用户名: 密码: 验证码:
粉末冶金制备Nb-W难熔合金的高温氧化与压缩变形行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用机械合金化与真空热压烧结相结合的技术制备了Nb-xW(x=10、20、30wt.%)、Nb-28.5W-5Cr、Nb-27W-10Cr和Nb-27W-10Si难熔合金,利用三因素三水平正交实验研究了Nb-W合金机械合金化过程中球磨时间,球料比和固液比等球磨参数对混合粉体质量的影响,制定了Nb-W、Nb-W-Cr和Nb-W-Si合金热压烧结工艺,采用烧结-锻造短流程工艺成形了Nb-W合金前缘模拟件,并对热压后的组织和室温力学性能进行了研究,探讨了Nb-W合金的高温氧化行为以及合金化元素Cr和Si对其氧化行为和室温力学性能的影响,考察了Nb-W合金高温压缩变形行为,并建立了Nb-W合金的热加工图。
     机械合金化研究结果表明,球磨粉末的颗粒尺寸主要由固液比控制,而杂质Fe含量则主要受球料比和球磨时间的影响,三个球磨参数综合作用着粉体的细化及形貌演变过程。球磨过程中,粉体发生了合金化,由粗粉的Nb(W)ss和W(Fe)ss逐步转变为细粉的Nb(W, Fe)ss和W(Fe)ss,最终转化成W(Nb, Fe)ss和Fe2Nb。综合考虑以上因素确定制备Nb-W复合粉体最优的球磨参数为:球磨时间为24h,球料比为10:1,固液比为1:0.2。
     分别在1800℃、1700℃、1600℃温度下,施加30MPa压力,保温90min制备了致密的Nb-W、Nb-W-Si和Nb-W-Cr合金,合金的组织分别为单相Nbss,Nbss+Wss+Nb_5Si_3+Nb_3Si和Nbss+NbCr_2。Nb-W合金的维氏硬度和弯曲强度随着W含量的增加逐渐增高,而室温断裂韧性先升高而后降低,综合考虑W含量对室温力学性能的影响,确定Nb-W合金中最佳W含量为30wt.%。在Nb-30W合金中分别添加Cr、Si元素后,合金的维氏硬度升高,而弯曲强度和室温断裂韧性降低,这是添加合金元素后合金中分别出现的硬脆NbCr_2和Nb_5Si_3、Nb_3Si导致的。采用烧结-锻造短流程工艺在1800℃条件下成形了Nb-30W合金前缘模拟件,零件成形质量好,内部组织致密,其室温力学性能与热压的Nb-30W合金相同。
     Nb-W合金在1000℃恒温氧化时, Nb-10W合金氧化膜从基体剥离,而Nb-20W和Nb-30W合金不同程度的出现了“粉化”氧化现象,均体现了较弱的抗氧化性能。1300℃恒温氧化结果表明,随着W含量的增加,Nb-W合金的氧化增重逐渐降低,抗氧化性能提高,但三个成分Nb-W合金氧化膜均与基体不同程度分离,不能作为抗氧化材料使用。在Nb-30W合金中分别添加10wt%的Cr、Si后,由于氧化膜中出现了CrNbO_4和SiO_2保护相,1000℃氧化时未出现“粉化”氧化现象,1300℃氧化时氧化膜致密且与基体结合良好,抗氧化性能得到改善;添加5wt.%Cr后,1000℃亦未出现“粉化”氧化,但其组织在1300℃时已由两相Nbss和NbCr_2转变成单相Nbss,抗氧性能下降。
     分别在1000℃、1300℃、1400℃、1500℃和1600℃进行Nb-W合金高温压缩变形,研究了其在不同应变速率0.001s-1,0.01s-1和0.1s-1下的变形行为,建立了热变形应力应变之间的关系,绘制了应变量为0.3的Nb-20W合金的高温压缩热加工图。结果显示,Nb-20W合金在1300~1550℃温度范围内,10~(-3)~10~(-1)s~(-1)应变速率下,热加工性良好。
In the present research, Nb-xW(x=10,20,30wt.%), Nb-28.5W-5Cr,Nb-27W-10Cr and Nb-27W-10Si refractory alloys were prepared by mechanicalalloying and uniaxial hot pressing, and a model of leading edge were fabricated bysinter-forging short process. The effects of ball-milling parameters on the qulity ofNb-W powders were quantitatively investigated using orthogonal test of threefactors at three levels. Meanwhile, the hot-pressed sintering processes of Nb-W,Nb-W-Cr and Nb-W-Si alloys were drawn up, the microstructure and mechanicalproperties at room temperature of hot pressed materials were studied. Moreover,the high temperature oxidation behaviors of Nb-W alloy and the effect of Cr and Sion the oxidation behaviors of Nb-W alloy have been studied. The high temperaturecompressive deformation behaviors of Nb-W alloys were investigated and theprocessing maps were drawn.
     Results of the mechanical alloying indicated that the particle size of milledpowders was mainly dominated by the solid-to-liquid ratio. The content ofimpurity Fe was mainly determined by the ball-to-powder ratio and the millingtime. The refining process and morphology evolution of the powder were affectedsynthetically by all three parameters. The results of mechanical alloying showNb(W)ss and W(Fe)ss phases in the coarse powders transformed to Nb(W, Fe)ssand W(Fe)ss, and eventually to the W(Nb, Fe)ss and Fe2Nb in the refined powders.According to the analysis above, the best paramters were choosed to be as follows,the milling time of24h, ball-to-powder ratio of10:1and solid-to-liquid ratio of1:0.2.
     Nb-W, Nb-W-Si and Nb-W-Cr alloys were hot pressed at1800℃,1700℃and1600℃for90min with pressure of30MPa, respectively. Microstructures ofthree alloys consist of single phase Nbss, Nbss+Wss+Nb_5Si_3+Nb_3Si andNbss+NbCr_2, respectively. The vicker hardness and flexural strength of Nb-Walloys increased and the room temperature fracture toughness decreased with theincreasing of W content. Based on mechanical test, Nb-W alloy with30wt.%Wobtained the best mechanical properties at room temperature. Additions of Cr andSi increased the vicker hardness and reduced the flexural strength and roomtemperature fracture toughness of Nb-30W alloys, which were caused by the hardand brittle NbCr_2in Nb-W-Cr, Nb_5Si_3and Nb_3Si in Nb-W-Si alloys, respectively.Moreover, a model of Nb-30W leading edge was successfully fabricated bysinter-forging short process at1800℃. The model displays a good surface qualityand high relative density. And the model contained the similar mechanical properties as well as the hot-pressed Nb-30W alloy.
     Nb-W alloys were exposed at1000℃, the scale on Nb-10W alloy spalledfrom the base metal and the―pest‖phenomenon appeared the scales on Nb-20Wand Nb-30W alloys. The results at1000℃indicating the poor oxidation resistance.In addition, the results of isothermal oxidation at1300℃indicated that the masschange of Nb-W alloys reduced, the oxidation resistance was improved withincreasing of W contents. The scales of three Nb-W alloys spalled from the basemetal show the poor oxidation resistance. However, the additions of10wt%Cr and10wt%Si into Nb-30W alloy result in the formation of the protective phaseCrNbO_4and SiO_2. The―pest‖phenomenon disappeared at1000℃. The relativedense scales combined well with the alloy's matrix at1300℃. The results aboveindicate that addition of10wt%Cr and10wt%Si into Nb-30W alloy provide thegood oxidation resistance. Meanwhile, after5wt%Cr was added into Nb-30Walloy, the―pest‖phenomenon also disappeared at1000℃and showed the goodoxidation resistance. But the oxidation resistance still descreased since two phasesNbss+NbCr_2were transformed to single phase Nbss at1300℃.
     Nb-W alloys were compressed at1000℃,1300℃,1400℃,1500℃and1600℃, respectively. The deformation behaviors were studied in the differentstrain rates of0.001s-1,0.01s-1and0.1s-1. Meanwhile, the stress-strain relations ofhot deformation were established. The processing maps (=0.3) of hot compressingof Nb-20W alloy were drawn. The results show the good hot workability in therange of1300~1550℃at the strain rate of10~(-3)~10~(-1)s~(-1) for Nb-20W alloy.
引文
[1]张永刚,韩雅芳,陈国良.金属间化合物结构材料[M].北京:国防工业出版社,2001:905-908.
    [2]彭超群,黄伯云,贺跃辉. Ni-Al系、Fe-Al系和Ti3Al金属间化合物研究进展[J].特种铸造及有色合金,2001,6:27-29.
    [3] Kim W Y. Ordered Intermetallic Alloys,PartIII:Gamma Titanium Aluminides[J]. JOM,1994,46:30-39.
    [4] Dimiduk D M, Martin P L, Kim W Y. Microstructure Development in GammaAlloy Mill Products by Thermomechanical Processing[J]. Materials Science andEngineering A,1998,243(1-2):66-76.
    [5] Bewlay B P,Jackson M R,Zhao J C,Subramanian P R,Mendiratta M G,Lewandowski J J. Ultrahigh temperature Nb-Silicide based composites[J]. MRSBull,2003,9:646-653.
    [6]肖来荣,易丹青,殷磊,李洪武.铌及铌合金高温涂层研究进展[J].材料导报,2004,18(1):13-15.
    [7]冯景苏.铌应用的新进展[J].稀有金属材料与工程,1994,23(3):7-9.
    [8]曲士显,王荣明,韩雅芳. Nb-Si系金属间化合物的研究进展[J].材料导报,2002,16(4):31-33.
    [9] Subramanian P R,Mendiratta G M,Dimiduk D M. The Development ofNb-based Advanced Intermetallic Alloys for Structural Applications [J]. JOM,1996(1):33-35.
    [10]屈乃琴.钽铌及其合金与应用[J].稀有金属与硬质合金,1998,133(6):48-50.
    [11]黄虹,黄金昌.航空航天推进系统用铌基复合材料[J].稀有金属与硬质合金,2009,158(9):61-64.
    [12]王镐.高温铌合金[J].稀有金属快报,1999,6:9-12.
    [13] Rodhammer P,Knabl W,Semprimoschnig C. Protection of Nb-and Ta-BasedAlloys against High Temperature Oxidation[J]. Int J Refractory Metals and HardMateris,1993-1994,12:283-286.
    [14] Sims C T. Niobium in Superalloys. High Temperature Technology[J],1984,2(4):185-187.
    [15] Jackson M R, Bewlay B P, Rowe R G. High-Temperature RefractoryMetal-Intermetallic Composites[J]. JOM,1996,1:39-44.
    [16]殷磊,易丹青,肖来荣等.铌及铌合金高温抗氧化研究进展[J].材料保护,2003,36(8):4-8.
    [17] Iringty J D, Singh P M, Kwandow ski J J. Environmental Effects onDuctile-Phase Toughening in Nb5Si3-Nb Composites[J]. JOM,1992,48(1):36-41.
    [18] Bewlay B P,Whiting P W,Davis A W,Briant C L. Creep Mechanisms inNiobium-Silicide Based in-situ Composites[J]. MRS Symposium Proceedings,1999,552:6111-6115.
    [19] Sikkai V K,Rosa C J. High Temperature Oxidation of Nb-10at.%W Alloy[J].Corrosion Science,1980,20:1221-1239.
    [20] Maria del Pilar Moricca,Varma S K. Isothermal Oxidation Behaviour ofNb-W-Cr Alloys[J]. Corrosion Science,2010,52:2964-2972.
    [21] Sha J B,Hiraia H,Tabaru T,Kitahara A,Ueno H,Hanada S. High-TemperatureStrength and Room-Temperature Toughness of Nb-W-Si-B Alloys Prepared byArc-melting[J]. Materials Science and Engineering A,2004,364:151-158.
    [22] Kim W Y,Tanaka H,Kim M S,Hanada S. High Temperature Strength andRoom Temperature Fracture Toughness of Nb-Mo-W Refractory Alloys withand without Carbide Dispersoids[J]. Materials Science and Engineering A,2003,346:65-74.
    [23] Darolia R,Walston W S,Nathal M V. NiAl Alloys for Turbine Airfoils.Supperalloys[J].1996,18(3):561-570.
    [24] Botcharova E, Freudenberger J, Schultz L. Cu-Nb Alloys Prepared byMechanical Alloying and Subsequent Heat Treatment[J]. Journal of Alloys andCompounds,2004,365:157-163.
    [25] Botcharova E,Heilmaier M,Freudenberger J,Drew G,Kudashow D,MartinU, Schultz L. Supersaturated Solid Solution of Niobium in Copper byMechanical Alloying[J]. Journal of Alloys and Compounds,2003,351:119-125.
    [26] Yang J Y,Wu J S,Hua W. Study on Mechanical Alloying and Subsequent HeatTreatment of the Ti-Si System[J]. Physical B,2000,279:241-245.
    [27] Juárez R,Su ol J J,Berlanga R,Bonastre J,Escoda L. The Effects of ProcessControl Agents on Mechanical Alloying Behavior of a Fe-Zr Based Alloy[J].Journal of Alloys and Compounds,2007,434-435:472-476.
    [28] Zhang Z W,Zhou J E,Xi S Q,Ran G,Li P L,Zhang W X. Formation ofCrystalline and Amorphous Solid Solutions of W-Ni-Fe Powder duringMechanical Alloying[J]. Journal of Alloys and Compounds,2004,370:186-191.
    [29] Kim Y D,Chung J Y,Kim J,Jeon H. Formation of Nanocrystalline Fe-CoPowders Produced by Mechanical Alloying[J]. Materials Science andEngineering A,2000,291:17-21.
    [30] Dymek S, Lorent A, Wróbel M, Dollar A. Mechanical Alloying andMicrostructure of a Nb-20%V-15%Al Alloy[J]. Materials Characterization,2001,47:375-381.
    [31] Lou T P,Ding B Z,Gu X J,Li G S,Hu Z Q. Mechanical Alloying of Fe-Nb-CMaterials[J]. Materials Letters,1996,28:129-132.
    [32] Su ol J J,González A,Saurina J,Escoda Ll,Bruna P. Thermal and StructuralCharacterization of Fe-Nb-B Alloys Prepared by Mechanical Alloying[J].Materials Science and Engineering A,2004,375-377:874-880.
    [33] Lei R S,Wang M P,Guo M X,Li Z,Dong Q Y. Microstructure Evolution inNanocrystalline Cu-Nb Alloy during Mechanical Alloying[J]. Trans. NaoferrousMet. Soc. China,2007,17:603-607.
    [34] Botcharova E,Freudenberger J,Schultz L. Mechanical Mlloying of Copper withNiobium and Molybdenum[J]. Journal of Materials Science,2004,39:5287-5290.
    [35] Islam S. Humail,Qu X H,Jia C C,Qin M L,He X B. Morphology andMicrostructure Characterization of95W-3.5Ni-1.5Fe Powder Prepared byMechanical Alloying[J]. Journal of University of Science and TechnologyBeijing,2006,13(5):442-445.
    [36] Xiao X,Lu S Q,Hu P,Huang M G,FU M W. Effect of Ball Milling Time onMicrostructure and Properties of Laves Phase NbCr2Alloys Synthesized by HotPressing[J]. Trans. Naoferrous Met. Soc. China,2009,19:545-551.
    [37] Yan J W,Liu Y,Peng A F,Lu Q G. Fabrication of Nano-crystalline W-Ni-FePre-alloyed Powders by Mechanical Alloying Technique[J]. Trans. NaoferrousMet. Soc. China,2009,19:711-717.
    [38] Li X Q, Xin H W, Hu K, Li Y Y. Microstructure and Properties o Fultra-fineTungsten Heavy Alloys Prepared by Mechanical Alloying and Electric CurrentActivated Sintering[J]. Trans. Naoferrous Met. Soc. China,2010,20:443-449.
    [39]王皓傅,正义,衰润章.球磨条件对机械合金化制备W-Cu合金的影响[J].中国有色金属学报,1998,8:316-319.
    [40] Wang X L, Wang G F, Zhang K F. Effect of Mechanical Alloying onMicrostructure and Mechanical Properties of Hot-pressed Nb-16Si Alloys[J].Materials Science and Engineering A,2010,527:3253-3258.
    [41] Zheng H Z,Lua S Q,Donga X J,Ouyanga D L. Effect of Mechanical Alloyingon Microstructure, Mechanical Properties and Oxidation Behavior of HotPressed Nanocrystalline Cr-33Nb Alloys[J]. Materials Science and EngineeringA,2008,496:524-529.
    [42] Nie X W,Lu S Q,Wang K L. Effect of Mechanical Alloying on The Structureand Properties of NbCr2Laves Phase Fabricated by Hot Pressing[J]. PowderTechnology,2008,184:333-336.
    [43] Arik H. Effect of Mechanical Alloying Process on Mechanical Properties ofα-Si3N4Reinforced Aluminum-Based Composite Materials[J]. Materials andDesign,2008,29:1856-1861.
    [44] Jia D C,Zhou Y,Lei T C. Microstructure and Mechanical Properties ofAl-12Ti-6Nb Repared by Mechanical Alloying[J]. Materials Science andEngineering A,1997,232:183-190.
    [45] Cui B Z,Sun X K,Sui Y C,Geng D Y,Zhang Z D. Phase Transformation andMagnetic Properties of Nd-Fe-V-Nb Alloys Prepared by Mechanical Alloying[J].Journal of Magnetism and Magnetic Materials,2002,250:212-218.
    [46]王晓丽.粉末冶金法制备Nb-Si难熔合金及其组织演变与性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:6.
    [47]刘继胜.微波烧结工作原理及工业应用研究[J].机电产品开发与创新,2007,20(2):20-24.
    [48] Zhou C S,Yi J H,Luo S D. Effect of Meating Rate on The Microwave SinteredW-Ni-Fe Heavy Alloys[J]. Journal of Alloys and Compounds,2009,482:6-8.
    [49] Upadhyaya A,Tiwari S,Mishra K P. Microwave Sintering of W-Ni-Fe alloy[J].Scripta Mater,2007,56:5-7.
    [50] Agrawal D,Cheng J,Seegopau P. Grain Growth Control in Microwave Sinteringof Ultrafine WC-Co Composite Powder Compacts[J]. Powder Metal,2000,43(1):15-18.
    [51]张久兴,刘科高,周美玲.放电等离子烧结技术的发展和应用[J].粉末冶金技术,2002,20(3):12-14.
    [52]梅雪珍,贾成厂,尹法章. W-Ni-Fe高比重合金的SPS烧结行为[J].北京科技大学学报,2007,29(5):475-478.
    [53]余洋,朱丽慧刘一雄.放电等离子烧结和真空烧结超细WC-12Co硬质合金[J].上海金属,2008,30(5):16-18.
    [54]李元元,张建兵,李小强. SPS烧结制备WC-6Co-1.5Al硬质合金的研究[J].粉末冶金技术,2006,24(3):208-210.
    [55]李志林,朱丽慧,刘一雄.压力对放电等离子烧结硬质合金性能的影响[J].粉末冶金工业,2009,19(1):16-18.
    [56] Bilge Y,Hasan M. Spark Plasma Sintering of Co-WC Cubic Boron NitrideComposites[J]. Materials Letters,2009,63:1041-1045.
    [57]余文焘,欧阳鸿武,杨家林.粉末选区激光烧结——一种新型粉末冶金成形技术[C].北京,2006,30:80-83.
    [58] Kumar S. Manufacturing of WC-Co Moulds Using SLS Machine[J]. MaterialsProcess Technology,2009,209:3840-3848.
    [59] Burkhanov G S,Efimov Y V. Effect of Carbon on the Tensile Properties ofNb-Mo-W Alloys at1773K[J]. Journal of Alloys and Compounds,2002,333:170-173.
    [60]付洁,郑欣,李中奎,张廷杰.铌基合金高温强化的研究[J].稀有金属,2008,325:548-551.
    [61]郑欣,吕宏军,李中奎,王琪,袁晓波,付洁.铌合金中的碳化物[J].稀有金属,2006,30(12):117-119.
    [62] Sheftel E N,et al. Niobium-base alloys. International Journal of RefractoryMetals and Hard Materials[J]. Journal of Refractory Metals&Hard Materials,1993,12(5):303-314.
    [63] Bukhanovsk V V. The Effect of Thermal Treatment on the MechanicalProperties of Low-Alloyed Molybdenum Alloys over the Wide Range ofTemperature[J]. Metalurgija,2003,42(2):85-88.
    [64] Bukhanovsk V V. Effect of silicide ceramic coatings on the high temperaturestrength and ductility of Niobium alloy of the Nb-W-Mo-Zr system[J]. MetalScience and Heat Treatment,2004,46(1):78-84.
    [65] Kim W Y,Tanaka H,Kasama A,Hanada S. Effect of Carbon on the TensileProperties of Nb-Mo-W Alloys at1773K[J]. Journal of Alloys andCompounds,2002,333:170-178.
    [66]郑欣,陈绍楷,李中奎,张廷杰,付洁,王东辉. Nb-W-Mo-Zr-C高温合金中第二相的形成演化与力学性能[J].稀有金属,2009,33:1-5.
    [67]王东辉,郑欣,李中奎,张廷杰,白润,夏明星,付洁. Nb-W-Mo-Zr-C高温合金的时效强化[J].稀有金属材料与工程,2008,37:618-621.
    [68] Bewlay B P,Jackson M R. The Balance of Mechanical and EnvironmentalProperties of a Multi-element Niobium-Niobium Silicide-Based in-situComposite[J]. Metallurgical and Materials Transactions A,1996,27A(12):3801-3808.
    [69] Zheng P,Sha J B,Liu D M. Effect of Hf on High Temperature Strength andRoom Temperature Ductility of Nb-15W-0.5Si-2B alloy[J]. Materials Scienceand Engineering A,2008,483-484:656-659.
    [70]谢锡善.我国高温材料的应用与发展[J].机械工程材料,2004,28(4):2-8.
    [71] Kim W Y,Tanaka H,Hanada S. Effect of W Alloying and NbC Dispersion onHigh Temperature Strength at1773K and RoomTemperature Fracture Toughnessin Nb5Si3/Nb in-situ Composites[J]. Materials Transactions,2002,43(6):1415-1418.
    [72] Chan K S. Alloying effects on fracture mechanisms in Nb-based intermetallicin-situ composites[J]. Materials Science and Engineering A,2002,329-331:513-522.
    [73] Zheng P, Sha J B, Liu D M, Gong S K, Xu H B. Effect of Hf onHigh-Temperature Strength and Room-Temperature Ductility ofNb-15W-0.5Si-2B Alloy[J]. Materials Science and Engineering A,2008,483-484:656-659.
    [74]姜传海,周健威,叶长青,吴建生.铌及铌合金的氧化行为[J].机械工程材料,2003,27(12):1-3.
    [75]白新德,邱钦伦,甘东文,等.铌在空气中的氧化动力学及成膜机制的研究[J].清华大学学报,1998,38(6):71-73.
    [76] Hellwig O,Zabel H. Oxidation of Nb(110) Thin Films on a-plane SapphireSubstrates:an X-ray Study[J]. Physica B,2000,283:228-231.
    [77]中国腐蚀与防护学会.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社,1995:150-190.
    [78]任家松,郭喜平.合金化及涂层技术提高铌基合金的抗高温氧化性能[J].稀有金属与硬质合金,2006,34(2):44-47.
    [79] Miller G L,Cox F G. Development of oxidation resistance of some refractorymetals[J]. J. Less-Common Metals,1960,2:207-222.
    [80] Semmel J W, J R. Refractory Metals and Alloys. Metallurgical SocietyConferences[C]. Detroit: M. Simcnsnen and J. J. Harwood,1969:11-14.
    [81]郭兴家.钛,铬,铝,元素对铌-钨-钼合金抗氧化与强度影响的研究[J].稀有金属合金加工,1975,2:28-46.
    [82] Julieta Ventura,Benedict Portillo,Varma S K. Oxidation Resistant NbCr2Phasein Nb-W-Cr System[J]. Journal of Alloys and Compounds,2009,476:257-262.
    [83] Maria del Pilar Moricca,Varma S K. Isothermal Oxidation Behaviour ofNb-W-Cr Alloys[J]. Corrosion Science,2010,52:2964-2972.
    [84] Loria E A.用粉末冶金工艺制备的铌基高温合金[J].国外金属材料,1998,(7):51-54.
    [85]赵群,于永泗.铌基合金的抗高温氧化性能研究[J].材料导报,2003,17(2):9-11.
    [86] Bewlay B P,Jackson M R,Zhao J C,Subramanian P R. A review of very hightemperature Nb-Silicid based composites[J]. Metall.Trans. A,2003,34:2043-2052.
    [87] Subramanian P R,Mendiratta M G,Dimiduk D M,Stucke M A. Advancedintermetallic alloys-beyond gamma titanium aluminides[J]. Materials Scienceand Engineering A,1997,239:1-13.
    [88] Geng J,Panos Tsakiropoulos,Shao G S. Oxidation of Nb-Si-Cr-Al in situComposites with Mo, Ti and Hf Additions[J]. Materials Science andEngineering A,2006,441:26-38.
    [89] Behrani V,Thom A J,Kramer M J,Akinc M. Microstructure and oxidationbehavior of Nb-Mo-Si-B alloys[J]. Intermetallics,2006,14:24-32.
    [90] Geng J,Panos Tsakiropoulos. A study of the Microstructures and Oxidation ofNb-Si-Cr-Al-Mo in situ Composites Alloyed with Ti, Hf and Sn[J].Intermetallics,2007,15:382-395.
    [91] Ma C L,Li J G,Tan Y,Tnaka R,Hanada S. Effect of B addition on themicrostructures and mechanical properties of Nb-16Si-10Mo-15W alloy[J].Materials Science and Engineering A,2004,384:377-384.
    [92] Murakami T,Sasaki S,Ichikawa K,Kitahara A. Oxidation resistance of powdercompacts of the Nb-Si-Cr system and Nb3Si5Al2matrix compacts prepared byspark plasma[J]. Intermetallics,2001,9:629-635.
    [93]翟金坤.金属高温腐蚀[M].北京:北京航空航天大学出版社,1994:4-8.
    [94]中信微合金化技术中心编译.铌·科学与技术[M].北京:冶金工业出版社,2003:78-81.
    [95] Murakami T,Sasaki S,Ichikawa K,Kitahara A. High temperature oxidation andpest of Mo(Si,Al)2[J]. Intermetallics,2001,9:629-635.
    [96] David Alvarez,Varma S K. Characterization of Microstructures and OxidationBehavior of Nb-20Si-20Cr-5Al Alloy[J]. Corrosion Science,2011,53:2161-2167.
    [97] Zhao J C,Jackson M R,Peluso L A. Evaluation of phase relations in theNb-Cr-Al system at1000℃using a diffusion-multiple approach[J]. J. Phase.Equilib. Diffus.,2004,25(2):152-158.
    [98] Zhao J C,Peluso L A,Jackson M R,Tan L. Phase diagram of the Nb-Al-Siternary system[J]. Journal of Alloys and Compounds,2003,360:183-188.
    [99]高丽梅. Nb2Si基共晶自生复合材料的定向凝固组织特征及性能[D].西安:西北工业大学硕士学位论文,2005:1.
    [100] Feng C,Zhu S,Li M,Xin L,Wang F. The effect of Hf on the oxidation andcorrosion behavior of Ti0.7Al0.3N coating prepared by arc-ion plating[J].Oxidation of Metals,2009,71:63-76.
    [101] Alma Vazquez,Varma S K. High-Temperature Oxidation Behavior of Nb-Si-CrAlloys with Hf Additions[J]. Journal of Alloys and Compounds,2011,509:7027–7033.
    [102] Wang J,Guo X P,Guo J M. Effects of B on the Microstructure and OxidationResistance of Nb-Ti-Si-based Ultrahigh-temperature Alloy[J]. Chinese Journalof Aeronautics,2009,22:544-550.
    [103] Vikas Behrani, Andrew J. Thom, Matthew J. Kramer, Mufit Akinc.Microstructure and Oxidation Behavior of Nb-Mo-Si-B alloys[J].Intermetallics,2006,14:24-32.
    [104] Benedict I. Portillo,Varma S K. Oxidation Behavior of Nb-20Mo-15Si-5B-20TiAlloy in Air from700to1300℃[J]. Journal of Alloys and Compounds,2010,497:68-73.
    [105]喻吉良.超细晶Nb-Si-Fe难熔合金制备及超塑性[D],哈尔滨:哈尔滨工业大学博士论文,2008:9.
    [106]张德尧,肖联贞. C-103铌合金推力室模锻工艺研究[J].稀有金属材料与工程,1986,1:10-13.
    [107]张德尧,肖联贞. C-103铌合金环件工艺研究[J].稀有金属材料与工程,1985,5:8-11.
    [108]王晓丽,王国峰,张凯锋.细晶Nb-16Si难熔合金的制备及烧结-锻造短流程成形[J].金属学报,2009,45(9):1030-1034.
    [109] Enayati M H, Sadeghian Z, Salehi M, Saidi A. The effect of millingparameters on the synthesis of Ni3Al intermetallic compound by mechanicalalloying[J]. Materials Science and Engineering A,2004,375-377:809-811.
    [110] Murty B S, Ranganathan S. Novel materials synthesis by mechanicalalloying[J]. International Materials Reviews,1998,43:101-141.
    [111] Suryanarayana C. Mechanical alloying and milling[J]. Progress in MaterialsScience,2001,46:1-184.
    [112]姬振豫.正交设计的方法与理论[M].北京:世界科技出版社,2001:29-31
    [113]周本濂.材料制备中的非平衡过程[J].材料研究学报,1997,11(6):576-580.
    [114] Chicinas,Pop V,Isnard O. Synthesis of the Superalloy Powders by MechanicalAlloying[J]. Journal of Materials Science,2004,39:5305-5309.
    [115]肖骁,潘炳,曾子高,肖松文.湿法机械球磨制备片状镍粉研究[J].中国粉体技术,2007,3:1-4.
    [116]卡恩,雷廷权.金属与合金工艺[M].北京:科学出版社,1999:197-198.
    [117] Gilman P S, Benjamin J S. Annual Review of Materials Science.1983,13:279-300.
    [118] Kubaski E T,Cintho O M,Capocchi J D T. Effect of milling variables on thesynthesis of NiAl intermetallic compound by mechanical alloying[J]. PowderTechnology,2011,214:77-82.
    [119]黄培云.粉末冶金原理[M].北京:冶金工业出版社,2004:287-297.
    [120] Grabke H J, Meier G H. Accelerated oxidation, internal oxidation,intergranular oxidation,and pest of intermetallic compounds[J]. Oxidation ofMetals,1995,44:147-176.
    [121] Gauthier V,Josse C,Larpin J P,Vilasi M. High temperature oxidation behaviorof the intermetallic compound NbAl3:Influence of two processing techniques onthe oxidation mechanism[J]. Oxidation of Metals,2000,4:27-45.
    [122] Berztiss D A,Cerchiara R R,Cerchiara E A,Pettit F S,Meie G H. Oxidationof MoSi2and comparison with other silicide materials[J]. Materials Science andEngineering A,1992,155:165-181.
    [123] Zhang F,Zhang L T,Shan A D,Wu J S. In situ observations of the pestoxidation process of NbSi2at1023K[J]. Scripta Materialia,2005,53:653-656.
    [124] Westbrook J H,Wood D L.―pest‖degradation in beryllides,silicides,aluminide,and related compounds[J]. Journal of Nuclear Materials,1964,12(2):208-215.
    [125]赵陆翔,郭喜平.铌基合金抗高温氧化研究进展[J].材料导报,2006,20(7):61-64.
    [126] Shao G. Thermodynamic modelling of the Cr-Nb-Si system[J]. Intermetallics,2005,13:69-71.
    [127]周健威,姜传海,叶长青,吴建生.铌硅化合物氧化行为的X射线衍射分析[J].理化检验-物理分册,2004,40(1):10-12.
    [128]宋立国,曲士昱,宋尽霞,李树索,宫声凯,韩雅芳.一种多元铌硅系原位复合材料的高温氧化行为[J].航空学报,2007,28(1):201-206.
    [129]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999:144-153.
    [130]李慧中,王海军,刘楚明. Mg-10Gd-4.8Y-2Zn-0.6Zr合金本构方程模型及热加工图[J].材料热处理学报,2010,31(7):88-93.
    [131] Ji G L,Li F G,Li Q H. Research on the Dynamic Recrystallization Kinetics ofAermet100Steel[J]. Materials Science and Engineering A,2010,527:2350-2355.
    [132]曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.加工图理论研究进展[J].稀有金属材料与工程,2006,35(5):673-677.
    [133] Malas J C,Seetharaman V. Using Material Behavior Models to Develop ProcessControlStrategies[J]. JOM,1992,(6):8-14.
    [134]康娅雪,蔡大勇,张春玲,董海峰,王玉辉.微碳钢的热变形方程及热加工图[J].材料热处理学报,2006,33(12):75-79.
    [135]石静,房鑫,杨运民,袁国栋,王艳蕾. Cr12合金高温压缩变形行为及热加工图[J].锻压技术,2011,36(3):127-130.
    [136]李梁,宋德军. Ti6213合金的热加工图研究[J].材料开发与应用,2012,1003-1545(03):51-55.
    [137]张仁鹏,李付国,王晓娜. FGH96合金的热变形行为及其热加工图[J].西北工业大学学报,2007,25(5):652-656.
    [138]谢兴华,姚泽坤,宁永权,郭鸿镇,陶宇,张义文. FGH4096粉末高温合金的热变形行为[J].稀有金属材料与工程,2012,41(1):82-86.
    [139]余永宁.金属学原理[M].北京:冶金工业出版社,2000:130-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700