用户名: 密码: 验证码:
基于共光路光束漂移测量与同步补偿的激光自准直技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光自准直技术是精密小角度测量的重要手段,具有测量分辨力高、测量距离远、非接触、使用方便等优点,在精密装备制造、光学元器件加工与检测、大型结构件装配、航空航天设备的瞄准与标校以及科学研究等领域具有重要应用。激光自准直由于激光发光机理以及光束传输路径中空气介质不稳定性导致的激光光束方向漂移而普遍存在测量稳定性较差的问题。激光光束的方向漂移是制约提高激光自准直小角度测量稳定性的主要障碍。
     本课题“基于共光路光束漂移测量与同步补偿的激光自准直技术”,在对自准直几何光学模型研究的基础上,分析激光自准直中激光光束漂移对自准直的影响机理,寻找从根源上减小激光自准直漂移的途径,并提出激光自准直中共光路光束漂移测量方法,结合高频响与高灵敏度光束方向偏转技术对光束漂移进行同步补偿,达到提高激光自准直小角度测量稳定性的目的。论文主要研究内容为:
     针对传统自准直模型参数过于简化而无法从理论上对自准直系统的影响因素进行有效分析的问题,建立了基于光线追迹法的自准直几何光学模型,能够完整地阐述自准直中各参数之间的关系。利用该模型对自准直系统中反射镜二维角度耦合、物面与像面离焦、以及照明光源的角漂移量对自准直小角度测量的影响进行仿真分析,结果表明,当物点位于准直物镜焦面并且距离光轴±5mm范围内时,在±2000″范围内反射镜二维角度耦合的影响量最大为0.7170″;物面与像面在±2mm范围内离焦时,在±2000″内影响量最大为4.3540″;在物面与像面离焦以及准直物镜孔径面光强分布不均匀的情况下,照明光源的角漂移量在±10″内对自准直小角度测量的影响量可以达到0.0182″。在此基础上进一步分析激光自准直中分辨力的影响因素,研究采用长焦距准直物镜和光学放大法提高自准直小角度测量的分辨力。
     针对激光基准精密小角度测量中激光光束的漂移与被测角度耦合而难以将二者有效分离的问题,提出激光自准直中基于组合靶标以及基于平面镜参考靶标的共光路光束漂移测量方法,方法中利用组合靶标或平面镜参考靶标,在自准直过程中产生一束参考光束,参考光束与测量光束来源于同一光源并且共光路传输,因而二者具有一致的角漂移量;由于组合靶标或平面镜参考靶标的固有特性,参考光束对组合靶标或平面镜参考靶标的角度偏转不敏感,因此可以利用参考光束精确获取测量光束的角漂移量,进而对其进行同步补偿,提高激光自准直小角度测量的稳定性。
     针对激光光束漂移量闭环控制中光束方向偏转装置的高频率响应与高角位移灵敏度相兼顾的问题,提出两种基于柔性铰链结构的光束方向偏转方法,通过建立其动力学模型,利用拉格朗日方程分析其固有频率随结构参数的变化关系,为优化其结构参数、在高角位移灵敏度的情况下提高固有频率提供理论依据;并且提出一种基于反射镜平动的光束方向偏转方法,通过压电陶瓷驱动反射镜平动实现光束的角度偏转,无机械摩擦与传动损耗,运动惯量小,因而具有非常高的角位移灵敏度与频率响应特性。实验结果表明,基于柔性铰链结构设计的两种光束方向偏转方法的角位移分辨力均可以达到0.003″,基于反射镜平动的光束方向偏转方法角位移分辨力优于0.002″,频率响应特性可以达到2000Hz以上。
     最后,对研制的基于共光路光束漂移测量与同步补偿的激光自准直实验装置及其各主要组成单元的性能进行测试,包括光学放大法的有效性测试、光电检测电路的分辨力测试、参考光束与测量光束角漂移量的一致性测试、光束方向偏转装置的性能测试,在此基础上对所组成的激光自准直系统的有效分辨力和稳定性进行测试。实验结果表明,其有效分辨力达到0.0003″,2小时稳定性最高可以达到0.0026″,在高的有效分辨力下实现了高测量稳定性。
Laser autocollimation is an important method for precision small anglemeasurement with high angle resolution, long measurement distance, andcharacteristics of noncontact, convenient to use, etc. It is widely used inmanufacture and testing of precision equipment, processing and testing of optics,assembling and testing of large structures, aiming and calibration of aerospaceequipment, and scientific research, etc. However, it is commonly experienced thatlaser beam drift due to laser generation mechanism and instability of beamtransmission medium cause a poor measurement stability in laser autocollimation.Laser beam drift is the main obstacle of improving the measurmement stability oflaser autocollimation.
     In this dissertation of “Laser autocollimation technology based oncommon-path beam drift measurement and synchronous compensation”, the modelof autocollimation in Gaussion optics is researched and used to analyze the effect oflaser beam drift on laser autocollimation to find methods to eliminate the drift oflaser autocollimation foundamentally. Common-path beam drift measurementmethod in laser autocollimation is also proposed. The beam drift is synchronouslycompensated by beam steering technology with high frequency response and highsensitivity, to achieve high stability of laser autocollimation small anglemeasurement. The main researches of this dissertation are described as followings:
     An autocollimation model based on Gaussion-optics is established by usingray-tracing method to solve the problem that the conventional autocollimationmodel can not be used to analyze the affects of autocollimation system effectively.The established model describes the relationship of all the parameters ofautocollimation system. Simulations have been done to analyze the effects oftwo-dimensional tilt-angle couple of the mirror, defocus of object and image planes,and angular drift of illuminating light source. The simulation results show that themaximum deviation caused by two-dimensional tilt-angle couple of the mirror isabout0.7170″in a measurement range of±2000″when an object point locates at therange of±5mm relative to the optical axis. The maximum diviation is about4.3540″in a measurement range of±2000″when object and image planes defocus in a rangeof±2mm. The drift of autocollimation small angle measurement can be0.0182″when the angular drift of illuminating light source ranges in±10″. The influencefactors of the resolution of laser autocollimation are also analyzed. The collimatinglens with long focal length and optical amplification method are studied to improvethe resolution of autocollimation small angle measurement.
     Common-path beam drift measurement methods based on combination reflectorand reference mirror reflector in laser autocollimation are proposed to solve theproblem that laser beam drift and the small angle being measured are alwayscoupled and hard to be separated in laser datum based small angle measurement.The combination reflector and reference mirror reflector are used to generate areference beam in autocollimation. The reference and measurement beams arederived from the same illuminating light source and transmitted on common-path, sothey have the same angular drift. In addition, the reference beam is insensitive to theangular rotation of the reflectors due to their unique characteristics. So the referencebeam can be used to accurately obtain the angular drift of measurement beam forsynchronous compensation to improve the small angle measurement stability oflaser autocollimation.
     Two beam steering methods based on flexible hinge are proposed to solve thecollision of high frequency response and high angular sensitivity of beam steeringmechanism in close-loop control of laser beam drift. The dynamical models of thetwo methods are established to analyze the variations of natural frequencies withtheir structure parameters. The models provide theoretical optimization of thestructure parameters to increase natural frequencies along with high angularsensitivities. Another transmission mirror based beam steering method is alsoproposed. The beam steering is realized by the transmission of a mirror which isactuated by PZT actuators. There is no mechanical friction or motion transmissionloss, so the method has a very high angular sensitivity and high frequency response.Experimental results show that angular sensitivity of the two beam steering methodsbased on flexible hinge can be0.003″and the transmission mirror based method canbe better than0.002″. All the frequency responses of the three methods can be up to2000Hz.
     An experimental laser autocollimation system based on common-path beamdrift measurement and synchronous compensation has been set up. The performanceof constitution units has been tested, including effectiveness of optical amplificationmethod, resolution of the photoelectrical detection units, consistency of the drifts ofreference and measurement beams, performance of the beam steering mechanisms,the effective resolution and measurement stability of the autocollimation system.Experimental results show that the effective resolution is0.0003″, and the2-hourstability can reach up to0.0026″, which demonstrates that a high stability is realizedon the base of high effective resolution.
引文
[1] SCHULZ M, EHRET G, K EN P. High accuracy flatness metrology within theEuropean Metrology Research Program [J]. Nuclear Instruments and Methodsin Physics Research Section A,2013,710:37-41.
    [2] EHRET G, SCHULZ M, BAIER M, et al. Optical measurement of absoluteflatness with the deflectometric measurement systems at PTB [J]. Journal ofPhysics: Conference Series,2013,425(15):152016-1-4.
    [3] EHRET G, SCHULZ M, STAVRIDIS M, et al. Deflectometric systems forabsolute flatness measurements at PTB [J]. Measurement Science&Technology,2012,23(9):1-9.
    [4] EHRET G, SCHULZ M. Difference deflectometry with coupling mirrors forflatness measurements [J]. DGaO Proceedings2012,2012:1-2.
    [5] EHRET G, SCHULZ M, FITZENREITER A, et al. Alignment methods forultraprecise deflectometric flatness metrology [C]; Proceedings of the SPIE,2011,8082:808213-8.
    [6] YASHCHUK V V, BARBER S, DOMNING E E, et al. Sub-microradiansurface slope metrology with the ALS Developmental Long Trace Profiler [J].Nuclear Instruments&Methods in Physics Research Section A: AcceleratorsSpectrometers Detectors and Associated Equipment,2010,616(2-3):212-223.
    [7] GECKELER R D, JUST A, KRAUSE M, et al. Autocollimators fordeflectometry: Current status and future progress [J]. Nuclear Instruments&Methods in Physics Research Section A: Accelerators Spectrometers Detectorsand Associated Equipment,2010,616(2-3):140-146.
    [8] KIRSCHMAN J L, DOMNING E E, MCKINNEY W R, et al. Performance ofthe upgraded LTP-II at the ALS Optical Metrology Laboratory [C].Proceedings of SPIE,2008,7077:70770A-1-12.
    [9] QIAN S, TAKACS P. Wave front-splitting phase shift beam splitter for pencilbeam interferometer [J]. Review of scientific instruments,2003,74(11):4881-4884.
    [10] GECKELER R D, WEINGARTNER I. Sub-nm topography measurement bydeflectometry: Flatness standard and wafer nanotopography [C]. Proceedingsof SPIE,2002,4779:1-12.
    [11] KREY S, VAN AMSTEL W D, SZWEDOWICZ K, et al. A fast opticalscanning deflectometer for measuring the topography of large silicon wafers[C]. Proceedings of SPIE,2004,5523:110-120.
    [12] EHRET G, SCHULZ M, STAVRIDIS M, et al. A new flatness referencemeasurement system based on deflectometry and difference deflectometry [M].Fringe2009,2009:318-323.
    [13] MTSHALI C, HAMIDI D, KERDJA T, et al. Laser beam deflectometry andC60polymerized nanorods dynamics by surface interdiffusion [J]. OpticsCommunications,2012,285(15):3272-3275.
    [14]刘凯.新型光电自准直经纬仪关键技术研究[D];北京交通大学硕士学位论文,2012:1-3.
    [15]刘兆蓉.提高车载导弹发射架变形测量精度的方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所)硕士学位论文,2010:1-3.
    [16]李岷. CCD光电自准直测量技术的研究[D];吉林大学硕士学位论文,2007:1-8.
    [17]唐洪亮,李继光,刘锡敬.静电陀螺仪在潜艇导航技术中的应用及展望[J].四川兵工学报,2009,30(9):128-131.
    [18]高钟毓.静电陀螺仪技术[M].清华大学出版社有限公司,2004:1-3.
    [19] KONYAKHIN I A, SMEKHOV A. Survey of illuminance distribution ofvignetted image at autocollimation systems by computer simulation [C].Proceedings of SPIE,2013,8759:87593F-1-6.
    [20]于萍,张尧禹,时魁,等.船体变形非接触式测角系统精度检测装置的研制[J].长春理工大学学报(自然科学版),2009,32(1):11-13.
    [21]李晓勇,张忠华,朱伟康,等.航天测量船船体变形的数据处理[J].光学精密工程,2009,17(2):445-452.
    [22] GECKELER R D, JUST A. Optimized use and calibration of autocollimatorsin deflectometry [C]. Proceedings of SPIE,2007,6704:670407-1-12.
    [23] JUST A, KRAUSE M, PROBST R, et al. Calibration of high-resolutionelectronic autocollimators against an angle comparator [J]. Metrologia,2003,40(5):288-294.
    [24] YUAN J, LONG X, YANG K. Temperature-controlled autocollimator withultrahigh angular measuring precision [J]. Review of scientific instruments,2005,76(12):125106-1-6.
    [25] KONIAKHINE I, TIMOFEEV A, MUSYAKOV V. The optic-electronicsystems for control position of the elements unblocked aperture radiotelescope [C]. Proceedings of the Third International Symposium onInstrumentation Science and Technology,2004,3:1-5.
    [26] YUAN J, LONG X. CCD-area-based autocollimator for precision small-anglemeasurement [J]. Review of scientific instruments,2003,74(3):1362-1365.
    [27] LEVITON D B. Ultrahigh resolution absolute Cartesian electronicautocollimator [C]. Proceedings of SPIE,2003,5190:468-475.
    [28] PANKOV E D, PROKOFIEV A, TYMOFEEV A. Autocollimationaloptoelectronic system for monitoring of the position of elements of turbineaggregates [C]. Proceedings of SPIE,2002,4680:150-156.
    [29]甘俊红.面阵CCD自准直测量系统研究[D];合肥工业大学硕士学位论文,2006:1-3.
    [30]林玉池,于建.光电自准直仪现状与展望[J].宇航计测技术,1999,19(6):30-32.
    [31] LEVITON D B, KIRK J, LOBSINGER L. Ultrahigh-resolution Cartesianabsolute optical encoder [C]. Proceedings of SPIE,2003,5190:111-121.
    [32] SUZUKI T, ENDO T, SASAKI O, et al. Two-dimensional small-rotation-anglemeasurement using an imaging method [J]. Optical Engineering,2006,45(4):043604-1-7.
    [33]张萍.激光自准直仪在远距离精密定位系统中应用的实验研究[D];天津大学硕士学位论文,2001:4-5.
    [34]张东梅,尚春民,乔彦峰. CCD激光自准直旋转靶标轴系跳动测量系统[J].测试技术学报,2006,20(5):407-411.
    [35]朱小平,张永年,杨自本,等.利用二维PSD器件测量小角度的研究[J].现代计量测试,2001,02:40-43.
    [36]林玉池,洪昕,赵美蓉.微机械自跟踪双坐标光电自准直仪的研究[J].光电工程,2002,29(4):43-45.
    [37]钱建强,惠梅,王东生.锁相检测式二维小角度测量装置[J].光学技术,2004,30(2):176-178.
    [38]邹九贵,甘俊红,季国定.高精度二维自准直仪的研制[J].计测技术,2006,26(5):19-20.
    [39]甘俊红,邹九贵,季国定.面阵CCD在双轴自准直仪中的应用[J].红外与激光工程,2008,37:60-62.
    [40]敖磊.基于靶标反馈的自准直光束漂移抑制技术研究[D];哈尔滨工业大学,2008:18-30,91-96;68-81.
    [41] TAN J-B, AO L, CUI J-W, et al. Further improvement of edge locationaccuracy of charge-coupled-device laser autocollimators using orthogonalFourier-Mellin moments [J]. Optical Engineering,2007,46(5):057007-1-12.
    [42] BIN T, LEI A, JIWEN C, et al. Subpixel edge location based on orthogonalFourier–Mellin moments [J]. Image and Vision Computing,2008,26(4):563-569.
    [43]罗钧,万文通,卢嘉江.光电测量二维微角位移的新方法研究与实现[J].计量技术,2008,9:12-15.
    [44] HERMANN G, TOMANYICZKA K. Autocollimator Calibration Using aTangent Bar [M]. Applied Computational Intelligence in Engineering andInformation Technology. Springer.2012:321-330.
    [45] HERMANN G. Calibration of an autocollimator (method and uncertainty)[C].6th IEEE International Symposium on Applied Computational Intelligence andInformatics,2011:645-647.
    [46] HERMANN G. Autocollimator calibration [C].5th International Symposiumon Computational Intelligence and Intelligent Informatics,2011:87-91.
    [47]万德安.激光基准高精度测量技术[M].国防工业出版社,1999,6:58-78.
    [48]张善锤.直线度平面度测量技术[M].中国计量出版社,1997:79-81.
    [49] SCHENZ R, GRIFFITH L, SOMMARGREN G. Development of an extendedstraightness measurement reference [R]. Lawrence Livermore National Lab.,CA (USA),1988:1-3.
    [50] HAO Q, LI D, WANG Y. High-accuracy long distance alignment usingsingle-mode optical fiber and phase plate [J]. Optics&Laser Technology,2002,34(4):287-292.
    [51] QUN H. Study of phase plate alignment in large-scale measurement [J]. Actametrological Sinica,2001,22(3):185-188.
    [52] LUO D, KUANG C F, HAO X, et al. High-precision laser alignment techniquebased on spiral phase plate [J]. Optics and Lasers in Engineering,2012,50(7):944-949.
    [53] KUANG C, FENG Q, ZHANG B, et al. A four-degree-of-freedom lasermeasurement system (FDMS) using a single-mode fiber-coupled laser module[J]. Sensors and actuators A: physical,2005,125(1):100-108.
    [54] FENG Q, ZHANG B, KUANG C. A straightness measurement system using asingle-mode fiber-coupled laser module [J]. Optics&Laser Technology,2004,36(4):279-283.
    [55]于殿泓,郭彦珍.提高激光准直精度的一种方法[J].石油仪器,1999,13(6):18-20.
    [56] ZHAO W, QIU L, FENG Z, et al. Laser beam alignment by fast feedbackcontrol of both linear and angular drifts [J]. Optik-International Journal forLight and Electron Optics,2006,117(11):505-510.
    [57] ZHAO W, TAN J, QIU L, et al. Enhancing laser beam directional stability bysingle-mode optical fiber and feedback control of drifts [J]. Review ofscientific instruments,2005,76(3):036101-1-3.
    [58]赵维谦,谭久彬,邱丽荣,等.激光光束特定方向准直方法与技术[J].光电子激光,2004,15(1):61-64.
    [59]刘兴占,梁晋文,陈博一,等.双光束补偿准直系统[J].计量技术,1999,1:12-15.
    [60]匡萃方,冯其波,刘斌,等.一种共路补偿激光漂移的直线度测量方法[J].光电工程,2005,32(4):32-34.
    [61] LI K, KUANG C, LIU X. Small angular displacement measurement based onan autocollimator and a common-path compensation principle [J]. Review ofScientific Instruments,2013,84(1):015108-1-7.
    [62]由凤玲,张斌,冯其波.一种基于光线漂移补偿的导轨角度误差测量方法[J].北京交通大学学报:自然科学版,2009,33(6):5-8.
    [63] YOU F, ZHANG B, FENG Q. A novel laser straightness measurement methodwith beam bend compensation [J]. Optik-International Journal for Light andElectron Optics,2011,122(17):1530-1534.
    [64] YOU F, FENG Q, ZHANG B. A new five degree-of-freedom measurementmethod and system [C]. Proceedings of SPIE,2008,7156:715634-1-11.
    [65] IRICK S, MCKINNEY W, LUNT D, et al. Using a straightness reference inobtaining more accurate surface profiles from a long trace profiler [J]. Reviewof scientific instruments,1992,63(1):1436-1438.
    [66] TAKACS P Z, CHURCH E L, BRESLOFF C J, et al. Improvements in theaccuracy and the repeatability of long trace profiler measurements [J]. AppliedOptics,1999,38(25):5468-5479.
    [67] QIAN S, QIAN K, HONG Y, et al. Systematic error reduction: non-tiltedreference beam method for long trace profiler [C]. Proceedings of SPIE,2007,6704:67040I-1-7.
    [68] QIAN S. Scanning Optical Head with Nontilted Reference Beam: AssuringNanoradian Accuracy for a New Generation Surface Profiler in theLarge-Slope Testing Range [J]. International Journal of Optics,2011,2011:1-9.
    [69] SENBA Y, KISHIMOTO H, OHASHI H, et al. Upgrade of long trace profilerfor characterization of high-precision X-ray mirrors at SPring-8[J]. NuclearInstruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment,2010,616(2):237-240.
    [70]方仲彦,殷纯永,梁晋文.高精度激光准直技术的研究(一)[J].航空计测技术,1997,17(1):3-6.
    [71]方仲彦,殷纯永,梁晋文.高精度激光准直技术的研究(二)[J].航空计测技术,1997,17(2):6-8.
    [72]杨友堂,曾理江,殷纯永.自适应除噪技术在激光准直中的应用研究[J].仪器仪表学报,1995,16(4):370-374.
    [73]杨友堂,顾玉萍,方仲彦,殷纯永.自适应消噪技术在旋光准直仪中的应用研究[J].计量学报,1995,16(3):206-211.
    [74]殷纯永,陈计金,方仲彦.双光束自适应旋光准直系统[J].清华大学学报(自然科学版),1991,31(2):55-60.
    [75] YIN C-Y, GUO J-H. Novel comprehension of “common path” principle [J].Optics and lasers in engineering,2005,43(10):1081-1095.
    [76] YANG Y, ZENG L-J, YIN C-Y. Study on the Application of Adaptive NoiseCancelling Technique in Laser Alignment [J]. Chinese Journal of ScientificInstrument,1995,16:370-374.
    [77] YANG Y, GU Y, FANG Z, et al. Application of an adaptive noise cancellingtechnique to a straightness measurement system based on optical activity [J].Optical Engineering,1995,34(1):21-25.
    [78] FANG Z, GU Y, YANG Y, et al. Data processing of the two-channel adaptivestraightness measurement system based on optical activity [J]. Precisionengineering,1995,17(4):253-257.
    [79]吕春雷,佟首峰.高带宽高跟踪精度复合轴APT精跟踪系统的实现[J].大连海事大学学报,2012,38(3):96-100.
    [80]任斌,佟首峰,宋延嵩,等.空间激光通信精跟踪单元的高精度快速PZT驱动技术研究[J].仪器仪表学报,2011,32(2):420-425.
    [81]王恒坤,张国玉,郭立红,等.高精度动载体激光发射系统光束控制反射镜[J].光学精密工程,2013,20(12):336-341.
    [82]王恒坤,张国玉,郭立红,等.车载激光系统光束控制反射镜角位移测量装置[J].光学精密工程,2012,20(7):1517-1524.
    [83]张洪涛,尹福昌.用于稳定和单轴扫描的快速控制反射镜结构与性能[J].仪器仪表学报,2002,23(5):190-191.
    [84]李新阳,凌宁,陈东红,等.自适应光学系统中高速倾斜反射镜的稳定控制[J].强激光与粒子束,1999,11(1):35-40.
    [85]凌宁,陈东红,官春林,等.两维高速压电倾斜反射镜[J].光电工程,1995,22(1):51-60.
    [86]杨驿军,凌宁.高速倾斜反射镜机械谐振频率的改善[J].光电工程,1999,26(2):58-63.
    [87]张小军,凌宁.高速压电倾斜镜动态特性分析[J].强激光与粒子束,2003,15(10):966-968.
    [88]鲁亚飞,范大鹏,范世珣,等.快速反射镜两轴柔性支承设计[J].光学精密工程,2010,18(12):2574-2582.
    [89]王永辉.快速控制反射镜结构及其动态特性的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所)博士学位论文,2004:4-6,57-70.
    [90]李新阳,姜文汉,王春红,等.自适应光学系统中的自适应控制算法研究[J].光学学报,2001,21(3):283-289.
    [91]朱衡,陈东红,凌宁,等.提高高速压电倾斜镜应用带宽的方法[J].光电工程,2009,36(7):60-64.
    [92]范大鹏,范世珣,张智永,等.基于分辨率倍增柔顺机构的光束精密指向装置,中国发明专利CN101794020A,2010.
    [93] DUNCAN B D, BOS P J, SERGAN V. Wide-angle achromatic prism beamsteering for infrared countermeasure applications [J]. Optical Engineering,2003,42(4):1038-1047.
    [94] GIBSON J L, DUNCAN B D, BOS P, et al. Wide-angle beam steering forinfrared countermeasures applications [C]. Proceedings of SPIE,2002,4723:100-111.
    [95] SCHWARZE C, VAILLANCOURT R, CARLSON D, et al. Risley-prism basedcompact laser beam steering for IRCM, laser communications, and laser radar[J]. Critical Technology,2005,9:1-9.
    [96] GIBSON J L, DUNCAN B D, WATSON E A, et al. Wide-angle decenteredlens beam steering for infrared countermeasures applications [J]. OpticalEngineering,2004,43(10):2312-2321.
    [97] BARBOZA R, ALBERUCCI A, ASSANTO G. Large electro-optic beamsteering with nematicons [J]. Optics letters,2011,36(14):2725-2727.
    [98]王伟.新型可调电光偏转器[J].压电与声光,1989,11(5):12-16.
    [99]许发明,陈绍和,范滇元,等.电光偏转器的矩阵表示和应用[J].中国激光,1996,23(10):906-910.
    [100]卢秀权,陈绍和,沈德忠. KNbO3电光偏转器[J].中国激光,1998,25(6):40-43.
    [101] SCRYMGEOUR D A, BARAD Y, GOPALAN V, et al. Large-angleelectro-optic laser scanner on LiTaO3fabricated by in situ monitoring offerroelectric-domain micropatterning [J]. Applied Optics,2001,40(34):6236-6241.
    [102]董作人,叶青,瞿荣辉,等.基于掺镧锆钛酸铅电光材料的光学相控阵光束扫描器[J].中国激光,2008,35(3):373-377.
    [103]江月松.光电技术与实验[J].北京理工大学出版社,2000:227-230.
    [104]刘海霞,盖磊,刘光娟,等.声光衍射及实验研究[J].实验室研究与探索,2009,28(1):56-59.
    [105]温涛,魏急波,马东堂,等.提高声光偏转器空间分辨率的方法研究[J].中国激光,2005,32(12):1631-1635.
    [106]ENGSTR M D, O'CALLAGHAN M J, WALKER C, et al. Fast beam steeringwith a ferroelectric-liquid-crystal optical phased array [J]. Applied optics,2009,48(9):1721-1726.
    [107]LIZANA A, M RQUEZ A, LOBATO L, et al. The minimum Euclideandistance principle applied to improve the modulation diffraction efficiency indigitally controlled spatial light modulators [J]. Optics express,2010,18(10):10581-10593.
    [108]BECK R J, PARRY J P, MACPHERSON W N, et al. Application of cooledspatial light modulator for high power nanosecond laser micromachining [J].Optics express,2010,18(16):17059-17065.
    [109]张健,方运,吴丽莹,等.液晶光束偏转技术[J].中国激光,2010,37(2):325-334.
    [110]AKATAY A, UREY H. Design and optimization of microlens array based highresolution beam steering system [J]. Optics Express,2007,15(8):4523-4529.
    [111] BOURDERIONNET J, RUNGENHAGEN M, DOLFI D, et al. Continuouslaser beam steering with micro-optical arrays: experimental results [C].Proceedings of SPIE,2008,7113:71130Z-1-11.
    [112]AKATAY A, WADDIE A, SUYAL H, et al. Comparative performance analysisof100%fill-factor microlens arrays fabricated by various methods [C].Proceedings of SPIE,2006,61850C-1-11.
    [113]SMITH N R, ABEYSINGHE D C, HAUS J W, et al. Agile wide-angle beamsteering with electrowetting microprisms [J]. Optics Express,2006,14(14):6557-6563.
    [114]SMITH N R. Investigation of the Performance Potential for ArrayedElectrowetting Microprisms [D]. University of Cincinnati,2009:1-7.
    [115]ANISIMOV A G, TSYGANOK E A, KONYAKHIN I A. Study of the influenceof the tetrahedral reflectors properties on autocollimating systemscharacteristics [C]. Proceedings of SPIE,2010,7786:77860V-1-8.
    [116]尚鸿雁.激光自准直角度测量系统建模方法研究[J].测试技术学报,2007,21(1):6-12.
    [117]尚鸿雁.激光自准直测角系统安装误差分析[J].应用激光,2008,28(4):318-322.
    [118]张广军,尚鸿雁,魏振忠.激光自准直测角中零位畸变模型及仿真[J].机械工程学报,2006,42(5):64-68.
    [119]黄银国.激光自准直微小角度测量基础技术研究[D];天津大学博士学位论文,2010:18-24.
    [120]黄银国,林玉池,王为,等.基于矢量运算的光电自准直系统建模研究[J].激光与红外,2009,39(10):1086-1090.
    [121]BEGGS J S. Mirror-image kinematics [J]. JOSA,1960,50(4):388-393.
    [122]SAKUMA H, WADA H. Straigtness measurement using a heterodyne moirémethod [J]. Precision engineering,1987,9(1):19-22.
    [123]UCHIKOSHI J, SHIMADA S, IKAWA N, et al. Straightness measurementusing laser beam straight datum [C]. Proceedings of SPIE,1995,2576:315-322.
    [124]IKAWA N. Laser beam as a straight datum and its application to straightnessmeasurement at nanometer level [J]. CIRP Annals-Manufacturing Technology,1988,37(1):523-526.
    [125]JIANG X, WANG K, MARTIN H. Near common-path optical fiberinterferometer for potentially fast on-line microscale-nanoscale surfacemeasurement [J]. Optics letters,2006,31(24):3603-3605.
    [126]HE J, LI F, FENG L, et al. Elimination of environmental noise ininterferometric wavelength shift demodulation for dynamic fiber Bragggrating sensor array [J]. Optics Communications,2009,282(14):2836-2840.
    [127]LIN D, YUE Z, SONG N, et al. A double common-path heterodyneinterferometer for the measurement of flying height modulation [J].Measurement Science and Technology,2008,19(5):055303.
    [128]ZHAO H, LIANG R, LI D, et al. Practical common-path heterodyne surfaceprofiling interferometer with automatic focusing [J]. Optics&LaserTechnology,2001,33(4):259-265.
    [129]HAELLSTIG E J, SJOEQVIST L, LINDGREN M. Characterization of a liquidcrystal spatial light modulator for beam steering [C]. Proceedings of SPIE,2002,4632:187-196.
    [130]王雯静.柔顺机构动力学分析与综合[D];北京工业大学博士学位论文,2009:16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700