in steels [J], Acta Mater.,1968;16(6):877.
    [65]Kim J., Inaba F., Fukuda T., et al. Effect of magnetic field on martensitic transformationtemperature in Ni–Mn–Ga ferromagnetic shape memory alloys [J], Acta Mater.,2006;54(2):493.
    [66]Oikawa K., Ito W., Imano Y., et al. Effect of magnetic field on martensitic transition ofNi46Mn41In13Heusler alloy [J], Appl. Phys. Lett.,2006;88:122507.
    [67]Zhou Z.N., Wu K.M. Molybdenum carbide precipitation in an Fe-C-Mo alloy under a highmagnetic field [J], Scripta Mater.,2009;61(7):670.
    [68]Ohtsuka H. Effects of strong magnetic fields on bainitic transformation [J], Curr.Opin. SolidST. M.,2004;8:279.
    [69]Ohtsuka H. Effects of a high magnetic field on bainitic transformation in Fe-based alloys [J],Mat.Sci. Eng. A,2006;438:136.
    [70]Watanabe K., Yamada Y., Sakuraba J., et al.(Nb, Ti)3Sn superconducting magnet operated at11K in vacuum using high-Tc(Bi, Pb)2Sr2Ca2Cu3O10current leads [J], Jpn. J. Appl. Phys.,1993;32: L488.
    [71]Watanabe K., Awaji S. Cryogen-free superconducting and hybrid magnets. J. Low Temp.Phys.,2003;133:17.
    [72]Liu L., Li L., Huang J., et al. Effect of pulsed magnetic field annealing on the microstructureand texture of grain-oriented silicon steel [J], J. Magn. Magn.Mater.,2012:324(14):2301.
    [73]Huang J., Li L., Liu L., et al. Effects of pulsed magnetic annealing on Goss texturedevelopment in the primary recrystallization of grain-oriented electrical steel [J], J. Mater. Sci.,2012;47(9):4110.
    [74]Cai Z., Lin J., Zhao H., et al. Orientation effects in pulsed magnetic field treatment [J], Mater.Sci. Eng. A,2005;398(1):344.
    [75]Tang G., Xu Z., Tang M., et al. Effect of a pulsed magnetic treatment on the dislocationsubstructure of a commercial high strength steel [J], Mater.Sci. Eng. A,2005;398(1):108.
    [76]Lu A.L., Tang F., Luo X.J., et al. Research on residual-stress reduction by strong pulsedmagnetic treatment [J], J. Mater. Process. Technol.,1998;74(1):259.
    [77]Song C., Li Q., Li H., et al. Effect of pulse magnetic field on microstructure of austeniticstainless steel during directional solidification [J], Mater. Sci. Eng. A,2008;485:403.
    [78]晁月胜,李明扬,耿岩,等.铁基非晶的低频脉冲磁场处理效应[J],物理学报,2004;53:3453.
    [79]Matsuo M. Texture control in the production of grain oriented silicon steels [J], ISIJ Int.,1989;29:809.
    [80]何忠治.电工钢[M].冶金工业出版社,1997:572-577.
    [81]李贺杰,韩静涛,皮华春,等.取向硅钢的研究与发展[J],唐山学院学报,2007;20(6):23.
    [82]Inokuti Y., Maeda C., Ito Y. Transmission Kossel study of the formation of (110)[001] grainsafter an intermediate annealing in grain oriented silicon steel containing a small amount of Mo [J],Metall. Trans. A,1985;16A:1613.
    [83]Inokuti Y., Maeda C., Ito Y. Computer color mapping of configuration of Goss grains after anintermediate annealing in grain oriented silicon steel [J], Trans. Iron Steel Inst. Jpn.,1987;27:139.
    [84]杜布罗夫H.Φ.,拉普金H.N.电工钢[M].中国工业出版社,1965:20.
    [85]Shilling J.W., Houze G.L. Magnetic properties and domain structure in grain-oriented3%Si-Fe [J], IEEE Trans. Magn.,1974;2(10):195.
    [86]齐克敏,李壬龙,高秀华,等.异步轧制取向硅钢薄带的三次再结晶[J],钢铁,2001;36(5):58.
    [87]Gao X., Qi K., Qiu C. Magnetic properties of grain oriented ultra-thin silicon steel sheetsprocessed by conventional rolling and cross shear rolling [J], Mater. Sci. Eng. A,2006;430:138.
    [88]Gao X., Liu E., Qiu C., et al. New process for production of ultra-thin grain oriented siliconsteel [J], Rare Metals,2006;25:454.
    [89]Ponnaluri S.V., Cherukuri R., Molian P.A. Core loss reduction in grain-oriented silicon steelsby excimer laser scribing: Part I: experimental work [J], J. Mater. Process. Technol.,2001;112:199.
    [90]Pepperhoff W., Fieldler A. Method for reducing lossiness of sheet metal [P], Us Patent,1972;No.3647575.
    [91]孙颖.低温板坯加热工艺制备取向硅钢的研究[D].沈阳:东北大学博士论文,2009.
    [92]朱业超,王良芳,乔学亮.表面处理细化取向硅钢磁畴的方法与机理[J],钢铁研究,2006;6(34):50.
    [93]Iuchi T., Yamaguchi S., Ichiyama T. Laser processing for reducing core loss of grain orientedsilicon steel [J], J. Appl. Phys.,1982;53:2410.
    [94]李劲东.硅钢片降低铁损的激光加工研究[D].北京:清华大学博士论文,1992.
    [95]马正强.激光刻痕细化取向硅钢磁畴的研究现状[J],钢铁研究学报,2010;22:1.
    [96]Imafuku M., Suzuki H., Akita K., et al. Effects of laser irradiation on iron loss reduction forFe–3%Si grain-oriented silicon steel [J], Acta Mater.,2005;53:939.
    [97]Ushigami Y., Mizokami M., Fujikura M., et al. Recent development of low-loss grain-orientedsilicon steel [J], J. Mater. Eng. Perform.,2003;254-255:307.
    [98]Nozawa T., Mizogami M., Mogi H., et al. Domain structures and magnetic properties ofadvanced grain-oriented silicon steel [J], J. Magn.Magn.Mater.,1994;133:115.
    [99]魏天斌.国外取向电工钢工艺发展新趋势[J],钢铁研究,2007;35:55.
    [100]温亚成.降低板坯加热温度及其节能效果分析[J],节能技术,2000;18:26.
    [101]朱文英.板坯低温加热工艺生产取向硅钢片[J],上海金属,2001;23:33.
    [102]Mishra S., Kumar V. Co-precipitation of copper-manganese sulphide in Fe-3%Si steel [J],Mater. Sci. Eng. B,1995;32:177.
    [103]Choi G.S., San Lee C., Woo J.S., et al. Method for manufacturing oriented electrical steelsheet by heating slab at low temperature [P], US patent,1997; No.5653821.
    [104]Espenhahn M., Bottcher A., Gunther K. Process for producing a grain-orientated electricalsteel sheet [P], US patent,2000; No.6153019.
    [105]Woo J.S., Han C.H., Hong B.D., et al. The onset temperature of secondary recrystallizationand the sharpness of Goss secondary recrystallization texture in the nitride Fe-3%Si alloy [J], ActaMater.,1998;46:4905.
    [106]Ushigami Y., Kurosawa F., Komatsu H. Process for preparation of oriented electrical steelsheet having high flux density [P], US patent,1999; No.5888314.
    [107]Kumano T., Haratani T., Fujii N. Effect of nitriding on grain oriented silicon steel bearingaluminum [J], ISIJ Int.,2005;45:95.
    [108]赵宇,李军,董浩,等.国外电工钢生产技术发展动向[J],钢铁,2009;44:1.
    [109]Günther K., Lahn L., Ploch A., et al. Method for producing grain oriented magnetic steelstrip [P], US patent,2012; No.8,088,229.
    [110]仇圣桃,项利,岳尔斌,等.薄板坯连铸连轧流程生产取向硅钢技术分析[J],钢铁,2008;43:1.
    [111]许学勇,项利,孙颖,等.薄板坯连铸连轧生产取向电工钢模拟实验[J],钢铁研究学报,2008,20:25.
    [112]于永梅,李长生,王国栋.薄板坯连铸连轧生产取向硅钢技术的研究[J],钢铁,2007;42:45.
    [113]项利,岳尔斌,仇圣桃,等.薄板坯连铸连轧取向硅钢流程中Cu2S抑制剂的析出行为[J],钢铁,2009;44:79.
    [114]肖丽俊,岳尔斌,仇圣桃,等.双辊薄带连铸生产取向硅钢的技术分析[J],钢铁研究学报,2009;21:1.
    [115]何忠治.电工钢[M].冶金工业出版社,1997:655.
    [116]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:281.
    [117]May J.E., Turnbull D. Secondary recrystallization in silicon iron [J], Trans. Metall. Soc.AIME,1958;212:769.
    [118]Chen N., Zaefferer S., Lahn L., et al. Effects of topology on abnormal grain growth in siliconsteel [J], Acta Mater.,2003;51:1755.
    [119]Shimizu R., Harase J. Coincidence grain boundary and texture evolution in Fe-3%Si [J], ActaMetall.,1989;37:1241.
    [120]Harase J., Shimizu R., Takahashi N. Coincidence grain boundary and (100)[001] secondaryrecrystallization in Fe-3%Si [J], Acta Metall. et mater.,1990;38:1849.
    [121]李国保.宝钢取向硅钢10年研发历程及进展[J],宝钢技术,2009; B07:46.
    [122]牛琳霞,姚昌国.我国变压器行业对取向硅钢的需求现状[J],冶金管理,2010;1:31.
    [123]王爱华.我国变压器对取向硅钢的应用及未来需求[J],中国钢铁业,2011;6:20.
    [124]李桂荣,曹健峰,王宏明,等.电磁技术在金属材料科学与工程中的应用[J],材料导报,2006;20:58.
    [125]Natarajana T.T., Nagy El-Kaddah. Finite element analysis of electromagnetic and fluid flowphenomena in rotary electromagnetic stirring of steel [J], Applied Mathematical Modelling,2004;28:47.
    [126]张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社,2004:19.
    [127]Zoquia E.J., Paesa M., Es-Sadiqi E. Macro-and microstructure analysis of SSM A356produced by electromagnetic stirring [J], J. Mater. Pro.Techn.,2002;120:365.
    [128]汪洪峰,郭振和.结晶器电磁制动技术在高效连铸中的应用[J],钢铁研究,2004;31:43.
    [129]王晓冬,商凯东,巴德纯,等.电磁悬浮熔炼系统的结构及其悬浮力的研究[J],真空,2006;43:26.
    [130]许广济,金玉嘉,刘光林,等.影响铝熔体电磁净化效果因素的分析[J],铸造技术,2006;27:629.
    [131]李喜,任忠鸣,王晖,等.强磁场下Bi-Mn合金中形成的MnBi相凝固组织[J],金属学报,2004;40:40.
    [132]许志华,任忠鸣,王立龙,等.强磁场下Zn-2wt.%Cu合金定向凝固的初步研究[J],材料科学与工程学报,2006;24:127.
    [133]龚永勇.脉冲磁致振荡凝固细晶技术基础研究[D].上海,上海大学博士论文,2008.
    [134]李博,尹振兴,龚永勇,等.浇注温度对脉冲磁致振荡细化纯铝凝固组织的影响[J],上海大学学报(自然科学版),2012;18:323.
    [135]Gong Y.Y., Luo J., Jing J.X., et al. Structure refinement of pure aluminum by pulsemagneto-oscillation [J], Mater. Sci. Eng. A,2008;497:147.
    [136]Maruta K., Shimotomai M. Magnetic field-induced alignment of steel microstructures [J], J.Cryst. Growth,2002;137:1802.
    [137]Shimotomai M., Maruta K. Aligned two-phase structures in Fe-C alloys [J], Scripta Mater.,2000;42:499.
    [138]Sun X.Y., Xu C.Y., Zhen L., et al. Evolution of modulated structure in Fe–Cr–Co alloyduring isothermal ageing with different external field conditions [J], J. Magn. Magn.Mater.,2007;312:342.
    [139]Zhang Y., Zhao X., Bozzolo N., et al. Low temperature tempering of a medium carbon steelin high magnetic field [J], ISIJ Int.,2005;45:913.
    [140]Zhou Z.N., Wu K.M. Molybdenum carbide precipitation in an Fe-C-Mo alloy under a highmagnetic field [J], Scripta Mater.,2009;61:670.
    [141]冯光宏,周少雄,杨钢,等.稳恒磁场对低碳锰铌钢晶粒细化的影响[J],钢铁研究学报,2000;12:27.
    [142]Herbert E.G. The hardening of superhardened steel by magnetism [J], J. Iron&Steel Inst.,1929;120:239.
    [143]Kakeshita T., Shimizu K., Sakakibara T., et al. Effects of a pulsed high magnetic field on theMstemperature and martensite morphology in an Fe-31.7at%Ni alloy [J], Scripta metal.,1983;17:987.
    [144]Kakeshita T., Saburi T., Shimizu K. Effects of hydrostatic pressure and magnetic field onmartensitic transformations [J], Mater. Sci. Eng. A,1999;237-275:21.
    [145]Enomoto M., Guo H., Tazuke Y., et al. Influence of magnetic field on the kinetics ofproeutectoid ferrite transformation in iron alloys [J], Metall. Mater. Trans. A,2001;32:445.
    [146]Ohtsuka H. Effects of a high magnetic field on bainitic transformation in Fe-based alloys [J],Mater.Sci. Eng. A,2006;438:136.
    [147]任福东,许伯钧,彭会芬,等.9SiCr钢磁场等温淬火新工艺的研究[J],金属热处理,1993;5:23.
    [148]区定容,朱静,唐国翌,等.静磁场对32CrMnNbV淬透性及耐蚀性能的影响[J],金属学报,2000;36:275.
    [149]周世春,裴伟,沙玉辉,等.磁场退火对无取向硅钢再结晶织构和组织的影响[J],东北大学学报(自然科学版),2007;28:1131.
    [150]彭涛,辜承林.脉冲强磁场发展技术[J],核技术,2003;26:185.
    [151]彭涛,辜承林.脉冲强磁场及其发展动态[J],电工技术杂志,2002;11:1.
    [152]Liu L., Li L., Zhai Q. Microstructure evolution and grain boundary characteristics of orientedsilicon steel during primary recrystallization in a pulsed magnetic field [J], Advanced MaterialsResearch,2013;690-693:139-146.
    [153]Li L., Liu L., Wu X., et al. Effect of Different Annealing Methods on Structure and Textureof Primary Recrystallization of Grain-oriented Silicon Steel [J], Supplemental Proceedings:Materials Processing and Energy Materials,2011;1:347–353.
    [154]XiaQ., Li L., Huang J., et al. Effect of Pulsed Magnetic Field on Normal Grain Growth ofGrain Oriented Silicon Steels during Primary Recrystallization Annealing [J], SupplementalProceedings: General Paper Selections,2011;3:599–604.
    [155]李莉娟,刘立华,夏强强,等.脉冲磁场退火对取向硅钢磁性能影响的研究[J],上海大学学报(自然科学版),2011;17(1):35-38.
    [1]龚彦兵.取向硅钢连续退火的工艺与设计[J],工业炉,2011;33:12.
    [2]Matsuo M. Texture control in the production of grain oriented silicon steels [J], ISIJ Int.,1989;29:809.
    [3]Bacaltchuk C.M.B., Castello-Branco G.A., Ebrahimi M., et al. Effect of magnetic field appliedduring secondary annealing on texture and grain size of silicon steel [J], Scripta Mater.,2003;48(9):1343.
    [4]Rango P.De, Lees M., Lejay P., et al. Texturing of magnetic materials at high temperature bysolidification in a magnetic field [J], Nature,1991;349:770.
    [5]Enomoto M., Guo H., Tazuke Y., et al. Influence of magnetic field on the kinetics ofproeutectoid ferrite transformation in iron alloys [J], Metall. Mater. Trans. A,2001;32:445.
    [6]杨平.电子背散射衍射技术及其应用[M],北京:冶金工业出版社,2007:1.
    [7]杨平.电子背散射衍射技术及其应用[M],北京:冶金工业出版社,2007:112.
    [8]何立辉,聂小武,张洪,等.电子背散射衍射技术在材料科学研究中的应用[J],现代制造工程,2010;7:10.
    [9]Randle V. Applications of electron backscatter diffraction to materials science: status in2009[J], J. Mater. Sci.,2009;44:4211.
    [10]王疆.电子背散射衍射(EBSD)技术在材料领域的应用[D].杭州:浙江大学硕士论文,2006.
    [11]刘雪梅,宋晓艳,张久兴.电解抛光技术在电子背散射衍射分析中的应用[J],实验科学与技术,2009;7:1.
    [1] Stephenson E.T., Marder A.R. The effects of grain size on the core loss and permeability ofmotor lamination steel [J], IEEE Transactions on Magnetics,1986;22:101.
    [2] Landgraf F.J.G., Teixeira J.C., Emura M., et al. Separating components of the hysteresis loss ofnon-oriented electrical steels [J], Mater. Sci. Forum,1999;302-303:440.
    [3]Landgraf F.J.G., Emura M., Teixeira J.C., et al. Effect of grain size, deformation, aging andanisotropy on hysteresis loss of electrical steels [J], J. Magn. Magn.Mater.,2000;215-216:97.
    [4]Masahashi N., Matsuo M., Watanabe K. Development of preferred orientation in annealing ofFe-3.25%Si in a high magnetic field [J], J. Mater. Res.,1998;13(2):457.
    [5]Bacaltchuk C.M.B. Effect of magnetic annealing on texture and microstructure development insilicon steel [D]. Tallahassee: The PHD dissertation of Florida State University,2004.
    [6]Ohtsuka H., Ito K., Wada H., et al. Effects of strong magnetic field on recrystallization andcoarsening of grains during annealing in3%silicon steel [J], Magn. Soc. Jpn.,2000;24(4-2):651.
    [7]Markov Y.N., Adamescu R.A. Effect of a magnetic field on structural changes in Fe-Si alloysfor annealing temperatures above the Curie point [J], Fizika Metallov Metallovedenie,1971;32(4):800.
    [8]Martikainen H.O., Lindroos V.K. Observations on the effect of magnetic field on therecrystallization in ferrite [J], Scand. J. Metall.,1981;10(1):3.
    [9]Watanabe T., Suzuki Y., Tanii S., et al. The effects of magnetic annealing on recrystallizationand grain-boundary character distribution (GBCD) in iron–cobalt alloy polycrystals [J], Phil. Mag.Lett.,1990;62:9
    [10]Zhang Y.D., Esling C., Lecomte J.S., et al. Grain boundary characteristics and textureformation in a medium carbon steel during its austenitic decomposition in a high magnetic field[J], Acta Mater.,2005;53(19):5213.
    [11]Molodov D.A., Konijnenberg P.J., Bozzolo N., et al. Magnetically affected texture and grainstructure development in titanium [J], Mat. Lett.,2005;59:3209.
    [12]Bacaltchuk C.M.B., Castello-Branco G.A., Ebrahimi M., et al. Effect of magnetic fieldapplied during secondary annealing on texture and grain size of silicon steel [J], Scripta Mater.,2003;48(9):1343.
    [1] Kocks U.F. Texture and Anisotropy: Preferred orientations in polycrystals and their effecton materials properties[M], Cambridge University Press,1998:22.
    [2] Hatherley M., Hutchinson W.B. An introduction to textures in Metals[M], Chamelon PressLtd., London,1979:12.
    [3]杨平.电子背散射衍射技术及其应用[M],北京:冶金工业出版社,2007:66.
    [4]杨平.电子背散射衍射技术及其应用[M],北京:冶金工业出版社,2007:70.
    [5]Bozorth R.M. Ferromagnetism [M], IEEE Press, New York,1978.
    [6]Ohtsuka H., Ito K., Wada H., et al. Effects of strong magnetic field on recrystallization andcoarsening of grains during annealing in3%silicon steel [J], Magn. Soc. Jpn.,2000;24(4-2):651.
    [7] Markov Y.N., Adamescu R.A. Effect of a magnetic field on structural changes in Fe-Si alloysfor annealing temperatures above the Curie point [J], Fizika Metallov Metallovedenie,1971;32(4):800.
    [8] Martikainen H.O., Lindroos V.K. Observations on the effect of magnetic field on therecrystallization in ferrite [J], Scand. J. Metall.,1981;10(1):3.
    [9] Watanabe T., Suzuki Y., Tanii S., et al. The effects of magnetic annealing on recrystallizationand grain-boundary character distribution (GBCD) in iron–cobalt alloy polycrystals [J], Phil. Mag.Lett.,1990;62:9.
    [10]Rado G.T., Suhl H. Magnetism[M], New York: Academic Press,1973:191.
    [11]Bacaltchuk C.M.B. Effect of magnetic annealing on texture and microstructure developmentin silicon steel [D]. Tallahassee: The PHD dissertation of Florida State University,2004.
    [12] Masahashi N., Matsuo M., Watanabe K. Development of preferred orientation in annealing ofFe-3.25%Si in a high magnetic field [J], J. Mater. Res.,1998;13(2):457.
    [13] Kim B.G., Park S.D. The changes of texture by high field magnetic annealing in Fe-3.2%Sielectric steel [J], Journal of the Korean Institute of Metals and Materials,2001;39(11):1284.
    [14]周世春,裴伟,沙玉辉,等.磁场退火对无取向硅钢再结晶织构和组织的影响[J],东北大学学报(自然科学版),2007;28:1131.
    [15]Li H., Park J., Szpunar J.A. A model of recrystallization process in motor lamination Siliconsteel [J], Mater. Sci. Forum,2002;408-412:335.
    [16] Hutchinson W. B. Development of textures in recrystallization [J], Metal Science,1974;8:185.
    [1]Watanabe T. Grain boundary design for advanced materials on the basis of the relationshipbetween texture and grain boundary character distribution (GBCD)[J], Textures andMicrostructures,1993;20:195.
    [2]Lim L.C., Watanabe T. Fracture toughness and brittle-ductile transition controlled by grainboundary character distribution (GBCD) in polycrystals [J], Acta Metall. Mater.,1990;38:2507.
    [3]Palumbo G., Lehockey E.M., Lin P. Applications for grain boundary engineered materials [J], J.Metals,1998;50:40.
    [4]Gleiter H., Chalmers B. Progress in Materials Science [M], Pergamon Press,1972:1-274.
    [5]Watanabe T., Tsurekawa S. The control of brittleness and development of desirable mechanicalproperties in polycrystalline systems by grain boundary engineering [J], Acta Mater.,1999;47:4171.
    [6]吴希俊.晶界结构及其对力学性质的影响[J],力学进展,1989;19:433.
    [7]方晓英,王卫国,郭红,等.304不锈钢冷轧退火Σ3特殊晶界研究[J],金属学报,2007;43:1239.
    [8]McLean M. Microstructural changes in presence of externally applied potential gradients [J],Metal Sci.,1982;16:31.
    [9] Watanabe T. Texturing and Grain Boundary Engineering for Materials Design andDevelopment in the21st Century [J], Mater. Sci. Forum,2002;408-412:39.
    [10]Watanabe T., Tsurekawa S., Zhao X., et al. Grain boundary engineering by magnetic fieldapplication [J], Scripta Mater.,2006;54:969.
    [11] Watanabe T., Tsurekawa S., Zhao X., et al. A new challenge: grain boundary engineering foradvanced materials by magnetic field application [J], J. Mater. Sci.,2006;41:7747.
    [12]周自强,岳雪兰,霍登平.晶界结构对晶界迁移的影响[J],兵器材料科学与工程,1998;21:3.
    [13]Doherty R.D. Recrystallization and texture [J], Progress in Mater. Sci.,1997;42:39.
    [14]Dunn C.G., Daniels F.W., Bolton M.J. Relative energies of grain boundaries in silicon iron [J],Trans. Am. Inst. Min. Metall. Engrs.,1950;188:1245.
    [15]Viswanathan R., Bauer C.L. Kinetics of grain boundary migration in copper bicrystals with[001] rotation axes [J], Acta Metall.,1973;21:1099.
    [16]Hayakawa Y., Kurosawa M. Orientation relationship between primary and secondaryrecrystallized texture in electrical steel [J], Acta Mater.,2002;50(18):4527.
    [17]Hayakawa Y., Szpunar J.A. The role of grain boundary character distribution in secondaryrecrystallization of electrical steels [J], Acta Mater.,1997;45:1285.
    [18]Rajmohan N., Szpunar J.A., Hayakawa Y. A role of fractions of mobile grain boundaries insecondary recrystallization of Fe-Si steels [J], Acta Mater.,1999;47:2999.
    [19]Rajmohan N., Szpunar J.A., Hayakawa Y. Goss texture development in Fe-Si steels [J],Textures and Microstructures,1999;32:153.
    [20]Harase J., Shimizu R., Dingley D.J. Texture evolution in the presence of precipitates in Fe3%Si alloy [J], Acta Metall. et Mater.,1991;39:763.
    [21]Gangli P., Szpunar J.A. The role of Σ5coincidence boundaries in the growth selection ofFe—3%Si [J], Journal of Materials Processing Technology,1994;47:167.
    [22]Harase J., Shimizu R. Coincidence grain boundary and (100)[011] secondary recrystallizationin Fe-3%Si [J], Acta Metall. et Mater.,1992;40:1101.
    [23]Yoshitomi Y., Iwayama K., Nagashima T., et al. Coincidence grain boundary and role ofinhibitor for secondary recrystallization in Fe-3%Si alloy [J], Acta Metall. et Mater.,1993;41:1577.
    [24]Zhang Y.D., Esling C., Lecomte J.S., et al. Grain boundary characteristics and textureformation in a medium carbon steel during its austenitic decomposition in a high magnetic field[J], Acta Mater.,2005;53:5213.
    [25]Harada K., Tsurekawa S., Watanabe T., et al. Enhancement of homogeneity of grain boundarymicrostructure by magnetic annealing of electrodeposited nanocrystalline nickel [J], Scripta Mater.,2003;49:367.
    [26]Cai Z., Lin J., Zhao H., et al. Orientation effects in pulsed magnetic field treatment [J], Mater.Sci. Eng., A,2005;398:344.
    [27]Tang G., Xu Z., Tang M., et al. Effect of a pulsed magnetic treatment on the dislocationsubstructure of a commercial high strength steel [J], Mater. Sci. Eng., A,2005;398:108.
    [28]Lu A.L., Tang F., Luo X.J., et al. Research on residual-stress reduction by strong pulsedmagnetic treatment [J], J. Mater. Process. Technol.,1998;74:259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700