用户名: 密码: 验证码:
3A21铝合金-20#钢管件磁脉冲焊接数值模拟与工艺试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异种材料管件磁脉冲焊接(MPW)是利用磁脉冲成形原理,在室温条件下实现的高速、固相连接,合适工艺条件下,能获得高强度的焊接接头。将MPW应用于铝合金-钢等异种材料的管-管焊接有利于实现零件轻量化结构设计。本文从磁脉冲焊接原理和特点出发,利用3A21铝合金高应变速率下的本构关系,采用数值模拟和工艺试验相结合的方式对Al-Fe异种管件磁脉冲焊接工艺进行了系统研究。通过SEM试验及TEM试验对磁脉冲焊接接头的形貌及成分进行分析,得出了磁脉冲焊接工艺中接头波的形成机理以及磁脉冲焊接机理。
     采用松散耦合法对磁脉冲焊接过程进行电磁场分析以及变形场分析。利用ANSYS/Multiphysics模块建立电压激励的三维电磁场耦合模型,对磁脉冲焊接过程中的磁场力进行分析,研究了放电电压、设备电容、系统电阻以及管件材料等工艺参数对磁场力的影响。通过霍普金森压杆试验建立了3A21铝合金在高应变速率下的J-C模型。以电磁场分析中的磁场力为边界条件,在ANSYS/LS-DYNA模块中,利用高应变速率下材料的本构关系建立管件变形分析模型,并对外管变形过程进行分析。研究了放电电压、内外管间隙及搭接角度等工艺参数对碰撞速度的影响,确定了磁脉冲焊接过程的最佳工艺参数,有限元分析结果对工艺试验的进行有重要指导意义。
     利用高速摄像机对不同放电电压条件下铝管运动规律进行拍摄,通过对拍摄结果进行分析,得到了外管运动过程的位移-时间以及速度-时间曲线。通过工艺试验研究放电电压、搭接角度以及内、外管间隙等参数对磁脉冲焊接速度的影响,得到了不同工艺参数条件下的内、外管碰撞速度以及使内、外管实现冶金结合的临界碰撞速度。利用SEM对不同碰撞速度条件下得到的磁脉冲焊接接头进行分析,研究了各工艺参数对焊接接头形貌的影响。对磁脉冲焊接接头的宏观缺陷及微观组织缺陷进行分析,并给出了避免缺陷形成的有效方法。
     对内管刚度条件进行了理论分析、数值模拟及工艺试验,得到了不同电压条件下满足内管刚度条件的壁厚最小值。将内管等效为无端部封头厚壁筒形件在外压作用下受力变形模型,利用平衡方程与协调方程求解内管在磁场力作用下的位移分量,根据屈雷斯加屈服准则求解内管塑形极限的压力方程,得到了不同碰撞速度的临界壁厚表达式。利用ANSYS/LS-DYNA模块建立管件磁脉冲焊接过程变形场模型,研究了不同工艺条件下内管刚度条件,并与理论计算结果进行了对比。针对不同放电电压进行工艺试验,以对理论计算及模拟结果进行试验验证,结果表明三者之间吻合度较好。
     采用单向拉伸试验及扭转试验对磁脉冲焊接接头力学性能进行测试,结果表明在适当的工艺条件下,接头抗拉强度大于母材抗拉强度。采用纳米硬度仪对焊接接头及接头两侧金属进行硬度测试,研究了沿接头两侧金属硬度分布规律以及接头处硬度提高的成因。通过金相显微镜及SEM对过渡区形貌进行观察,对磁脉冲焊接接头处形成的开尔文波形的形成机理进行研究,并得到了过渡区宽度的近似表达式。采用SEM、TEM对磁脉冲焊接接头的微观组织及成分进行分析,通过与压力焊形成条件以及爆炸焊接的接头形貌进行对比,得到了磁脉冲焊接过程的焊接机理。
Magnetic pulse welding (MPW) of pipe fittings made of dissimilar materials refersto high-speed solid-phase connection at room temperature using magnetic-pulse formingprinciple and under appropriate technical conditions, high-strength welding joints canbe obtained. The application of MPW to the welding of pipes made of such dissimilarmaterials as aluminum alloy-steel will help realize lightweight structural design of parts.Starting from the principle and characteristics of MPW, using the constitutive relation of3A21aluminum alloy at high strain rate, a method of combining numerical simulationand process tests is used to make a systematic study of the MPW procedure for Al-Fedissimilar pipe fittings. Through SEM tests and TEM tests, an analysis is made of theappearance and composition of MPW joints, with the formation mechanism of weldingwave involved in the MPW procedure and mechanism of MPW obtained.
     A loose coupling method is adopted to make an electromagnetic field analysis and adeformation field analysis of pipe fittings in the MPW process. A voltage drive-basedthree dimensional electromagnetic field coupling model is established using ANSYS-Multiphysics module to analyze the magnetic force in the MPW process and study theefect of such process parameters as discharge voltage, equipment capacitance, system re-sistance and pipe materials on the magnetic force. Through Hopkinson pressure bar test,a J-C model of3A21aluminum alloy at high strain rate is established. With the magneticforce involved the magnetic field analysis as boundary conditions, in the ANSYS/LS-DYNA module, the constitutive relation of materials at high strain rate is utilized to es-tablish a pipe deformation analysis model to make analysis of the deformation processof external pipes. The efect of such process parameters as discharge voltage, clearancebetween internal and external pipes and overlapping angle on collision velocity, with theoptimum process parameters in the MPW process determined to guide process tests.
     The movement process of aluminum pipes under diferent discharge voltage con-ditions is shot using a high-speed camera and through the analysis of shooting results,the displacement-time curve and velocity-time curve involved in the movement processof external pipes are obtained. Through process tests, the efect of such parameters asdischarge voltage, overlapping angle and clearance between pipes on the collision veloc-ity of MPW is studied, with the collision velocity of internal and external pipes under diferent process parameter conditions and the critical collision velocity for realizing themetallurgical bond of internal and external pipes. SEM is used to analyze the joints ofMPW obtained under diferent collision velocity conditions and study the efect of themovement speed of the collision point on the appearance of welding joints. The analysisof the macro-defects and microstructure defects of MPW joints is made, with methods foravoiding the formation of defects presented.
     Theoretical analysis, numeral simulation and process tests of internal pipe stifnessare conducted to obtain the minimum wall thickness value for meeting the internal pipestifness conditions under diferent voltage conditions. With internal pipes consideredequivalent to the force-deformation model of thick-walled cylinder parts without end clo-sure, equilibrium equations and coordination equations are used to obtain the displace-ment component of internal pipes under the action of magnetic force, with the pressureequation of plastic limit of internal pipes obtained based on Tresca yield criterion and thecritical wall thickness expression under diferent collision velocity conditions derived. Adeformation field model of pipes in the MPW process is established using the LS-DYNAmodule, the stifness conditions of internal pipes under diferent process parameter condi-tions are studied and the comparison with the result of theoretical analysis is conducted.Process tests are conducted under diferent conditions to verify theoretical calculation andsimulation results, with results showing these three have excellent goodness of fit.
     The mechanical properties of MPW joints are tested using uniaxial tension tests andtorsion tests. Through tension tests, the tensile strength of MPW joints and the base metalstrength are compared. A nano-hardness tester is adopted to test the hardness of weldedjoints and the metal on both sides of the joints. The hardness distribution law of themetal on both sides of MPW interface and the cause of increased hardness of the metalnear the interface are studied. The appearance in the transition area is observed througha metallurgical microscope and SEM, and the formation mechanism of Kelvin wavesformed around MPW joints is studied, with the expression of the width of the transitionarea obtained. The welding mechanism of the MPW process is obtained, using SEM andTEM to analyze the microstructure and composition of MPW joints, through comparisonwith the formation conditions of pressure welding and explosive welding.
引文
[1]林忠钦.车身覆盖件冲压成形仿真[M].机械工业出版社,2005:1-22.
    [2]王云渤,张关康.飞机装配工艺学[M].国防工业出版社,1990:1-5.
    [3]王钰.船舶用铝合金材料[J].轻合金,1994,(6):58-64.
    [4] M Satio, S Iwatsuki, K Yasunaga. Development of Aluminum Body for the MostFuel Efcient Vehicle[J]. JSAE Review,2000,21(1):511-516.
    [5]王孟君,黄电源,姜海涛.汽车用铝合金的研究进展[J].金属热处理,2006,31(9):34-38.
    [6]甘卫平,许可勤,范洪涛.汽车车身铝化的研究及其发展[J].轻合金加工技术,2003,31(6):14-16.
    [7]石其年,熊惟皓.铝合金在汽车中的应用与发展[J].新技术新工艺,2006,(12):55-58.
    [8] L F蒙多尔福.铝合金的组织与性能[J].王祝堂,张振录,郑璇等译.冶金工业出版社,1988:268-748.
    [9] J C Benedyk. Superplastic Forming of Automotive Parts from Aluminum Sheet atReduced Cycle Times[J]. Light Metal Age,2002,60(6):28-31.
    [10]温立民,刘燕,杨永强,等.铝铜异种金属冷压焊及其焊缝接头显微组织和性能[J].焊接技术,2007,3:18-20.
    [11]石红信,邱然锋,涂益民,等.激光滚压焊技术在异种金属连接中的应用[J].电焊机,2010,11:37-41.
    [12]黄翔,薛松柏,韩宗杰.激光软钎焊的研究现状及发展趋势[J].焊接,2006,8:13-17.
    [13]宋建岭,林三宝,杨春利,等.铝与钢异种金属电弧熔-钎焊研究与发展现状[J].焊接,2008,6:6-9.
    [14]薛松柏,董健,吕晓春,等. Al/Cu管异种材料火焰钎焊连接[J].焊接,2003,12:23-25.
    [15]郑远谋.爆炸焊与异种金属的焊接[J].焊接技术,2001,5:25-26.
    [16]王建民,王艳芳,张燕.爆炸焊数值模拟研究进展[J].焊接技术,2010,7:1-4.
    [17]周邦新,蒋有荣. Cu-Al爆炸焊结合层的透射电镜研究[J].金属学报,1994,15:104-108.
    [18] P B Zieve. Low voltage electromagnetic riveter[D]. Ph. D. Dissertation of Univer-sity of Washington,1986:1-140.
    [19]李春峰.高能率成形技术[M].机械工业出版社,2001:1-65.
    [20] A G Mamalis, A Szalay, B Raveau. Near Net-Shape Manufacturing of MetalSheathed Superconductors by High Energy Rate Forming Techniques[J]. Materi-als Science and Engineering B,1998,53(1-2):119-124.
    [21] J M Imbert. Increased Formability and the Efects of the Tool/Sheet Interaction inElectromagnetic Forming of Aluminum Alloy Sheet[J]. MS Thesis of University ofWaterloo,2005:138-145.
    [22] J M Imbert, S L Winkler, M J Worswick. Analysis of the Increased Formabilityof Sheet Metal Formed Using Electromagnetic Forming. SAE Technical Paper[S],2005-01-0082,2005:1-15.
    [23] V J Vohnout, J H Shang, G S Daehn. Improved Formability by Control of StrainDistribution in Sheet Stamping Using Electromagnetic Impulses[C]. Proceedings of1st International Conference on High Speed Forming. Dortmund,2004:211-220.
    [24] V J Vohnout. A Hybrid Quasi-static/dynamic Process for Forming Large MetalParts from Aluminum[D]. Ph. D. Dissertation of Ohio State University,1998:1-20.
    [25] M S Dehra. High Velocity Formability and Factors Afecting It[D]. Ph. D. Disser-tation of The Ohio State University,2006:1-314.
    [26]訾炳涛,巴启先,崔建忠.电磁成形设备的国内外概况[J].锻压机械,1998,33(3):8-10.
    [27] Pradip K, Saha. Electromagnetic Forming of Various Aircraft Components[S]. SAETechnical Paper Series,2005-01-3307:1-11.
    [28] Jun Rui Xu, Hai Ping Yu, JunJia Cui, et al. Formability of AZ31magnesium alloysheets during magnetic pulse bulging[J]. Materials Science and Engineering: A,2013,569:150-158.
    [29] Min LI, Hai-ping YU, Chun-feng LI. Microstructure and mechanical properties ofTi6Al4V powder compacts prepared by magnetic pulse compaction[J]. Transac-tions of Nonferrous Metals Society of China,2010,20(4):553-558.
    [30] M A Bahmani, K Niayesh, A Karimi.3D Simulation of magnetic field distribu-tion in electromagnetic formingsystems with field-shaper[J], Journal of MaterialsProcessing Technology,2009,209(5):2295-2301.
    [31] R N Raoelison, N Buiron, M Rachik, et al. Efcient welding conditions in magneticpulse welding process[J]. Journal of Manufacturing Processes,2012,14(3):372-377.
    [32] V Psyk, D Risch, B L Kinsey, et al. Electromagnetic forming-A review[J]. Journalof Materials Processing Technology,2011,211(5):787-829.
    [33] Haiping Yu, Zhidan Xu, Zhisong Fan, et al.. Mechanical property and microstruc-ture of aluminum alloy-steel tubes joint by magnetic pulse welding[J]. MaterialsScience and Engineering: A,2013,561:259-265.
    [34] R N Raoelison, N Buiron, M Rachik, et al. Study of the elaboration of a practicalweldability window in magnetic pulsewelding[J]. Journal of Materials ProcessingTechnology,2013,213(8):1348-1354.
    [35] Hong Jun Chae, Young Do Kim, Taek-Soo Kim. Microstructure and mechanicalproperties of rapidly solidified Mg alloy powders compacted by magnetic pulsedcompaction (MPC) method[J]. Journal of Alloys and Compounds,2011,509:250-253.
    [36] Qing-juan ZHAO, Chun-ju WANG, Hai-ping YU, et al. Micro bulging of thinT2copper sheet by electromagnetic forming[J]. Transactions of Nonferrous MetalsSociety of China,2011,21:461-464.
    [37] Xiao-hui CUI, Jian-hua MO, Ying ZHU.3D modeling and deformation analysisfor electromagnetic sheet formingprocess[J]. Transactions of Nonferrous MetalsSociety of China,2012,22(1):164-169.
    [38] M. AHMED, S.K. PANTHI, N. RAMAKRISHNAN, et al. Alternative flat coil de-sign for electromagnetic forming using FEM[J]. Transactions of Nonferrous MetalsSociety of China,2011,21(3):618-625.
    [39]陆辛,费仁元,初红艳.复合冲压技术发展前景[J].锻压技术,2001,(6):23-25.
    [40]初红艳.平板件电磁成形的质量保证技术的研究[D].北京工业大学博士论文,2003:1-20.
    [41]周立军,杨学泉.电磁成形技术及其应用[J].水利电力机械,1996,18(1):29-31.
    [42] B Bendjima, K. Srairi. A Coupling Model for Analysing Dynamical Behavioursof an Electromagnetic Forming System[J]. IEEE Transactions on Magnetics,1997,33(2):1638-1641.
    [43] V Psyk, C Beerwald, W. Homberg. Extension of Forming Limits by Using a Pro-cess Combination of Electromagnetic Forming and Hydroforming[C]. Proceedingsof the8th ICTP. Verona, Italy,2005:545-553.
    [44] L’Eplattenier P, Cook G, Ashcraft C, et al. Introduction of an electromagnetismmodule in LS-DYNA for coupled mechanical thermal electromagnetic simulation-s[J]. Steel Research International,2009,80(5):351-358.
    [45]宋福民.管件电磁成形研究[D].哈尔滨工业大学博士学位论文,1996:1-20.
    [46] H. Zhang, M. Murata, H. Suzuki. Efects of Various Working Conditions on TubeBulging by Electromagnetic Forming[J]. Journal of Materials Processing Technol-ogy,1995,48(1):113-121.
    [47] N. Hashimoto. Electromagnetic Forming of Thin-Walled Metal Tube with FineGrooves[C]. Proceedings of the4th ICTP. Beijing, China,1993:533-538.
    [48] Sung Ho Lee, Dong Nyung Lee. Estimation of the Magnetic Pressure in TubeExpansion by Electromagnetic Forming[J]. Journal of Materials Processing Tech-nology,1996,57:311-315.
    [49] W. H. Gourdin. Analysis and Assessment of Electromagnetic Ring Expansion as aHigh-Strain-Rate Test[J]. J. Appl. Phys,1989,65(2):411-422.
    [50] Takatsu N, Kato M, Sato K, et al. High-speed forming of metal sheets by elec-tromagnetic force[J]. Japan Society Mechanical Engineering International Journal(JSME) Series III,1988,31(1):142-148.
    [51]江洪伟,李春峰.电磁校形过程中磁场力耦合模拟分析[J].锻压技术,2006,(6):56-59.
    [52]于海平,李春峰,李忠.基于FEM的电磁缩径耦合场数值模拟[J].机械工程学报,2006,43(7):70-72.
    [53] A.Meriched, M.Feliachi, H.Mohellebi. Electromagnetic Forming of Thin MetalSheets[J]. IEEE Transactions on Magnetics,2000,36(4):1811-1818.
    [54] Fenton G K, Daehn G S. Modeling of electromagnetically formed sheet metals[J].Journal of Materials Processing Technology,1998,75:6-16.
    [55] A. G. Mamalis, E. D. Manolakos. On the Electromagnetic Sheet Metal Forming:Numerical Simulation[C]. Proceedings of the8th International Conference on Nu-merical Methods in Industrial Forming Processes. Columbus, USA,2004:778-783.
    [56] J Imbert, M Worswick, S.Winkler. Analysis of the Increased Formability Electro-magnetic reduction of a pre-formed radius on AA5754sheet[S]. SAE TechnicalPaper Series,2005-01-0082:3-15.
    [57] D. A. Oliveira, M. J. Worswick. Electromagnetic Forming of Aluminium AlloySheet[J]. Journal De Physique, IV:20-21.
    [58] Pradip K, Saha. Electromagnetic Forming of Various Aircraft Components[S]. SAETechnical Paper Series,2005-01-3307:3-13.
    [59]黄尚宇,常志华.板坯电磁成形载荷计算方法及分布特性[J].中国有色金属学报,1998,8(3):441-445.
    [60] Zhenghua Meng, Shangyu Huang, Jianhua Hu, et al. Efects of process parameterson warm and electromagnetic hybrid forming of magnesium alloy sheets[J]. Journalof Materials Processing Technology,2011,211:87-90.
    [61] Huang S Y, Chang Z H, Wang Z R. A Finite Element Analysis of ElectromagneticSheet Metal Expansion on Process[J]. Transactions of Nonferrous Metals Societyof China,1998,8(3):1270-1275.
    [62]于海平,李春峰,江洪伟,等.铝合金筒形件磁脉冲校形研究[C].机械工程学会.2007年年会,2007:433-440.
    [63]江洪伟.管坯电磁校形数值模拟与试验研究[D].哈尔滨工业大学博士论文,2006:1-128.
    [64]赵志衡.管坯电磁胀形磁场力的研究[D].哈尔滨工业大学博士论文,2001:1-100.
    [65]李春峰,赵志衡,李建辉,等.电磁成形磁场力的研究[J].塑性工程学报,2001,8(2):70-72.
    [66] C F Li, Z H Zhao, J H Li. The Efect of Tube Length on Magnetic Pressurein Tube Electromagnetic Bulging[J]. Journal of Materials Processing Technology,2005,166(3):381-386.
    [67] Z H Zhao, C F Li, Y Y Yang. Optimum Location of Tube Blank in ElectromagneticBulging[J]. Journal of Materials Science and Technology,2001,17(1):117-118.
    [68] H P Yu, C F Li. Magnetic Pressure in Electromagnetic Aluminum Tube Com-pression Forming[J]. Transactions of Nonferrous Metals Society of China,2003,13(SPEC):165-169.
    [69] DENG Jianghua, LI Chunfeng. Numerical simulation of magnetic flux and forcein electromagnetic forming with attractive force[J]. Journal of Materials ProcessingTechnology,2007,184(1-3):190-194.
    [70] DENG Jianghua, YU Haiping, LI Chunfeng. Numerical and experimental I nvesti-gation of electromagnetic riveting[J], Materials Science and Engineering: A,2009,499:242-247.
    [71]邓将华,赵志衡,李春峰.管坯长度对电磁成形线圈放电电流的影响[J].材料科学与工艺,2008,16(2):163-166.
    [72]邓将华,李春峰.电磁铆接放电电容值对2A16铆钉变形的影响[J].中国有色金属学报,2007,17(Special1),77-83.
    [73]邓将华,李春峰.电磁铆接铆钉变形分析[J].北京科技大学学报,2006,28:61-63.
    [74]邓将华,李春峰.电磁铆接技术研究概况及发展趋势[J].锻压技术,2006,31(5):10-14.
    [75]邓将华,李春峰.磁脉冲冲孔试验研究[J].锻压技术,2006,31(5):140-143.
    [76]赵志衡,邓将华.电磁成形时磁感应强度数学解析式的实验研究[J].锻压技术,2005,30(4):21-23.
    [77]张守彬,程刚,于连仲,等.电磁成形几个影响因素的研究[J].锻压技术,1988,1:26-29.
    [78]张守彬.电磁成形胀管过程的研究及工程计算方法[D].哈尔滨工业大学博士学位论文,1990:1-90.
    [79]张敏,耿长刚,陆辛.电磁成形过程中电流的测试[J].锻压技术,2005,1:53-58.
    [80]初红艳,费仁元,吴海波.椭圆线圈在平板电磁成形中的应用研究[J].锻压技术,2002,27(5):38-41.
    [81]初红艳,费仁元,陆辛.平板件电磁成形时线圈最小尺寸的计算[J].中国机械工程,2003,14(10):818-822.
    [82]初红艳,费仁元,陆辛.电磁成形铝板时变形高度与成形电压的关系[J].中国机械工程,2003,14(19):1628-1631.
    [83]陈玉珍,李春峰,马宝山.锥形件电磁成形数值模拟及试验研究[J].塑性工程学报,2008,15(5):127-130.
    [84]熊海芝,陈亦伟,宋福民,等.磁脉冲压力连接管件的研究[J].锻压技术,1994,6:31-34.
    [85] H P Yu, C F Li, Z H Zhao. Efect of Field Shaper on Magnetic Pressure inElectromagnetic Forming[J]. Journal of Materials Processing Technology,2005,168(2):245-249.
    [86] H G Powers. Bonding of aluminum by the capacitor discharge magnetic formingprocess[J]. Welding J,1967,46-56:507-510.
    [87] M Grin, F Marchal, D Pruss. Le magnesoudage[J]. Revue de Metallurgie,1970,62:125-136.
    [88] K Tamaki, M Kojima. Factors afecting the result of electromagnetic welding ofaluminum tube[J]. Trans. Japan Welding Soc,1988,19:53-59.
    [89] I Masumoto, K Tamaki, M Kojima. Electromagnetic welding of aluminum or dis-similar metal cores[J]. Trans. Japan Welding Soc,1985,16:110-116.
    [90] M Kojima, K Tamaki, T Furuta. Efect of impact angle on the result of electromag-netic welding of aluminum[J]. Japan Welding Soc,1983,52:169-177.
    [91] A Ben-Artzy, A Stern, N Frage, et al. Interface phenomena in alumini-um–magnesium magnetic pulse welding[J]. Science and Technology of Weldingand Joining,2008,13(4):402-408.
    [92] J Y Shim, B Y Kang, I S Kim. A STUDY ON DISTRIBUTIONS OF ELECTRO-MAGNETIC FORCE OF THE DISSIMILAR METAL JOINING IN MPW USINGA FEM[J]. Advanced Materials Research,2010,83-86:214-221.
    [93] M Kimchi, H Shao, W cheng. Magnetic pulse welding al tubes to steel bars[J].Welding in the world,2002,48:19-22.
    [94] S D Korea, P P Datea, S V Kulkarnib. Efect of process parameters on electro-magnetic impact welding of aluminum sheets[J]. International Journal of ImpactEngineering,2007,34:1327-1341.
    [95] S D Korea, P Dhanesh, S V Kulkarni. Numerical modeling of electromagnet-ic Welding[J]. International Journal of Applied Electromagnetics and Mechanics,2010,32:1-19.
    [96] S D Kore, P P Date, S V Kulkarni. Electromagnetic Impact Welding of Al-to-Al-LiSheets[J]. Journal of Manufacturing Science and Engineering,2009,131:1-4.
    [97] S D Kore, J Imbert, M J Worswick. Electromagnetic impact welding of Mg to AlSheets[J]. Science and Technology of Welding and Joining,2009,14(6):549-553.
    [98] A Elsen, M Ludwig, R Schaefer. Fundamentals of EMPT-Welding[C].4th Interna-tional Conference on High Speed Forming,2010:117-126.
    [99] Zhang P, M Kimchi, M Shao. Analysis of the electromagnetic impulse joiningprocess with a field concentrator[C]. AIP Conference Proceedings,2004:1-12.
    [100] R Neugebauer, P Blau, H Braunlich, et al. The Potential for Electromagnetic MetalForming for Plane (Car Body) Components[C]. Proceedings of1st InternationalConference on High Speed Forming. Dortmund,2004:269-274.
    [101] Oosterkamp L D, Ivankovic A, Venizelos G. High strain rate properties of selectedaluminum alloys[J]. Materials Science and Engineering A,2000,278:225-235.
    [102] Roulin M. Strength and structure of furnace-brazed joints between aluminum andstainless steel[J]. Welding Journal,1999,78(5):151-155.
    [103] M. Ylmaza, Interface properties of aluminum steel friction welded components[J].Materials Characterization,2003,49:421-429.
    [104] Jiromaru Tsujino, Kazuaki Hidai, Atsushi Hasegawa. Ultrasonic butt welding of a-luminum, aluminum alloy and stainless steel plate specimens[J]. Ultrasonics,2002,40:371-374.
    [105] Grignon F, Benson D, Vecchio KS, Meyers MA. Explosive welding of aluminumto aluminum: analysis, computations and experiments[J]. Int J Impact Eng,2004,30:1333-1351.
    [106] Kacar R, Acarer M. An investigation on the explosive cladding of316L stainlesssteel-din-P355GH steel[J]. J Mater Process Technol,2004,152:91-96.
    [107] Yan Y B, Zhang Z W, Shen W, et al. Microstructure and properties of magnesiumAZ31B aluminum7075explosively welded composite plate[J]. Mater Sci Eng A,2001,527:2241-2245.
    [108] Mamalis A G, Szalay A, Vaxevanidis N M, et al. Fabrication of bimetallic rods byexplosive cladding and warm extrusion[J]. J Mater Process Technol,1998,83:48-53.
    [109] Kawamura Y. Liquid phase and supercooled liquid phase welding of bulk metallicglasses[J]. Mater Sci Eng A,2004,375-377:112-119.
    [110] Kahraman N, Gulenc B. Microstructural and mechanical properties of Cu-Tiplatesbonded through explosive welding process[J]. J Mater Process Technol,2005,169:67-71.
    [111]郑庆平.爆炸焊、熔化焊及压力焊的连接特征[J].材料开发与应用,2000,(6):28-33.
    [112]郑远谋.爆炸焊与异种金属的焊接[J].焊接技术,2001,(5):25-26.
    [113]王建民,王艳芳,张燕.爆炸焊数值模拟研究进展[J].焊接技术,2010,7:1-4.
    [114]藤田昌大,张丽英.爆炸焊及其应用[J].国外舰船技术,1982,(4):6-15.
    [115]久保田彰,韦秀云.爆炸焊复合材料[J].国外舰船技术,1982,(3):35-49.
    [116]刘持森,张宜.爆炸焊不锈复合钢板结合面裂纹的判定[J].热加工工艺,2006,(2):65-66.
    [117] Ehsan Zamani, Gholam Hossien Liaghat. Explosive welding of stainless steel-carbon steel coaxial pipes[J]. J Mater Sci,2012,47:685-695.
    [118]王建民,朱锡,刘润泉.爆炸焊接工艺对铝-钢复合板界面性能的影响[N].武汉理工大学学报,2007,29(7):103-105.
    [119]刘荣,汪洋,李平仓.爆炸焊接小直径铝/不锈钢复合管的研究[J].稀有金属材料与工程,2008,37:643-648.
    [120]赵海鸥. LS-DYNA动力分析指南[M].兵器工业出版社,2003:1-140.
    [121]李裕春,时党勇,赵远. ANSYS10.0/LS-DYNA基础理论与工程实践[M].中国水利水电出版社,2006:72-112.
    [122]蒋浩民,陈新平,吴华.有限元仿真技术在板材成形中的应用[J].金属成形工艺,2000,18:35-39.
    [123]金建铭.电磁场有限元方法[M].西安电子科技大学出版社,1998:1-7.
    [124] N N Dioh, A Ivancovic, P S Leevers, et al. Stress Wave Propagation Efects inSplit Hopkinson Pressure Bar Tests[J]. Mathematical and Physical Sciences,1995,449:187-204.
    [125] Gorham D A. An efect of specimen size in the high-strain rate compression test[J].Journal De Physique III,1991,1:411-418.
    [126]邵丙璜,张凯.爆炸焊接原理及其工程应用[M].大连理工大学出版社,1987:1-56.
    [127]奥尔连科.爆炸物理学[M].北京科学出版社.2011:546-548.
    [128] Mala Seth, Vincent J Vohnout, Glenn S Daehn. Formability of steel in high velocityimpact[J]. Journal of Materials Processing Technology2005:390-400.
    [129] A Ben-Artzy, A Sternb, N Frage. Wave formation mechanism in magnetic pulsewelding[J]. International Journal of Impact Engineering2010,37:397-404.
    [130]章梓雄.粘性流体力学[M].清华大学出版社.1998:67-70.
    [131]李一磊.兆巴冲击压力下铁和铝粘滞性实验研究[D].2009:60-72.
    [132]李德元,杨成,张忠礼等.碳钢热喷涂渗铝互扩散系数计算[J].2008,30:288-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700