用户名: 密码: 验证码:
虾夷扇贝生殖腺水解物及其衍生物的功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国沿海扇贝养殖规模逐渐扩大,扇贝加工量也随之增加。扇贝柱产品在生产和加工过程中,产生了大量低值副产物(包括贝壳、裙边、中肠腺、生殖腺),约占扇贝湿重的70%,尚未得到有效开发利用。扇贝生殖腺蛋白质含量较高,是制备蛋白水解物或活性肽的良好资源。本文以虾夷扇贝生殖腺为研究对象,通过分析雌、雄生殖腺的化学组成,初步研究了中性蛋白酶对雌、雄生殖腺的水解效果及产物功能特性。一方面考察生殖腺水解物的抗氧化活性和理化功能特性,并从水解物中进行抗氧化肽的分离纯化和氨基酸序列鉴定;另一方面,通过美拉德反应修饰和钙螯合修饰制备生殖腺水解物的衍生物,考察其功能特性。主要研究内容及结果如下:
     (1)化学组成分析表明,虾夷扇贝生殖腺中粗蛋白的质量分数分别达到干重的62.89±0.87%(雌性生殖腺,SFG)和81.66±0.03%(雄性生殖腺,SMG)。将4%底物浓度的变性处理(100℃,10min)和未变性处理(对照组)的虾夷扇贝生殖腺匀浆,利用中性蛋白酶在50℃条件下恒温水解180min后,制备得到虾夷扇贝雌性生殖腺水解物(SFGHs)和雄性生殖腺水解物(SMGHs)。结果表明,SFG经中性蛋白酶水解后,水解效果较好,而中性蛋白酶水解SMG后, SMGHs呈弱凝胶特性。虾夷扇贝雌性生殖腺和雄性生殖腺经变性处理后进行酶解,肽得率和水解度明显高于对照组。与对照组相比,虾夷扇贝雌性生殖腺多肽经变性处理后,肽得率和水解度分别提高了94.78%和36.16%。利用Sephadex G-25凝胶过滤层析对SFGHs进行分离,发现变性处理组的组分较对照组相比更为集中,而且具有一定的还原能力。经高效液相色谱进行分子量分布测定,结果表明变性处理的SFGHs分子量主要分布在250Da~5000Da范围内,约占整个水解液的74.78%,符合生物活性肽的分子量分布范围。因此,对SFG进行热变性处理后,采用中性蛋白酶进行酶解,可以从水解产物中分离纯化得到抗氧化肽组分。
     (2)针对SMGHs呈弱凝胶性质,制备不同水解度的SMGHs对其理化功能特性进行研究。结果表明,SMGHs的理化功能特性较SMG有所改善。深度水解能提高SMGHs的溶解性和凝胶性,而有限水解后,持水/油性和表面疏水性较好。SMGHs的乳化性与水解度无关,但是受pH环境的制约。SMG的水解导致SMGHs起泡性和泡沫稳定性下降,水解度越大,起泡性和泡沫稳定性越差。氨基酸分析表明,SMG和SMGHs含有丰富的甘氨酸、赖氨酸、丙氨酸、谷氨酸和天冬氨酸,其中必需氨基酸占总氨基酸的41.63%~42.90%,具有较高的营养价值,可作为多功能蛋白基料应用于食品工业中。
     (3)扫描电镜观察显示,SMGHs呈现多孔、三维网状结构。SMGHs中肽段的分子量主要集中在小于1000Da和大于10000Da的组分,所占比例分别为46.86%和30.30%。采用质构仪研究了SMGHs的凝胶特性,并与几种商品亲水胶体进行比较。结果表明,SMGHs的硬度和稠度分别为40.49±1.96g和479.02±37.04g·sec,和1.5%的瓜尔豆胶和卡拉胶比较接近(p>0.05),并和1.0~2.0%的黄原胶和0.5~1.0%的明胶相当。SMGHs的粘度为23.69±1.92g,接近1.0%的瓜尔豆胶和黄原胶、1.0~1.5%的明胶和1.5%的卡拉胶。SMGHs具有良好的凝胶性质,在某些条件下可替代瓜尔豆胶、明胶、黄原胶和卡拉胶,在食品体系中可能会起到增稠和胶凝作用。
     (4)为了进一步阐明SMGHs的凝胶机制,通过向SMGHs添加一些能破坏蛋白质分子间作用力的化学试剂,来研究其凝胶性质的变化。结果表明,添加尿素和PG后,SMGHs凝胶强度下降,并且与添加浓度呈正相关。添加8M尿素后,SMGHs凝胶特别弱。添加0.3M的NaCl、KCl、CH_3COONa和NaSCN后,SMGH凝胶性质得到显著增强(p<0.05),但是随着添加浓度的增加,SMGHs凝胶性质下降,特别是3M NaSCN对SMGHs凝胶形成的抑制作用。另外,添加DTT、2-ME和NEM也可以降低凝胶性质(p<0.05),但是整体凝胶状态未发生变化。这说明维持SMGHs凝胶形成的分子间作用力主要是疏水相互作用和静电作用。
     (5)以DPPH自由基清除能力、Fe~(2+)螯合能力和还原能力为指标,对SFGHs的抗氧化活性进行了研究。结果表明,SFGHs对DPPH自由基清除能力的IC_(50)值(DPPH自由基清除率达到50%时的样品浓度)为9.44mg/mL,对Fe~(2+)螯合能力的IC_(50)值(螯合率达到50%时的样品浓度)为0.94mg/mL,还原能力的AC_(0.5)值(吸光度为0.5时的样品浓度)为5.88mg/mL。氨基酸分析表明,SFGHs中Gly、Glu、Asp、Val和Lys含量相对较高,其中必需氨基酸占总氨基酸的40.51%。SFGHs经Sephadex G-25凝胶过滤层析分离后得到6个组分,其中4号组分(F4)具有较强的DPPH自由基清除能力。进一步对F4组分进行质谱分析,得到两个寡肽被鉴定为His-Met-Ser-Tyr(P1)和Pro-Glu-Ala-Ser-Tyr(P2)。P1和P2经人工合成后,对DPPH自由基清除能力呈现一定量效关系,其中30mM的P1和P2对DPPH自由基的清除能力分别达到54.03±3.95%和50.27±1.36%,弱于对照BHA(20mM)。另外,P1和P2对羟基自由基诱导的DNA氧化损伤具有较好的保护作用。
     (6)在SFGHs与还原糖模拟体系下,研究了其美拉德反应产物的抗氧化活性。结果表明,SFGHs美拉德反应的适宜单糖为核糖、反应pH为8.0,肽糖质量比为1:2、适宜反应时间4~6h、适宜温度80~100℃。在此条件下,制备虾夷扇贝雌生殖腺水解物-核糖美拉德反应产物(SFGHs-MRPs),发现SFGHs-MRPs对DPPH自由基清除能力的IC_(50)值为49.55μg/mL,还原能力的AC_(0.5)值为34.34μg/mL,分别是SFGHs的190.51和171.23倍。另外,SFGH-MRPs在浓度为32μg/mL以上时,对羟自由基诱导DNA氧化损伤具有较强的保护能力。
     SFGHs与核糖美拉德反应过程中,反应体系的pH呈下降趋势,并且温度越高或反应时间越长,pH下降越明显;反应体系的紫外吸收、褐变程度、荧光强度和抗氧化活性呈上升趋势,并且温度越高或反应时间越长,增幅越明显。相关分析表明,虾夷扇贝雌生殖腺水解物-核糖美拉德反应体系pH与OD_(294)、OD_(420)、荧光强度、DPPH自由基清除能力和还原能力均呈现负相关,而其它各指标间表现出显著正相关(p<0.01)。
     (7)为了优化虾夷扇贝雌性生殖腺多肽-Ca~(2+)螯合物的制备工艺,在单因素试验的基础上,采用响应面二次回归正交旋转组合试验设计,分析了反应pH、时间、温度和多肽/氯化钙质量比对螯合物得率的影响。结果表明,虾夷扇贝雌生殖腺多肽-Ca~(2+)螯合物最优制备工艺为:pH8.0、温度64.8℃、反应时间为22min、多肽与氯化钙质量比为3.4:1,螯合物得率预测值为6.78%,实际得率为6.81%,响应面预测模型较为可靠,可用于指导实际生产。虾夷扇贝雌性生殖腺多肽-Ca~(2+)螯合物中氮和钙质量分数分别为6.67±0.11%和9.75±0.17%。多肽中的氨基和羧基可能参与了Ca~(2+)的螯合反应。虾夷扇贝生殖腺多肽-Ca~(2+)螯合物经体外模拟胃肠道消化后,钙透析率为41.86±2.33%,该螯合物具有较好的钙生物利用度。
In recent years, the amount of processed scallop products increased with the enlargementof coastal acquculture in China. During the processing of adductor muscle product, a largequantity of byproducts such as shells, mid-gut gland, mantle lobe, gonad (ovary and testis),accounting for about70%of the scallop body, are produced and underutilized. Scallop gonadcontained protein at a high level, which can be used as good resources for preparation ofprotein hydrolysate or bioactive peptides.
     Taking scallop Patinopecten yessoensis gonad as research object, this dissertationassayed the chemical composition of scallop Patinopecten yessoensis gonad (male and female,respectively), and a pilot study on hydrolysis effects and functional properties of proteinhydrolysate derived from scallop Patinopecten yessoensis gonad (male and female,respectively) was conducted. On one hand, antioxidant activity and functional properties ofscallop Patinopecten yessoensis gonad hydrolysates were investigated, and antioxidantpeptides was also isolated and identified from the gonad hydrolysate. On the other hand, thederivatives of Patinopecten yessoensis gonad hydrolysates through modification of maillardreaction and calcium chelating were prepared and its functional characterizations wereinvestigated. The main research contents and results were as follows:
     (1) The proximate composition indicated that the crude protein contents (on dry basis) ofscallop Patinopecten yessoensis gonad were62.89±0.87%(female gonad) and81.66±0.03%(male gonad), respectively. The scallop Patinopecten yessoensis gonad homogenates atprotein concentration of4%were treated with the denaturated(100℃,10min) andnon-denaturated (control) groups, then subjected to enzymatic hydrolysis with commercialneutrase at50℃for180min, respectively. After this, scallop female gonad hydrolysates(SFGHs) and male gonad hydrolysates (SMGHs) were obtained. The results showed thatscallop female gonad(SFG) can be effectively hydrolyzed by neutrase, while scallop malegonad(SMG) was insensitive to neutrase, for the SMGHs exhibited gelation-like properties.The yield of peptides and degree of hydrolysis were higher than control for SFG and SMGafter neutrase hydrolysis by the denaturing pretreatment. Compared with control, the yield of peptides and degree of hydrolysis of SFG after neutrase hydrolysis were increased by94.78%and36.16%, respectively, by denaturing treatment. SFGHs were separated by Sephadex G-25gel filtration chromatography, and the results suggested that the fractions in SFGHs wereconcentrated by denaturing treatment, and with reducing power. The molecular massdistribution of SFGHs with denaturing pretreatment ranged from250to5000Da, accountingfor74.78%of the total, by HPLC. Therefore, SFG could be effectively hydrolyzed usingneutrase in combination with denaturing treatment, and peptides with antioxidant activitycould be isolated through SFGHs.
     (2) As for the gelation-like protein hydrolysate from neutrase-hydrolyzed scallop malegonad (SMGHs), the functional properties of SMGHs with different degree of hydrolysis (DH)were investigated. The results showed that hydrolysis with neutrase improved the gelationproperty, solubility, water holding capacity (WHC), oil holding capacity (OHC) and surfacehydrophobicity (SH), but not foaming capacity (FC) of SMG. The SMGHs at high DH(11.86%) showed better gelation property and solubility than that at low DH (4.94~7.53%).However, the maximum values of WHC, OHC and SH of SMGHs were found at DH of4.94%, significantly higher than (p<0.05) or equivalent to (p>0.05) that of soy protein isolate(SPI) for WHC and OHC. Emulsifying capacity of SMGH is independent of DH, butrestricted by pH environment. The emulsifying activity index (EAI) of all SMGH wassignificantly higher than that of SPI in pH5(p<0.05), and slightly higher than or equivalent tothat of SPI in pH7. Meanwhile, SMG and SMGHs were abundant in glycine, lysine, alanine,glutamic acid and aspartic acid, containing all the essential amino acids (41.63%~42.90%ofthe total amino acids). These results imply that SMGHs might be utilized as multifunctionaland nutritive ingredients in food industry.
     (3) SMGHs chiefly consisted of peptides both below1,000Da (46.86%) and above10,000Da (30.30%), and showed a porous, three-dimensional network observed by scanningelectron microscopy. The gelation properties of SMGHs were studied by texture analyzer, andcompared with several commercial hydrocolloids. The results showed that SMGHs exhibitedfirmness of40.49±1.96g, consistency of479.02±37.04g·sec and cohesiveness of23.69±1.92g, which were similar with that of1.0%~1.5%guar gum,1.5%carrageenan,1.0%~2.0%xanthan gum and0.5%~1.5%gelatin. These results suggest that the fine gelation properties ofSMGH could be used as replacement of guar, gelatin, xanthan gum and carrageenan undercertain conditions, which may act as thickening and gelation agents in food systems.
     (4) To further understand the gelation mechanism of SMGHs, we investigated the effectof various chemicals on molecular forces of the gel network of SMGHs, by monitoringchanges of gel properties. The results showed that addition of urea, and propylene glycol (PG) decreased the gel strength of SMGHs with the increase of concentration, and only a veryweak gelation was observed when the concentration of urea reached8M. The overall gelproperties of SMGHs were improved in the presence of0.3M NaCl, KCl, CH_3COONa andNaSCN (p<0.05). However, elevated salt concentration led to decreased gel properties ofSMGHs, especially the inhibiting effect of NaSCN at3M. In addition, inclusion ofdithiothreitol (DTT),2-mercaptoethanol (2-ME), and N-ethylmaleimide (NEM) alsodiminished the gel properties at high concentration (p<0.05), but not severely, and theiraddition did not change the gelation-like profiles of SMGHs. These results suggest that the gelnetwork of SMGHs was primarily maintained by hydrophobic and electrostatic interactions.
     (5) Scallop Patinopecten yessoensis female gonad hydrolysates (SFGHs) possessed highantioxidant activity. The IC_(50)value for DPPH radical scavenging activity was9.44mg/mL,IC_(50)value for Fe~(2+)-chelating activity was0.94mg/mL and AC_(0.5)value for reducing powerwas5.88mg/mL. SFGHs was fractionated into six fractions by Sephadex G-25gel filtrationchromatography, Number4(F4) fraction exhibited highest DPPH radical scavenging activity.The F4fraction was analyzed by mass spectrography, two oligopeptides were identified asHis-Met-Ser-Tyr (P1) and Pro-Glu-Ala-Ser-Tyr (P2). After synthesis, both P1and P2showedcertain dose-DPPH radical scavenging activity relationships(30mM:54.03±3.95%and50.27±1.36%, respectively), but weaker than contro(20mM BHA). Besides, both P1and P2exibited strong protective effects against hydroxyl radical induced DNA oxidative damage.
     (6) Antioxidant activity of maillard reaction products (MRPs) of scallop Patinopectenyessoensis female gonad hydrolysate(SFGHs)-sugar model system were investigated. Theresults showed that the optimum conditions for SFGHs maillard reaction were ribose, pH8.0,and peptide to sugar mass ratio1:2, reaction time4~6h, temperature80~100℃. The MRPswere prepared under these conditions at95℃. The IC_(50)value of SFGHs-MRPs for DPPHradical scavenging activity was49.55μg/mL, and The AC_(0.5)for reducing power was34.34μg/mL, which were190.51and171.23times as for SFGHs, respectively. SFGHs-MRPs (32μg/mL or above) also showed good protective effect against hydroxyl radical induced DNAoxidative damage.
     During the process of SFGHs-ribose maillard reaction, the pH value of the model systemdeclined, and pH reduction was more obvious when the temperature was higher or thereaction time was longer. The UV absorbance, browning extent, fluorescence intensity, andantioxidant activity of the system were growing. The increasing seemed obvious when thetemperature was higher or the reaction time was longer. Correlation analysis showed thatnegative correlation between UV absorbance, browning extent, fluorescence intensity, DPPHradical scavenging activity, and reducing power of the system against pH were observed, while the correlation of other indexes were significantly positive(p<0.01).
     (7) In order to optimize the preparation conditions of scallop (Patinopecten yessoensis)gonad hydrolysate-Ca~(2+)complex, on the basis of single factor experiments, a quadratic centralrotary combination design of response surface methodology was used to analyze the influenceof pH, time, temperature, and mass ratio of peptide to calcium on the yield of peptide-Ca~(2+)complex. The results showed that the optimum parameters for peptide-Ca~(2+)chelating were pH8.0,22min,64.8℃, and peptide to calcium ratio of3.4:1. Under these conditions, thepredicted yield was6.75%, the actual yield was6.81%, and the complex contained6.67±0.11%nitrogen and9.75±0.17%calcium. Infrared spectroscopic study showed that bothamino and carboxyl groups are involved in the complex. Calcium dialyzability of the complexafter in vitro digestion was41.86±2.33%, but showed no difference with control (p>0.05).Therefore, scallop (Patinopecten yessoensis) gonad hydrolysate-Ca~(2+)complex might havegood calcium bioavailability.
引文
白利峰,刘金双,周培根2008.扇贝边多肽提取物对高脂血症大鼠血脂以及脂质氧化的影响.安徽农业大学学报35(4):615~618
    程云辉,曾知音,郭建伟,王璋.2009.抗氧化肽的酶法制备及其构效关系的研究进展.食品与机械,(006):174~180
    楚水晶,农绍庄,王珊珊.2010.扇贝裙边水解液制备海鲜酱的加工工艺.中国酿造,(1):146~147
    陈洁和胡晓贇.2011.蛋白水解物的抗氧化活性研究与展望.中国食品学报,11(9):111~117
    陈黎洪,唐宏刚,肖朝霞.2011.金华火腿副产品酶解物的MRPs抗氧化活性.中国农业科学,44(6):1218~1223
    丁利君和危如雪.2009.罗非鱼蛋白酶解液的多肽与钙复合物的制备及其抑菌分析.食品科学,30(20):198~202
    董秀萍.2010.海参、扇贝和牡蛎的加工特性及其抗氧化活性肽的研究[博士学位论文].镇江:江苏大学
    邓尚贵,杨燊,秦小明.2006.低值鱼蛋白多肽铁(II)螯合物的酶解制备及其抗氧化、抗菌活性.湛江海洋大学学报,26(4):54~58
    郭浩楠,杨荣华,袁晓晴,王宏海,叶晴,戴志远.2010.鲢鱼蛋白的酶解及其酶解物功能性质的研究.中国食品学报,(4):106~112
    关志强,孙小红,蒋小强,李敏.2006.真空冷冻干燥过程参数对墨西哥湾扇贝冻干时间和能耗的影响.水产学报,30(3):390~396
    顾谦群,王长云,方玉春.1998.栉孔扇贝糖蛋白的制备及其抗肿瘤活性初步研究.海洋科学,5:63~64
    胡文婷,孙谧,王跃军.2006.栉孔扇贝(Chlamys farreri)中抗氧化肽的分离纯化及性质研究.海洋与湖沼,37(1):14~19
    乔路,周大勇,李秀玲,王宏海.2011.美拉德反应制备鲍鱼脏器肽呈味基料及其抗氧化活性研究.大连工业大学学报,30(6):407~411
    韩樱,何慧,马芝丽,张文君,李江涛.2011.蛋清肽及肽钙配合物的制备.食品科学,32(6):110~114.
    黄晓春,刘慧慧,苏秀榕.2005.7种经济贝类生殖腺脂肪酸含量的研究.水产科学,24(8):20~22
    金文刚,吴海涛,朱蓓薇,刘冰,许景光.2011.虾夷扇贝生殖腺多肽的制备及分离.大连工业大学学报,30(6):391~395
    于志鹏,林松毅,刘静波,郝慧.2007.优化蛋清粉蛋白热变性条件的研究.食品科学,28(10):229~232
    于运海,周大勇,孙黎明,杨静峰,王嵩,朱蓓薇.2009.虾夷扇贝脏器硫酸酯多糖的制备及性质研究.食品科学,30(6):68~71
    杨燊,邓尚贵,秦小明.2008.低值鱼蛋白多肽-钙螯合物的制备和抗氧化、抗菌活性研究.食品科学,29(1):202~206
    李雪,罗永康,尤娟.2011.草鱼鱼肉蛋白酶解物抗氧化性及功能特性研究.中国农业大学学报,16(1):94~99
    李伟,李丽莉,宋月,金桥,佟长青,张彦龙.2010.扇贝消化道β-1,3葡聚糖酶的分离和性质研究.食品工业科技,31(8):170~172
    李迪,吕莹,郭顺堂.2011.大豆肽钙复合物的溶解稳定性研究.食品工业科技,:32(4):94~96
    林贤治和尹淑敏1995.从扇贝的中肠腺脂质中分离富含EPA的甘油三酸酯.水产科技情报,22(3):138~139
    梁春辉,菅景颖,张志胜.2010.胶原多肽螯合钙壮骨作用研究.河北农业大学学报,33(5):94~97
    刘潇,吴进菊,高金燕,陈红兵.2010.食物蛋白质的酶法改性研究进展.食品科学,31(19):409~413
    刘聪,赵前程,李智博,李伟,汪秋宽.2009.扇贝裙边胶原蛋白酶解物清除超氧阴离子能力的研究.食品与生物技术学报,28(3):338~341
    马媛,王璐,孙玉梅,于运海,朱蓓薇.2006.超临界萃取法提取扇贝内脏脂质的研究.食品与发酵工业,32(9):156~159
    孟艳丽和董士远.2010.美拉德反应修饰的鲢鱼肽抗氧化活性初探.肉类研究138(8):26~30
    农业部渔业局.2011.中国渔业统计年鉴.北京:中国农业出版社:29~30
    秦玉青.2001.扇贝生殖腺糖蛋白的提取与组分分析.渔业现代化,(6):39~40
    宋荪阳.2012.扇贝性腺多糖复合物的提取分离纯化及活性研究[硕士学位论文].大连:大连工业大学
    宋荪阳,孙黎明,朱蓓薇,牛海玲,杨静峰.2012.扇贝性腺多糖提取物的抗氧化及免疫活性研究.食品科学,33(5):248~251
    孙利芹,姜爱莉,郭尽力.2004.从扇贝边中提取牛磺酸工艺的研究.食品工业科技,1:106~110
    孙莉洁和梁金钟.2010.响应面法优化大豆肽与钙离子螯合的研究.中国粮油学报,25(1):22~27
    孙福生,鞠传霞,刘赛.2008.扇贝裙边糖胺聚糖对U937泡沫细胞形成过程中TNF-α、IL-6和IL-8表达的影响.中国药科大学学报,39(6):563~565
    田元勇和高悦勉.2007.虾夷扇贝卵巢水解产物抗氧化性的研究.大连水产学院学报,22(1):46~48
    童彦,雒莎莎,应铁进.2011.鱼蛋白水解液美拉德反应条件优化及反应前后氨基酸组成变化.中国食品学报,11(8):101~106
    王浩,纪丽丽,李瑞伟,王辉,宋文东,黄翔鹄.2008.奥利亚罗非鱼胶原蛋白酸解液美拉德反应产物风味成分分析.氨基酸和生物资源,30(4):49~51
    王璐.2007.论扇贝的营养价值、生物活性及养殖.牡丹江大学学报,16(3):92~94
    王飞,刘静波,林松毅,徐彩娜,蔡玥.2008.卵黄高磷蛋白磷酸肽-钙对受试小鼠钙表观吸收率的影响.食品科学,29(12):654~657
    王素雅,刘胜,鞠兴荣,袁建.2010a.中性蛋白酶限制性水解对高温菜籽粕蛋白功能性质的影响.食品与发酵工业,36(1):56~59
    王素雅,刘胜,鞠兴荣,严梅荣,袁建.2010b.碱性蛋白酶限制性水解对高温菜籽粕蛋白功能性质的影响.食品科学,31(13):44~47
    许庆陵,曾庆祝,谢智芬.2001.扇贝中肠腺脂质的提取及脂肪酸分析.中国海洋药物,1:34~36
    谢颖,陶宁萍,王锡昌,刘源.2010.鸭肉酶解液美拉德反应制备鸭肉香精基料的研究.食品工业科技,31(4):240~242
    朱蓓薇和曾名湧.2010.水产品加工工艺学.北京:中国农业出版社:15~17
    朱蓓薇.2010.海珍品加工理论与技术的研究.北京:科学出版社:225~228
    张洁,董士远,郭晓伟,曾名勇.2009.美拉德反应应用于牡蛎酶解液脱腥的研究.食品工业科技,30(11):215~217
    张严,汪何雅,钱和.2012.美拉德反应产物的褐变、荧光吸收及抗氧化性的研究.食品工业科技,33(6):193~196
    赵强,钟红兰,熊华,史苏华,邓波,李薇.2010.米肽-葡萄糖湿法接枝反应产物的功能性质.食品科学,31(19):115~120
    赵谋明,曾晓房,崔春,刘通讯,张春辉,吴进卫.2007.不同鸡肉蛋白肽在Maillard反应中的降解趋势研究.食品工业科技,28(2):92~95
    赵谋明和任娇艳.2011.食源性生物活性肽结构特征与生理活性的研究现状与趋势.中国食品学报,11(9):69~81
    郑立静,关志强,李敏2010.扇贝真空冷冻干燥过程中变温变压工艺的研究.制冷学报31(2):53~56
    郑杰.2012.海参自溶过程中生化变化及抗氧化活性寡肽的研究[博士学位论文].镇江:江苏大学
    郑杰,吴海涛,朱蓓薇,董秀萍.2011.海参肠自溶水解物抗氧化活性的研究.大连工业大学学报,30(5):313~317
    郑丽和汪秋宽.2005.扇贝加工废弃物海鲜调味料的加工利用.水产科学,24(1):34~37
    郑丽和汪秋宽.2006.扇贝加工废弃物的酶解技术研究.水产科学,25(8):397~400
    Argyri, K., Theophanidi, E., Kapna A., Staikidou C., Pounis G., Komaitis M., Georgious C., KapsokefalouM.2011. Iron or zinc dialyzability obtained from a modified in vitro digestion procedure comparewell with iron or zinc absorption from meals. Food Chemistry,127(2):716~721
    Ait-Oukhatar, N., Bouhallab, S., Bureau, F., Arhan, P., Maubois, JL., Bougle, DL.2000. In vitro digestionof caseinophosphopeptide–iron complex. Journal of Dairy Research,67:125~129
    Aruoma, O. I., Laughton, M. J., Halliwell, B.1989. Carnosine, homocarnosine and anserine: could they actas antioxidants in vivo? Biochemical Journal,264(3):863~869
    Bae, D. H., Yeon, J. H., Park, S. Y., Lee, D. H., Ha, S. D.2006. Bactericidal effects of CaO (Scallop-ShellPowder) on foodborne pathogenic bacteria. Archives of pharmacal research,29(4):298~301
    Balti, R., Bougatef, A., Ali, NEH., Zekri, D., Barkia, A., Nasri, M.2010. Influence of degree of hydrolysison functional properties and angiotensin I-converting enzyme-inhibitory activity of proteinhydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of the Science of Food andAgriculture,90(12):2006~2014
    Bao, X. L., Lv, Y., Yang, B. C., Ren, C. G., Guo, S. T.2008. A study of the soluble complexes formedduring calcium binding by soybean protein hydrolysates. Journal of Food Science,73(3): C117~C121
    Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., Nunes, M. L.2010. Characterization of proteinhydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products andantioxidative activity of the hydrolysates produced. Process Biochemistry,45(1):18~24
    Benjakul, S., Visessanguan, W., Phongkanpai, V., Tanaka, M.2005. Antioxidant activity of caramelisationproducts and their preventive effect on lipid oxidation in fish mince. Food Chemistry,90(1-2):231~239
    Bodur,T., Yaldirak, G., Kola, O., Cagri-Mehmetoglu, A.2010. Inhibition of Listeria monocytogenes andEscherichia Coli O157:H7on frankfurters using scallop shell powder. Journal of Food Safety,30(3):740~752
    Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., Nasri, M.2010.Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle(Sardinella aurita) by-products proteins. Food Chemistry,118(3):559~565
    Byun, H. G., Lee, J. K., Park, H. G., Jeon, J. K., Kim, S. K.2009. Antioxidant peptides isolated from themarine rotifer, Brachionus rotundiformis. Process Biochemistry,44(8):842~846
    Calderón, A. M., Ruiz-Salazar, R. A., Jara-Marini, M. E.2000. Enzymatic Hydrolysis and Synthesis of SoyProtein to Improve its Amino Acid Composition and Functional Properties. Journal of Food Science,65(2):246~253
    Campbell, DA., Kelly, MS., Busman M., Wiggins E., Fernandes TF.2003. Impact of preparation method ongonad domoic acid levels in the scallop, Pecten maximus (L.). Harmful Algae,2(3):215~222
    Cao, W. H., Zhang, C. H., Hong, P. Z., Ji, H. W.2008. Response surface methodology for autolysisparameters optimization of shrimp head and amino acids released during autolysis. Food Chemistry,109(1):176~183
    Cao, W. H., Zhang, C. H., Hong, P. Z., Ji, H. W., Hao, J. M., Zhang, J.2009. Autolysis of shrimp head bygradual temperature and nutritional quality of the resulting hydrolysate. LWT-Food Science andTechnology,42(1):244~249
    Chalamaiah, M., Rao, G. N., Jyothirmayi.2010. Protein hydrolysates from meriga (Cirrhinus mrigala) eggand evaluation of their functional properties. Food Chemistry,120(3):652~657
    Charoenphun, N., Cheirsilp, B., Sirinupong, N., Youravong, W.2013. Calcium-binding peptides derivedfrom tilapia (Oreochromis niloticus) protein hydrolysate. European Food Research and Technology,236(1):57~63
    Chaud, M. V., Izumi, C., Nahaal, Z., Shuham, T., Bianchi, MLP. Freitas, O.2002. Iron derivatives fromcasein hydrolysates as a potential source in the treatment of iron deficiency. Journal of Agriculturaland Food Chemistry,50(4):871~877
    Cheison, S. C., Wang, Z., Xu, S. Y.2007. Preparation of whey protein hydrolysates using a single-andtwo-stage enzymatic membrane reactor and their immunological and antioxidant properties:characterization by multivariate data analysis. Journal of Agricultural and Food Chemistry,55(10):3896~3904
    Chen, H., Muramoto, K., Yamauchi, F., Fujimoto, K., Nokihara, K.1998. Antioxidative properties ofhistidine-containing peptides designed from peptide fragments found in the digests of a soybeanprotein. Journal of Agricultural and Food Chemistry,46(1):49~53
    Chen, H. M., Muramoto, K., Yamauchi, F., Nokihara, K.1996. Antioxidant activity of designed peptidesbased on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agriculturaland Food Chemistry,44(9):2619~2623
    Cheng, Y., Chen, J., Xiong, Y. L.2010a. Chromatographic Separation and Tandem MS Identification ofActive Peptides in Potato Protein Hydrolysate That Inhibit Autoxidation of Soybean Oil-in-WaterEmulsions. Journal of Agricultural and Food Chemistry,58(15):8825~8832
    Cheng, Y., Xiong, Y. L., Chen, J.2010b. Fractionation, Separation, and Identification of AntioxidativePeptides in Potato Protein Hydrolysate that Enhance Oxidative Stability of Soybean Oil Emulsions.Journal of Food Science,75(9): C760~C765
    Choi, Y., Hur, S., Choi, BD., Konno, K., Park, JW.2009. Enzymatic hydrolysis of recovered protein fromfrozen small croaker and functional properties of its hydrolysates. Journal of Food Science,74(1):C17~C24
    Chiplonkar, SA., Agte, V., Tarwadi, KV., Kavadia, R.1999. In vitro dialyzability using meal approach as anindex for zinc and iron absorption in humans. Biological Trace Element Research,67(3):249~256
    Creusot, N. and Gruppen, H.2007. Enzyme-induced aggregation and gelation of proteins. BiotechnologyAdvances,25(6):597~601
    Creusot, N. and Gruppen, H.2008. Hydrolysis of whey protein isolate with Bacillus licheniformis protease:aggregating capacities of peptide fractions. Journal of Agricultural and Food Chemistry,56(21):10332~10339
    Decourcelle, N., Sabourin, C., Dauer, G., Guerard, F.2010. Effect of the Maillard reaction with xylose onthe emulsifying properties of a shrimp hydrolysate (Pandalus borealis). Food Research International,43(8):2155~2160
    Delgado-Andrade, C., Jose, A., Morales, FJ.2005. Assessing the antioxidant activity of melanoidins fromcoffee brews by different antioxidant methods. Journal of Agricultural and Food Chemistry,53(20):7832~7836
    Diniz, FM. and Martin, A. M.1997. Effects of the extent of enzymatic hydrolysis on functional propertiesof shark protein hydrolysate. LWT-Food Science and Technology,30(3):266~272
    Dong, S., Wei, B., Chen, B., Mcclements, DJ., Decker, EA.2011. Chemical and antioxidant properties ofcasein peptide and its glucose maillard reaction products in fish oil-in-water emulsions. Journal ofAgricultural and Food Chemistry,59(24):13311~13317
    Dong, XP., Zhu, BW., Zhao, HX., Zhou, DY., Wu, HT., Yang, JF., Li, DM., Murata, Y.2010. Preparationand in vitro antioxidant activity of enzymatic hydrolysates from oyster (Crassostrea talienwhannensis)meat. International Journal of Food Science&Technology,45(5):978~984
    Doucet, D., Otter, D. E., Gauthier, S. F., Foegeding, E. A.2003a. Enzyme-induced gelation of extensivelyhydrolyzed whey proteins by alcalase: peptide identification and determination of enzyme specificity.Journal of Agricultural and Food Chemistry,51(21):6300~6308
    Doucet, D., Gauthier, S. F., Otter, D. E., Foegeding, E. A.2003b. Enzyme-induced gelation of extensivelyhydrolyzed whey proteins by alcalase: comparison with the plastein reaction and characterization ofinteractions. Journal of Agriculture and Food Chemistry,51:6336-6342
    Elias, R. J., Bridgewater, J. D., Vachet, R. W., Waraho, T., McClements D. J., Decker, E. A.2006.Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions.Journal of Agricultural and Food Chemistry,54(25):9565~9572
    Elias, R. J., Kellerby, S. S., Decker EA.2008. Antioxidant Activity of Proteins and Peptides. CriticalReviews in Food Science and Nutrition,48(5):430~441
    Erdmann, K., Grosser, N., Schipporeit, K., Schroder, H.2006. The ACE inhibitory dipeptide Met-Tyrdiminishes free radical formation in human endothelial cells via induction of heme oxygenase-1andferritin. The Journal of nutrition,136(8):2148~2152
    éscarria, S., Reyes, C., Rohan D., Marinas C.1989. Estudio bioquímico de la escalopa Argopectencircularis. Ciencias Marinas,15(1):63~72
    Foegeding, E. A. and Davis J. P.2011. Food protein functionality: A comprehensive approach. FoodHydrocolloids,25(8):1853~1864
    Fu, X.2003. Effect of plant leaf protein on lipotropy peroxidase system of rats. Chinese Journal ofVeterinary Science and Technology,11:49~50
    Galla, N. R., Pamidighantam, P. R., Akula S., Karakala B.2012. Functional properties and in vitroantioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chemistry,135(3):1479~1484
    Gbogouri, G., Linder, M., Fanni J., Parmentier M.2004. Influence of hydrolysis degree on the functionalproperties of salmon byproducts hydrolysates. Journal of Food Science,69(8): C615~C622
    Guérard, F. and Sumaya-Martinez, M. T.2003. Antioxidant effects of protein hydrolysates in the reactionwith glucose. Journal of the American Oil Chemists' Society,80(5):467~470
    Guo, H., Kouzuma, Y., Yonekura M.2009. Structures and properties of antioxidative peptides derived fromroyal jelly protein. Food Chemistry,113(1):238~245
    Halliwell, B.2007. Oxidative stress and cancer: have we moved forward? Biochem. J,401:1~11
    Halliwell, B. and Whiteman, M.2004. Measuring reactive species and oxidative damage in vivo and in cellculture: how should you do it and what do the results mean? British Journal of Pharmacology,142(2):231~255
    Hancock, J., Desikan, R., Neill S.2001. Role of reactive oxygen species in cell signalling pathways.Biochemical Society Transactions,29(2):345~349
    Hernández-Ledesma, B., Dávalos, A., Bartolom B., Amigo L.2005. Preparation of antioxidant enzymatichydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides byHPLC-MS/MS. Journal of Agricultural and Food Chemistry,53(3):588~593
    Hmidet, N., Balti, R., Nasri, R., Bougatef, A., Sila, A., Nasri, M.2011. Improvement of functionalproperties and antioxidant activities of cuttlefish (Sepia officinalis) muscle proteins hydrolyzed byBacillus mojavensis A21proteases. Food Research International,44(9):2703~2711
    Hua, Y., Cui, S. W., Wang, Q., Mine Y., Poysa V.2005. Heat induced gelling properties of soy proteinisolates prepared from different defatted soybean flours. Food Research International,38(4):377~385
    Huang, D., Ou, B., Prior RL.2005. The chemistry behind antioxidant capacity assays. Journal ofAgricultural and Food Chemistry,53(6):1841~1856
    Huang, M., Liu, P., Song, S., Zhang, X., Hayat, K., Xia S., Jia C., Gu F.2011. Contribution ofsulfur‐containing compounds to the colour‐inhibiting effect and improved antioxidant activity ofMaillard reaction products of soybean protein hydrolysates. Journal of the Science of Food andAgriculture,91(4):710~720
    Intarasirisawat, R., Benjakul, S., Visessanguan W., Wu J.2012. Antioxidative and functional properties ofprotein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chemistry,135(4):3039~3048
    Jai ganesh, R., Nazeer, R.A., Kumar S.2011. Purification and identification of antioxidant peptide fromblack pomfret, Parastromateus niger (Bloch,1975) viscera protein hydrolysate. Food Science andBiotechnology,20(4):1087~1094
    Jamdar, SN., Rajalakshmi, V., Pednekar MD., Juan F., Yardi V., Sharma A.2010. Influence of degree ofhydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut proteinhydrolysate. Food Chemistry,121(1):178~184
    Jin, WG., Wu, HT, Zhu, BW, Ran, XQ.2012. Functional properties of gelation-like protein hydrolysatesfrom scallop (Patinopecten yessoensis) male gonad. European Food Research and Technology,234(5):863~871
    Jun, SY., Park, PJ., Jung WK., Kim SK.2004. Purification and characterization of an antioxidative peptidefrom enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European FoodResearch and Technology,219(1):20~26
    Jung, S., Murphy, PA., Johnson LA.2005. Physicochemical and functional properties of soy proteinsubstrates modified by low levels of protease hydrolysis. Journal of Food Science,70(2): C180~C187
    Jung, W. K., Rajapakse, N., Kim, S.K.2005. Antioxidative activity of a low molecular weight peptidederived from the sauce of fermented blue mussel, Mytilus edulis. European Food Research andTechnology,220(5):535~539
    Kamara, M.T., Amadou, I., Tarawalie, F., and Zhou, H.2010. Effect of Enzymatic Hydrolysis on thefunctional properties of Foxtail millet(Setaria italica L.) proteins. International Journal of FoodScience and Technology,45(6):1175~1183
    Kanatt, S. R., Chander, R., Sharma, A.2008. Chitosan glucose complex-A novel food preservative. FoodChemistry,106(2):521~528
    Kim, G. N., Jang, H. D., Kim, C.I.2007. Antioxidant capacity of caseinophosphopeptides prepared fromsodium caseinate using Alcalase. Food Chemistry,104(4):1359~1365
    Kim, J. S. and Lee, Y. S.2010. Characteristics and antioxidant activity of Maillard reaction products fromfructose-glycine oligomer. Food Science and Biotechnology,19(4):929~940
    Kim, S. Y., Je, J. H., Lee, D., Kim, S. G.2007. Purification and characterization of antioxidant peptide fromhoki(Johnius belengerii) frame protein by in vitro gastrointestinal digestion. Journal of NutritionalBiochemistry,18(1):31~38
    Kitts, D. D.2005. Antioxidant properties of casein-phosphopeptides. Trends in Food Science&Technology16(12):549~554
    Kitts, D. D., Chen, X. M., Jing, H.2012. Demonstration of antioxidant and anti-inflammatory bioactivitiesfrom sugar–amino acid maillard reaction products(MRPs). Journal of Agricultural and FoodChemistry,60(27):6718~6727
    Kristinsson, H. G., and YRasco, B. A.2000a. Biochemical and functional properties of altanticsalmon(Salmo salar) muscle hydrolyzed with various alkaline proteases. Journal of Agricultural andFood Chemistry,48(3):657~666
    Kristinsson, H. G., and YRasco, B. A.2000b. Fish proteins hydrolysates: production, biochemical andfunctional properties. Critical Reviews in Food Science and Nutrition,40(1):43~81
    Kong, X., Zhou, H., Qian, H.2007. Enzymatic preparation and functional properties of wheat glutenhydrolysates. Food Chemistry,101(2):615~620
    Kumagai, Y., Inoue, A., Tanaka, H., Ojima, T.2008. Preparation of p-1,3-glucanase from scallop mid-gutgland drips and its use for production of novel heterooligosaccharides. Fisheries Science,74(5):1127~1136
    Kumar, S, Nazeer, R. A., Jaiganesh, R.2011. Purification and biochemical characterization of antioxidantpeptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides,32(7):1496~1501
    Lantto, R., Puolanne, E., Kruus, K., Buchert, J., Autio, K.2007. Tyrosinase-aided protein cross-linking:effects on gel formation of chicken breast myofibrils and texture and water-holding of chicken breastmeat homogenate gels. Journal of Agricultural and Food Chemistry,55(4):1248~1255
    Laroque, D., Inisan, C., Berger, C., Vouland, E., Dufosse, L., Guerard, F.2008. Kinetic study on theMaillard reaction. Consideration of sugar reactivity. Food Chemistry,111(4):1032~1042
    Lee, JM and Kim, SM.2008. Biochemical and antibacterial properties of lysozyme purified from theviscera of scallops (Patinopecten yessoensis). Journal of Food Biochemistry,32(4):474~489
    Li, Y., Zhong, F., Ji, W., Yokoyama, W., Shoemaker, C. F., Zhu, S., Xia, W. S.2012. Functional propertiesof Maillard reaction products of rice protein hydrolysates with mono-, oligo-and polysaccharides.Food Hydrocolloids,30(1):53~60
    Lim, W. K., R sgen, J., Englander, S. W.2009. Urea, but not guanidinium, destabilizes proteins by forminghydrogen bonds to the peptide group. Proceedings of the National Academy of Sciences,106(8):2595
    Liu, R., Wang, M., Duan, J., Guo, J., Tang, Y.2010. Purification and identification of three novelantioxidant peptides from Cornu Bubali (water buffalo horn). Peptides,31(5):786~793
    Liu, R. H. and Finley, J.2005. Potential cell culture models for antioxidative activity research. Journal ofAgricultural and Food Chemistry,53(10):4311~4314
    Liu, R. H., and Nehmer, K. L.2011-12-22. Cellular antioxidant activity(CAA) assay. United States Patent,US20110313672A1
    Liu, Y. C. and Hasegawa, Y.2006. Reducing effect of feeding powdered scallop shell on the body fat massof rats. Bioscience, Biotechnology, and Biochemistry,70(1):86~92
    Liu, Y. C., Torita, A., Hasegawa, Y.2006. Scallop shell extract promotes recovery from UV‐B‐induceddamage in rat skin epidermal layer. Fisheries Science,72(2):388~392
    Liu, Y. C., Torita, A., Hasegawa, Y.2008. Scallop shell extract inhibits squalenemonohydroperoxide‐induced skin erythema and wrinkle formation in rat. Fisheries Science,74(1):217~219
    Liu, Y. C., Uchiyama, K., Natsui, N., Hasegawa, Y.2002. In vitro activities of the components from scallopshells. Fisheries Science,68(6):1330~1336
    Lv, Y., Bao, X. L., Yang, B. C., Ren, C. G., Guo, S. T.2008. Effect of Soluble Soybean ProteinHydrolysate‐Calcium Complexes on Calcium Uptake by Caco‐2Cells. Journal of Food Science,73(7): H168~H173
    Mendis, E., Rajapakse, N., Kim, S. Y.2005. Antioxidant properties of a radical-scavenging peptide purifiedfrom enzymatically prepared fish skin gelatin hydrolysates. Journal of Agricultural and FoodChemistry,53(3):581~587
    Miki, W., Yamaguchi, K., Konosu, S.1982. Comparison of carotenoids in the ovaries of marine fish andshellfish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,71(1):7~11
    Mizuta, S., Nakanishi, Y., Shiraishi, M., Yokoyama, Y.,Yoshinaka, R.2007. Properties of scallop mantlecollagen: its content, tissue distribution and thermal behavior. Fisheries Science,73(6):1353~1361
    Morales, F. J. and Jimenez-Perez, S.2001. Free radical scavenging capacity of Maillard reaction productsas related to colour and fluorescence. Food Chemistry,72(1):119~125
    Moure, AB., Parajo, J. C., Dominguez, H.2006. Antioxidant properties of ultrafiltration-recovered soyprotein fractions from industrial effluents and their hydrolysates. Process Biochemistry,41(2):447~456
    Mu, L., Zhao, M., Yang, B., Zhao, H., Cui, C., Zhao, Q.2010. Effect of ultrasonic treatment on the graftreaction between soy protein isolate and gum acacia and on the physicochemical properties ofconjugates. Journal of Agricultural and Food Chemistry,58(7):4494~4499
    Mukhin, V., Novikov, V., Ryzhikova LS.2001. A protein hydrolysate enzymatically produced from theindustrial waste of processing Icelandic scallop Chlamys islandica. Applied Biochemistry andMicrobiology,37(3):292~296
    Myrnes, B. and Johansen, A.1994. Recovery of lysozyme from scallop waste. Preparative Biochemistry,24(1):69~80
    Najafian, L. and Babji, A. S.2012. A review of fish-derived antioxidant and antimicrobial peptides: Theirproduction, assessment, and applications. Peptides,33(1):178~185
    Nalinanon, S., Benjakul, S., Kishimura, H., Shahidi, F.2011. Functionalities and antioxidant properties ofprotein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna.Food Chemistry,124(4):1354~1362
    Nara, K., Matsue, H., Naraoka T.2004. Granulin-like peptide in the mid-gut gland of the bivalve mollusk,Patinopecten yessoensis. BBA-General Subjects,1675(1):147-154
    On-Nom, N., Grandison, A., Lewis, M. J.2010. Measurement of ionic calcium, pH, and soluble divalentcations in milk at high temperature. Journal of Dairy Science,93(2):515~523verb, K., Myrnes, B.2006. Deoxyribonuclease II from the icelandic scallop(Chlamys islandica):isolation and partial characterization. Comparative Biochemistry and Physiology, Part B,143:315~318
    Oyamada, C., Kaneniwa, M., Ebitani K., Murata M., Ishihara K.2008. Mycosporine-like amino acidsextracted from scallop (Patinopecten yessoensis) ovaries: UV protection and growth stimulationactivities on human cells. Marine Biotechnology,10(2):141~150
    Pérez-Won M., Tabilo-Munizaga G., Barbosa-Canovas GV.2005. Effects of ultra high pressure on bayscallop (Aequipecten irradians) adductor muscles. Food Science and Technology International,11(6):477~484
    Pacheco-Aguilar, R., Mazorra-Manzano, M. A., Ramire-Suarez, J. C.2008. Functional properties of fishprotein hydrolysates from Pacific whiting(Merluccius productus) muscle produced by a commercialprotease. Food Chemistry,109(4):782~789
    Palacios, E., Racotta, I., Kraffe, E., Marty, Y., Moal, J., Samain, J. F.2005. Lipid composition of the giantlion's-paw scallop (Nodipecten subnodosus) in relation to gametogenesis: I. Fatty acids. Aquaculture,250(1-2):270~282
    Pathomrungsiyounggul, P., Grandison, A. S., Lewis, M.2012. Feasibility of Using Dialysis forDetermining Calcium Ion Concentration and pH in Calcium-Fortified Soymilk at High Temperature.Journal of Food Science,77(1): E10~E16
    Pena-Ramos, E. A. and Xiong, Y. L.2001. Antioxidative activity of whey protein hydrolysates in aliposomal system. Journal of Dairy Science,84(12):2577~2583
    Perales, S., Barberá, R., Lagarda, M. J., Farr, R.2005. Bioavailability of calcium from milk-based formulasand fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialyzability, anduptake and transport by Caco-2cells). Journal of Agricultural and Food Chemistry,53(9):3721~3726
    Qian, Z. J., Kim, S.K., Byun, H.G., Jung, W. K.2008. Protective effect of an antioxidative peptide purifiedfrom gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage.Bioresource Technology,99(9):3365~3371
    Qin, L., Zhu BW., Zhou DY., Wu HT., Tan H., Yang JF., Li DM., Dong XP., Murata Y.2011. Preparationand antioxidant activity of enzymatic hydrolysates from purple sea urchin (Strongylocentrotus nudus)gonad. LWT-Food Science and Technology,44(4):1113~1118
    Rafferty, K., Walters, G., Heaney, R. P.2007. Calcium fortificants: overview and strategies for improvingcalcium nutriture of the US population. Journal of Food Science,72(9): R152~R158
    Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., Kim, S. K.2005. Purification of a radical scavengingpeptide from fermented mussel sauce and its antioxidant properties. Food Research International,38(2):175~182
    Ranathunga, S., Rajapakse, N., Kim, S. K.2006. Purification and characterization of antioxidative peptidederived from muscle of conger eel (Conger myriaster). European Food Research and Technology,222(3):310~315
    Riebroy, S., Benjakul, S., Visessanguan, W., Erikson, U., Rustad, T.2009. Acid-induced gelation of naturalactomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota). Food Hydrocolloids,23(1):26~39
    Ruiz-Verdugo, C. A., Racotta, I. S., Ibarra, A. M.2001. Comparative biochemical composition in gonadand adductor muscle of triploid and diploid catarina scallop (Argopecten ventricosus Sowerby II,1842). Journal of Experimental Marine Biology and Ecology,259(2):155~170
    Ryan, J. T., Ross, R. P., Bolton, D., Fitzgerald, G. F., Stanton, C.2011. Bioactive Peptides from MuscleSources: Meat and Fish. Nutrients,3(9):765~791
    Saiga, A., Tanabe, S., Nishimura, T.2003. Antioxidant activity of peptides obtained from porcinemyofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry,51(12):3661~3667
    Sakai T, N. Y., Kato I1993. Purification and charecterization of β-N-Acetyl-D-hexosaminidase from themid-gut gland of scallop (Patinopecten yessoensis). Bioscience,Biotechnology, and Biochemistry,57(6):965~968
    Samarannayaka, AGP and Li-Chan, ECY.2008. Autolysis-assisted production of fish protein hydrolysateswith antioxidant properties from pacific hake(Merluccius productus). Food Chemistry,107(2):768~776
    Sinha, R., Radha, C., Prakash, J., Kaul, P.2007. Whey protein hydrolysate: functional properties,nutritional quality and utilization in beverage formulation. Food Chemistry,101(4):1484~1491
    Sakanaka, S., Tachibana, Y., Ishihara, N., Juneja, L. R.2005. Antioxidant properties of casein calciumpeptides and their effects on lipid oxidation in beef homogenates. Journal of Agricultural and FoodChemistry,53(2):464~468
    Sanchez, A. C. and Burgos, J.1997. Gelation of sunflower globulin hydrolysates: rheological andcalorimetric studies. Journal of Agricultural and Food Chemistry,45(7):2407~2412
    Sawai, J., Shiga, H., Kojima, H.2001. Kinetic analysis of the bactericidal action of heated scallop-shellpowder. International Journal of Food Microbiology,71(2):211~218
    Severin, S. and Xia W.2006. Enzymatic hydrolysis of whey proteins by two different proteases and theireffect on the functional properties of resulting protein hydrolysates. Journal of Food Biochemistry,30(1):77~97
    Slizyte, R., Mozuraityte, R., Martinez-Alvarez, O., Falch, E., Foucherreau-Peron, M., Rustad, T.2009.Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua)backbones. Process Biochemistry,44(6):668~677
    Soudant, P., Marty, Y., Moai, J., Robert, R., Quere, C., Jean Rene Le COZ, Samain, J. F.1996. Effect offood fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process.Aquaculture,143(3-4):361~378
    Spellman, D., Kenny, P., O'Cuinn, G., FitzGerald, R. J.2005. Aggregation properties of whey proteinhydrolysates generated with Bacillus licheniformis proteinase activities. Journal of Agricultural andFood Chemistry,53(4):1258~1265
    Suetsuna, K.2000. Antioxidant Peptides from the Protease Digest of Prawn (Penaeus japonicus) Muscle.Marine Biotechnology,2(1):5~10
    Suetsuna, K., Ukeda, H., Ochi, H.2000. Isolation and characterization of free radical scavenging activitiespeptides derived from casein. The Journal of nutritional biochemistry,11(3):128~131
    Suhnel, S., Lagreze, F., Ferreira JF., Campestrini LH., Maraschin M.2009. Carotenoid extraction from thegonad of the scallop Nodipecten nodosus (Linnaeus,1758)(Bivalvia: Pectinidae). Brazilian Journal ofBiology,69:209~215
    Sumaya-Martinez, M., Thomas, S., Linard, B., Binet, A., Guerard, F.2005. Effect of Maillard reactionconditions on browning and antiradical activity of sugar-tuna stomach hydrolysate model system.Food Research International,38(8-9):1045~1050
    Sun, L. and Zhuang, Y.2012. Characterization of the Maillard Reaction of Enzyme-Hydrolyzed WheatProtein Producing Meaty Aromas. Food and Bioprocess Technology,5(4):1287~1294
    Sun, Q. and Luo, YK.2011. Effect of Maillard reaction conditions on radical scavenging activity of porcinehaemoglobin hydrolysate-sugar model system. International Journal of Food Science&Technology,46(2):358~364
    Sun, W., Zhao, M., Cui, C., Zhao, Q., Yang, B.2010. Effect of Maillard reaction products derived from thehydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensoryproperties of Cantonese sausages. Meat Science,86(2):276~282
    Sun, X. D. and Arntfield, S. D.2012. Molecular forces involved in heat-induced pea protein gelation:Effects of various reagents on the rheological properties of salt-extracted pea protein gels. FoodHydrocolloids,28(2):325~332
    Takada, T., Furusaki, A., Tanaka, Y.2009. Formaldehyde reduction with scallop shell powders fired at hightemperatures: Identification of the effective ingredient. Bio-Medical Materials and Engineering,19(2):187~192
    Takama, K., Suzuki, T., Kaga, H., Takamura, T., Taya, Y., Shimono, I., Watanabe, S.1999. Inhibition of theGrowth of Foodborne Disease-Causing Bacteria by Calcined Scallop Shell Powder. Bulletin of theFaculty of Fisheries, Hokkaido University,50(2):149~153
    Takenaka, Y., Arii, Y., Masui, H.2011. Network Structure and Forces Involved in Perilla Globulin Gelation:Comparison with Sesame Globulin. Bioscience, biotechnology, and biochemistry,75(6):1198~1200
    Tagliazucchi, D., Verzelloni, E., Conte, A.2010. Contribution of melanoidins to the antioxidant activity oftraditional balsamic vinegar during aging. Journal of Food Biochemistry,34(5):1061~1078
    Tang, X., He, Z., Dai, Y., Xiong, Y. L., Xie, M. Y., Chen, J.2010. Peptide Fractionation and Free RadicalScavenging Activity of Zein Hydrolysate. Journal of Agricultural and Food Chemistry,58(1):587~593
    Tavakoli, O. and Yoshida, H.2006. Conversion of scallop viscera wastes to valuable compounds usingsub-critical water. Green Chemistry,8(1):100~106
    Terentev, L. L., Terent'eva, N. A., Rasskazow, V. A.2008. Thymidine and thymidylate kinases from thescallop Mizuhopecten yessoensis gonads. Applied Biochemistry and Microbiology,44(5):466~472
    Thiansilakul, Y., Benjakul, S., Shahidi, F.2007. Compositions, functional properties and antioxidativeactivity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry,103(4):1385~1394
    Torita, A., Miyamoto, A., Hasegawa, Y.2007. The effects of scallop shell extract on collagen synthesis.Fisheries Science,73(6):1388~1394
    Torita, A., Miyamoto, A., Ishiguro, K., Yamamoto, S.2011. Organic components from scallop shellincrease expression of keratinocyte growth factor in human skin fibroblast. Fisheries Science,77(2):263~269
    Umetsu, H., Arai, M., Ota, T., Kaoru, ABE., Uchizawa, H., Sasaki, K.2004. Substrate Specificity ofAminopeptidase from the Mid-gut Gland of the Scallop (Patinopecten yessoensis). Bioscience,biotechnology, and biochemistry,68(4):945~947
    Umetsu, H., Arai, M., Ota, T., Kudo, R., Sugiura, H., Ishiyama, H., Sasak, K.2003. Purification andproperties of an aminopeptidase from the mid-gut gland of scallop (Patinopecten yessoensis).Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,136(4):935~942
    Velasco-Reynold C., Navarro-Alarcon M., Lopez-G de la Serrana H., Perez-Valero V., Lopez-Martinez MC.2008. In vitro determination of zinc dialyzability from duplicate hospital meals: influence of othernutrients. Nutrition,24(1):84~93
    Viarengo, A., Canesi, L., Martinez G., Peters LD., Livingstone DR.1995. Pro-oxidant processes andantioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) comparedwith the Mediterranean scallop (Pecten jacobaeus). Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,111(1):119~126
    Vhangani, LN., Wyk, JV.2013. Antioxidant activity of maillard reaction products (MRPs) derived fromfrutose-lysine and ribose-lysine model systems. Food Chemistry,137:92~98
    Wang, W and Mejia, EGD.2005. A New Frontier in Soy Bioactive Peptides that May Prevent Age‐relatedChronic Diseases. Comprehensive Reviews in Food Science and Food Safety,4(4):63~78
    Wasswa, J., Tang, J., Gu X., Yuan X.2007. Influence of the extent of enzymatic hydrolysis on thefunctional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. FoodChemistry,104(4):1698~1704
    Wang, B., Li, Z. R., Chi, C. F., Zhang, Q. H., Luo, H. Y.2012. Preparation and evaluation of antioxidantpeptides from ethonal soluble proteins hydrolysate of sphyrna lewini muscle. Peptides,36(2):240~250
    Xu, R.2009. Calcium binding of peptides derived from enzymatic hydrolysates of whey proteinconcentrate. International Journal of Dairy Technology,62(2):170~173
    Xiao, H., Wang, Y., Xiang, Q., Xiao, C., Yuan, L., Liu, Z., Liu, X.2012. Novel physiological properties ofethanol extracts from Eremurus chinensis Fedtsch. roots: in vitro antioxidant and anticancer activities.Food and Function,3:1310~1318
    Xiang, QS., Xiao, HF., Gao, SB., Wen, MT., Jia, GL., Ren, XM., Liu, XB.2012. In vitro antioxidantproperies of Rosa roxburghii aqueous extracts. Australian Journal of Crop Science,6(5):854~860
    Yoshikawa, S., Asano, K., Ohta T., Sasaki S., Tominaga K., Shimobayasi Y.2000. Fermentation of scalloppaste with lactic acid bacteria. Journal of Japanese Society of Food Science&Technology,49(1):53~56
    You, J., Luo, YK., Shen, HX., Song, YL.2011. Effect of substrate ratios and temperatures on developmentof Maillard reaction and antioxidant activity of silver carp (Hypophthalmichthys molitrix) proteinhydrolysate-glucose system. International Journal of Food Science&Technology,46(12):2467~2474
    Yilmaz, Y., Toledo, R.2005. Antioxidant activity of water-soluble maillard reaction products. FoodChemistry,93(2):273~278
    Yuan, Y., Wan, ZL., Yin, SW., Yang, XQ., Qi, JR., Liu, GQ., Zhang, Y.2013. Characterization of complexesof soy protein and chitosan heated at low pH. LWT-Food Science and Technology,50:657~664
    Zeng, Y., Zhang, X., Guan, Y., Sun, Y.2012. Enzymatic hydrolysates from tuna backbone and thesubsequent Maillard reaction with different ketohexoses. International Journal of Food Science&Technology,47(6):1293~1301
    Zhang, J. B., Wu, N. N., Yang, X. Q., He, X. T., Wang, L. J.2012. Improvement of emulsifying propertiesof Maillard reaction products from β-conglycinin and dextran using controlled enzymatic hydrolysis.Food Hydrocolloids,28(2):301~312
    Zhang, S. B., Wang, Z., Xu, S. Y., Gao, X. F.2009. Purification and characterization of a radical scavengingpeptide from rapeseed protein hydrolysates. Journal of the American Oil Chemists' Society,86(10):959~966
    Zhao, G., Liu,Y., Zhao MM., Ren JY., Yang B.2011. Enzymatic hydrolysis and their effects onconformational and functional properties of peanut protein isolate. Food Chemistry,127(4):1438~1443
    Zheng, H., Liu, H., Zhang T., Wang S., Sun Z., Liu W., Li Y.2010. Total carotenoid differences in scalloptissues of Chlamys nobilis (Bivalve: Pectinidae) with regard to gender and shell colour. FoodChemistry,122:1164~1167
    Zheng, J., Wu, H.T., Zhu, B.W., Dong, X.P., Zhang, M.M., Li, Y.L.2012. Identification of antioxidantologopeptides derived from autolysis hydrolysates of sea cucumber(Stichopus japonicus) guts.European Food Research and Technology,234(5):895~904
    Zhong, F., Wang, Z., Xu SY., Shoemaker CF.2007. The evaluation of proteases as coagulants for soyprotein dispersions. Food Chemistry,100(4):1371~1376
    Zhong, S., Ma, C., Lin, Y., Luo, Y.2011. Antioxidant properties of peptide fractions from silvercarp(Hypophthalmichthys molotrix) processing byproduct protein hydrolysates evaluated by electronspin resonance spectrometry. Food Chemistry,126(4):1636~1642
    Zhou, DY., Zhu, BW., Qiao, L., Wu, HT., Li, DM., Yang, JF., Murata, Y.2012. In vitro antioxidant activityof enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food andBioproducts Processing,90(2):148~154
    Zhou, DY., Zhu, BW., Tong L., Wu HT., Qin L., Tan H., Chi YL., Qu JY., Murata Y.2010. Extraction oflipid from scallop (Patinopecten yessoensis) viscera by enzyme-assisted solvent and supercriticalcarbon dioxide methods. International Journal of Food Science and Technology,45(9):1787~1793
    Zhu, L., Chen, J., Tang, XY., Xiong YL.2008a. Reducing, radical scavenging, and chelation properties ofin vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry,56(8):2714~2721
    Zhu, BW., Wang, LS., Zhou DY., Li DM., Sun LM., Yang JF., Wu HT., Zhou XQ., Tada Met.2008b.Antioxidant activity of sulphated polysaccharide conjugates from abalone (Haliotis discus hannai Ino).European Food Research and Technology,227(6):1663~1668
    Zhu, BW., Zhou, DY., Yang JF., Yan X., Li DM., Dong XP., Yu YH., Murata Y.2009. Structural analysis ofa polysaccharide from Patinopecten yessoensis viscera. European Food Research and Technology,229(6):971~974
    Zhuo, XY., Qi, JR., Yin, SW., Yang, XQ., Zhu, JH., Huang, LX.2013. Formation of soy proteinisolate-dextran conjugates by moderate maillard reaction in macromolecular crowdling conditions.Journal of the Science of Food and agriculture,93:316~323
    Zou, Q., Habermann-Rottinghaus, SM., Murphy, KP.1998. Urea effects on protein stability: Hydrogenbonding and the hydrophobic effect. Proteins: Structure, Function, and Bioinformatics,31(2):107~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700