用户名: 密码: 验证码:
直接式原生污水源热泵系统的防堵技术及换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水中蕴含有丰富的低位热能,将其作为热泵的冷热源为建筑供热空调具有巨大的开发利用价值。
     城市污水的水质极为恶劣。其热工与流动性能与清水有很大不同。污水处理厂中的二级出水(排放水)接近清水的水质,但由于污水处理厂多位于远离城市建筑群的郊区,因此真正具有巨大开发利用价值的是遍布城区污水渠中的原生污水。
     传统的热泵空调机组对水质有严格的要求。因此目前在利用原生污水的热泵系统中多为避免污水直接进热泵系统的蒸发器或冷凝器而设置一个中间换热的措施,即所谓“间接式系统”,这种间接式系统不仅要增加中间换热设备而且要增加系统的火用损失,故开发污水直接进机组的热泵系统,即所谓“直接式系统”,从污水源热泵技术产生以来就对学术与工程界具有巨大的诱惑力。
     直接式污水源热泵系统由于污水水质的特殊性,必须解决以下关键问题:(1)对过滤和防阻塞的效率和可靠性提出了更高的要求;(2)必须认清污水的流动、换热以及污垢热阻的特性与规律;(3)必须认清污水蒸发器、冷凝器的换热特性;(4)直接式热泵系统两换热器的合理匹配与性能。本文对此主要进行了下述研究工作:
     直接式污水源热泵系统能够长时间连续安全换热,首要前提是必须保证大尺度污物不进入机组的换热器中。针对已在间接式污水源热泵系统中普遍应用的污水防阻设备,通过工程实践和测试,总结发现:(1)丝状纤维类污物是阻塞滤面的最大诱因;(2)参考传统做法,仅靠过滤孔直径难以衡量防阻机滤面的过滤与再生能力;(3)不可避免的存在内漏混水的情况。论文建立了以缠绕长度、反冲效率、内漏率、换热保证率为核心的,包括滤孔直径、反冲面积比、转速、阻力等在内的防阻机设计指标体系,并通过工程测试确定了最佳的缠绕长度、反冲面积比和清洁周期,为防阻的科学合理设计及工程选用提供了合理依据。
     设计并在哈尔滨太平污水处理厂搭建了城市原生污水性能研究实验台,实验研究了城市原生污水在各种管材圆管内紊流流动时的污垢热阻特性,流动阻力特性及对流换热特性。通过大量实验数据总结出各种常用换热管内污垢热阻增长规律,以及污垢热阻稳定值与管内污水流速的函数关系、污水紊流流动的阻力系数计算式及换热准则关联式。实验表明污垢增长模型为时间的渐进型函数,在同管径同流速下污水的流动阻力系数约为清水的1.08~1.12倍,对流换热系数约为清水的0.75~0.82倍。这些基础数据与经验公式为污水源热泵系统的换热设备研发、系统设计等提供了较为可靠的依据。
     依据污水流动、换热及污垢热阻特性、换热管污水侧难以强化换热的特点,建立了污水蒸发器与冷凝器的分布参数模型,编制了仿真程序并进行了大量的数值研究,给出了污水蒸发器和冷凝器的传热系数范围,以及污水温度和流量变化对换热器换热特性的影响规律。发现与常规水源热泵的两换热器相比,污水蒸发器与冷凝器内污水以四流程为宜,冷凝器内蒸汽过热段所占比例较大,过热对冷凝换热影响明显,为系统换热器设计以及系统性能分析打下基础。
     通过直接式污水源热泵系统建模与数值仿真,给出了直接式系统的效能范围,以及污水温度对效能的影响规律。规定了污水源热泵机组的标准设计工况,并深入分析了污水蒸发器、冷凝器面积匹配比与机组制热量、制冷量、出力比之间的关系。由于污水源热泵机组具有更大的适宜面积比范围和出力比范围,提出不同地区采取不同面积比进行热泵机组设计的理念。最后给出了非标准工况下热泵机组的特性以及设计与选型原则。
     本文通过研究主要解决了直接式污水源热泵系统所面临的防堵塞可靠性、污水流动与换热计算方法、污水蒸发器与冷凝器的换热特性、机组换热器匹配等问题,为直接式污水源热泵技术的发展奠定了一定的理论基础。
Municipal sewage contains so abundant low level heat that it will mean ahuge value for development and utilization when used as a cold and heat source ofheat pumps for heating and air-conditioning system of buildings.
     The water quality of municipal sewage is extremely poor and the thermal andflow properties of it are quite different from those of clear water. In contrast, thewater quality of secondary effluent from sewage treatment plants (discharge water)is close to that of clear water. However, sewage treatment plants are mostly locatedin suburbs far away from the city buildings, so it is exactly untreated sewage allover the city sewers that will mean the huge value for development and utilization.
     Traditional heat pump air conditioning units have strict requirements on waterquality. Therefore, measures of intermediate heat-transfer are often taken in thepresent heat pump system based on untreated wastewater to avoid sewage flowingdirectly into the evaporator or condenser of the system which is the so-called"indirect system" and not only introduces extra intermediate heat-transfer devicesbut also increases system energy loss. So the development of heat pump systemnamely the so-called "direct system" allowing sewage to enter the units directlyshows a great allure on the academic and engineering fields from the origin of thetechnology of sewage-source heat pumps.
     Considering the specialty of the water quality of sewage, direct sewage-sourceheat pump system must solve the following key problems. Firstly, higherrequirement is needed for efficiency and reliability of filtering and anti-blocking.Secondly, the feature and discipline of flow, heat-transfer and fouling heatresistance of sewage must be recognized. Thirdly, the heat-transfer performance ofsewage evaporator and condenser should be recognized as well. At last, reasonablematch and performance of the two machines of direct heat system need to be takeninto consideration. This paper mainly introduces the research work on thementioned techniques as follows.
     The primary precondition of safe and enduring heat-transfer for direct sewagesource heat pump set is to guarantee that large-scale contaminant of all shapescannot enter the heat exchanger of the set. Corresponding to the universally employed sewage clog-proof machine in indirect sewage source heat pump systems,we have performed engineering practice and test, according to which we makefollowing conclusions. Firstly, filamentous contaminant is the main incentive ofblocking filter surface. Secondly, referring to the traditional method, it is tough tomeasure the filtration and regeneration ability of the clog-proof machine’s filtersurface only with the diameter of filter hole given. Thirdly, the condition of internalleakage mixing water exists inevitably. The paper establishes a design index systemof clog-proof machine including filter pore diameter, recoil area ratio, rotatingspeed, resistance and so on, and winding length, recoil efficiency, internal leakagerate and heat-transfer guaranteed rate are the core of the index system. The paperalso defines the optimal filter pore size, recoil square ratio and cleaning period ofthe clog-proof device by engineering tests, all three of which provide reasonablefoundation for scientific and rational design of clog-proof device for engineeringapplication.
     An experiment table focusing on city untreated sewage properties research hasbeen designed and constructed in Harbin Taiping sewage treatment plant as to bementioned in the paper. Experiments have been executed on the fouling heatresistance performance, flow resistance characteristics and flow and heat-transfercharacteristics of urban untreated sewage turbulent flow in a variety of pipes.Through considerable experimental statistics, we can reach such conclusions asfouling heat resistance growth disciplines for kinds of common heat-transfer pipes,the function between the stable value of fouling thermal resistance and the sewageflow rate in the pipe, an expression for resistance coefficient of sewage turbulentflow and finally a heat transfer correlation formula. The experiment resultsdemonstrate fouling growth model as a progressive function of time. Specifically,experiments verify that with same pipe diameter and flow rate, the flow resistancecoefficient of wastewater is approximately1.08~1.12times that of clear water,whereas the convective heat transfer coefficient is about75~82percent of that ofclear water. These fundamental statistics and empirical formulas provide morereliable basis for heat-transfer device development and system design of sewagesource heat pump systems.
     Based on the sewage flow, heat transfer and fouling resistance properties andthe characteristic of difficulty in heat transfer enhancement at the sewage side ofheat transfer tube, a distributed parameter model of the sewage evaporator and condenser is established, and simulation programs have been developed andemployed to do amounts of numerical study which obtains the scope of sewageevaporator and condenser heat transfer coefficients and the law of influence exertedby sewage temperature and flow changes on their heat transfer properties. It is alsofound that compared with the two machines of the conventional heat pump, thesewage evaporator and condenser have following prominent characteristics. Fourprocesses are appropriate for wastewater inside the machines, and steamsuperheating segment in condenser takes up a great proportion. In addition, theimpact of superheating on condensation heat transfer is significant. All theachievements lay the foundation for system evaporator and condenser design andsystem performance analysis.
     Through direct sewage source heat pump system modeling and numericalsimulation, the efficiency range of direct system and the law of sewage temperature’sinfluence on performance are given. Then we set the standard designed workingcondition of sewage source heat pump units and do deep analysis on the relationshipbetween the matching ratio of sewage evaporator and condenser area and heat output,cooling capacity and power output of the units. For the greater range of suitable arearadio and power output radio of sewage source heat pump unit, we put forward theconcept that different area ratio will be adopted while designing heat pump units indifferent regions. Finally the characteristics of heat pump units and principles fordesign and selection are introduced under non-standard working conditions.
     By researching, this paper has mainly solved problems faced by direct sewagesource heat pump system such as the clog-proof reliability, sewage flow and heattransfer calculation method, heat transfer properties of sewage evaporator andcondenser and the matching of the two devices, all of which lay theoreticalfoundation for the development of direct sewage source heat pump system.
引文
[1]王大中.能源、资源与海洋发展科技问题[EB/OL].[S.l.]:科技日报网,2004.[2004-6-25]. http://www.stdaily.com.
    [2]龙惟定,王长庆,丁文婷.试论中国的能源结构与空调冷热源的选择取向[J].暖通空调,2000,30(5):27-32.
    [3]龙惟定,白玮,张蓓红等.中国住宅空调的未来发展[J].暖通空调,2002,32(4):43-47.
    [4]龙惟定.试论我国暖通空调业的可持续发展[J].暖通空调,1999,29(3):25-30.
    [5]江亿.建筑节能——实现可持续发展的必由之路[J].科技潮,2005,198(6):1-3.
    [6]焦红光,胡正彬.浅谈我国燃煤污染危害及其防治[J].选煤技术,2004(2):3-7.
    [7]范存养,林忠.住宅环境设备的现状与发展[J].暖通空调,2002,32(4):34-42.
    [8]孙德兴,吴荣华,张承虎.开发水源技术解决热泵发展的瓶颈问题[J].中国勘察设计,2006,21(5):30-32.
    [9]孙德兴,张承虎,庄兆意.污水源热泵供暖空调中的新概念与新名词[J].暖通空调,2010,40(6):126-129.
    [10]吴学慧,孙德兴.城市原生污水换热器的能效分析[J].可再生能源,2007,25(2):73-75.
    [11] Funamizu N, Iisa M. Reuse of heat energy in wastewater: Implementationexamples in Japan[J]. Water Science and Technology,2001,43(10):277-286.
    [12]大迫健一.全国初の下水(未处理)を利用した地域冷暖房[J].建筑设と偏配管工时,1993.
    [13] Bansal B, Muller-steihagen H. Crystallization fouling in palte heatexchangers[J]. Journal of heat transfer,1993(115):584-591.
    [14]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993.
    [15] Muller-steinhagen H. Fouling of heat exchanger surfaces[J]. Chemistry&industry,1995(3):171-175.
    [16]张晓峰,张小萌.管壳式换热器的腐蚀与防护分析[J].化工装备技术,1997(1):52-55.
    [17] Trelease W S. Water source heat pump evaluation[J]. Heat pump air-conditioning,1980.
    [18]吴荣华,张承虎.城市污水冷热源应用技术发展状况研究[J].暖通空调,2005,6(35):31-36.
    [19] Enstrom H. Some experiences of heat pump in district heating networks[C].16th International Congress of Refrigeration,1983.
    [20] Funamizu N, Iisa M. Reuse of heat energy in wastewater: implementationexamples in Japan[J]. Water Science and Technology,2001,43(10):277-286.
    [21] Yoshii T. Technology for utilizing unused low temperature difference energy[J].Journal of the Japan Institute of Energy,2001,8:696-706.
    [22] Stijemstrom B. Feeding large heating pumps form sewage water treatmentplants[C]. Proceedings of the International Conference on Applications andEfficiency of Heat Pump Systems,1991:183-192.
    [23]Centre for the Analysis and Dissemination of Demonstrated EnergyTechnologies. First DHC System in Japan Using Untreated Sewage as a HeatSource[M]. New York:CADDET,1997:1-4.
    [24] IEAHPC. Heat sources[Z/OL].[2012-05-17]. http://www.heatpumpcentre.org/Aout~heat~pumps/heat~sources.asp.
    [25]尹军,韦新东.日本城市污水热能利用系统运行状况分析[J].吉林建筑工程学院学报,1999,12(4):31-38.
    [26]全贞花,尹军.日本城市污水热能回收利用的发展现状[J].吉林建筑工程学院学报,2003,3(20):4-6.
    [27] Arashi Norio. Evaluation of energy use in district heating and cooling plantusing sewage and one using air as heat source[J]. Journal of the Japan Instituteof Energy,2000(5):446-454.
    [28] Cerepnalkovski I S. Utilization of waste heat from Skopze Steel Plant usingheat pumps as a significant component of the district heating and electric powersystems[C].16th International Congress of Refrigeration,1983.
    [29] Baek N C. Study on the heat pump system using waste water as a heat source.Energy research and development,1994:16-17.
    [30] Baek N C, Shin U C, Yoon J H. A study on the design and analysis of a heatpump heating system using wastewater as a heat source[J]. Solar Energy,2005,78:427-440.
    [31] Korea Institute of Energy Research. Feasibility study on heat pump systemusing waste thermal hot water as a heat source[R]. Internal report of KoreaInstitute of Energy Research,2001.
    [32] Stephen K. Heat pump promotion–a prospect in Switzerland and Europe,2005.
    [33] Leif Westin. Heat Pump Based on Sewage for District Heating[J]. New EnergyConference Technology,1981(3):45-49.
    [34]冯彦刚.城市污水资源化的研究[D].北京:北京工业大学,2001.
    [35]姚杨,宋艳,那威.污水源热泵系统中多级淋激式换热器的设计与分析[J].暖通空调,2007,37(3):63-67.
    [36]姚杨,赵丽莹,马最良等.某药厂污水源热泵系统的模拟与分析[J].哈尔滨工业大学学报,2006,38(5):797-800.
    [37]姚杨,宋艳.污水源热泵处理温污水的模拟分析[J].中国给水排水,2006,13(22):70-73.
    [38]李瑞霞,尤晶.直接式污水源热泵系统在奥运村换热站中的应用[J].暖通空调,2009,39(5):139-141.
    [39]李建兴.污水处理厂采用热泵技术实现区域供冷供热的探讨[J].中国建设信息供热供冷,2006,12:23-25.
    [40]武姿,张世刚,付林等.污水换热器传热性能测试分析[J].暖通空调,2009,39(2):87-89.
    [41] Qiong Sun, Zhaoyi Zhuang. Operating performance analysis on heatingconditions of large sewage source heat pump system[C].2011InternationalConference on Electric Technology and Civil Engineering (ICETCE2011).Lushan, China,2011:1375-1378.
    [42]李鑫.污水源热泵系统中换热器内污垢生长特性研究[D].哈尔滨:哈尔滨工业大学,2007.
    [43]肖红侠.新型在线自除污换热装置研究[D].哈尔滨:哈尔滨工业大学,2009.
    [44]吴学慧.城市污水换热器污垢对流动和换热的影响[D].哈尔滨:哈尔滨工业大学,2008.
    [45] Kern D Q, Seaton R E. A theoretical analysis of thermal surface fouling[J].British Chemical Engineering,1959(4):258-262.
    [46] Zubair S M, Sheikh A K, Shaik M N. A probabilistic approach to themaintenance of heat-transfer equipment subject to fouling[J]. Energy,1992,17(8):769-776.
    [47]徐志明,郭淑清,杨善让.基于概率分析的污垢模型[J].工程热物理学报,2003,24(2):322-324.
    [48]张承虎,孙德兴,吴荣华等.关于城市原生污水热能资源化相关概念和分类的探讨[J].暖通空调,2006,36(3):10-16.
    [49] Hasson D. Calcium Carbonate Scale Deposition on Heat Transfer Surfaces[J].Desalination,1968,5:107-119.
    [50] Muller-steighagen H, Branch C A. Calcium Carbonate Fouling of Heat TransferSurface[C]. Australia's Bicentennial International Conference for the ProcessIndustries,Sydney,1988:101-106.
    [51] Kalnankhov L R, et al. In: Proceedings6th Intem Symposium Flesh Water fromthe Sea. Athens.1978,2:211.
    [52] Chemozubov V B, et al. In:4th International Symposium on Fresh Water fromthe Sea. Heidelberg,1973,2:57.
    [53] Watkinson A P, Louis L, Brent R. Scaling of Enhanced Heat ExchangerTubes[J]. Canadian Journal of Chemical Engineering.1974,52:558-562.
    [54] Characklis W G. Microbial Fouling[M]. In: Characklis W G, Marshall K C, eds.Biofilems. New York,Wiley,1990.
    [55] Mott I E C, Santos R, Bott T R. The Effect of Surface on the Development ofBiofilms[C]. Proc3e'me Re'union Europe'enne Adhesion des Micro-Organisment aux Surfaces. Chatenay-Malabry,1994,21:1-2.
    [56] Reid D C, Bott T R, Miller R. Biofouling in Stirred Tank Reactors-Effect ofSurface[J]. Biofilms-Science and Technology,1992:521-526.
    [57] Mott I E C, Bott T R. The Adhesion of biofilms to Selected Materials ofConstruction for Heat Exchangers[C]. Proc9th Int Heat Trans ConfJerusalem,1991:21-26.
    [58] Bott T R. Aspects of Biofilm Formation and Destruction[J]. CorrosionReview,1993,49:1-24.
    [59] Characklis W C, Coolcsey K E. Biofilms and Microbial Fouling[J]. Advancesin Applied Microbiology,1983,29:93-138.
    [60] Rabbas T J, Panchal C B, Sasscer D S, et al. Comparison of River WaterFouling Rares for Spirally Indented and Plain Tubes. Heat Transfer Engineering.1993,14(4):58-73.
    [61]曲云霞,李梅,杨勇等.污水源热泵系统污水水质与换热管材质的选择[J].可再生能源,2007,25(4):72-75.
    [62]陈志峰,闫泽生.塑料换热器在污水源热泵系统中的应用分析[J].哈尔滨商业大学学报,2006,22(3):55-57.
    [63]樊绍胜.冷凝器污垢清洗的智能测量与控制方法研究[D].长沙:湖南大学,2006:5-15.
    [64]刘东宁.冷却器胶球在线清洗技术研究与工业应用[J].石油化工设备,2006,35(3):64-67.
    [65]黄若熙.300MW汽机凝汽器胶球清洗系统改造[J].电力安全技术,2007,9(1):33-34.
    [66]王安民,朱磊,卢溪.压差式原生污水源热泵机组自动清洁装置[P].中国发明专利:200820074143.7,2008.03.21.
    [67]孙德兴,张承虎,肖红侠.拉阀式换热表面实时在线清洁换热装置[P].中国发明专利:200710144334.6,2007.09.19.
    [68]吴荣华,张成虎,孙德兴.城市原生污水源热泵系统运行工况与参数特性[J].流体机械,2005,33(11):73-76.
    [69]吴荣华,孙德兴,张成虎等.热泵冷热源城市原生污水的流动阻塞与换热特性[J].暖通空调,2005,35(2):86-88.
    [70]涛郁.管道内污水两相流动的阻力特性[D].重庆:重庆大学,2002.
    [71]王光谦.固液两相流与颗粒流的运动理论与实验研究[D].北京:清华大学,1989.
    [72] Buyevich Y A. Hydrodynamic Model of Disperse Systems[J]. Journal ofApplied Mathematics and Mechanics,1969,33(3):482-486.
    [73] Buyevich Y. Statistical Hydrodynamics of Disperse Systems, PhysicalBackground and general Equations[J]. Journal of Fluid Mechanics,1971(1):489-490.
    [74] Murray J D. On Equations of Motion for a Particle-Fluid Two Phase Flow,National Center For Air Pollution Control Grant Ap00455-01[R].[S.l.]:[s.n.],1966:78-81.
    [75] Anderson T B, Jackson R. Fluid Mechanical Description of Fluidized Beds[J].Industrial and Engineering Chemistry Fundamentals,1967(5):527-539.
    [76] Murray J. On the Mathematics of Fluidization, Fundamental Equations andWave Propagation[J]. Journal of Fluid Mechanics,1965(21):465-493.
    [77] Liu Dayou. Discusssion on the concepts of two-phase flow, multiphase flow,multifluid and non-newtonian flow[J]. Advances in Mechanics,1994,24(1):66-73.
    [78] Liu Dayou. A comment on the defect of sediment theory–a discussion on thesuitability of the diffusion model and the Fick’s law[J]. Journal of SedimentResearch,1996(3):39-44.
    [79]刘大有.描写混合物运动的双流体模型与扩散模型[C].第4届全国多相流、非牛顿流和物理化学流学术会议论文集,中国,西安,1993:21-26.
    [80]吴荣华.城市原生污水源热泵系统研究与工程应用[D].哈尔滨工业大学,2005.
    [81]张维佳,潘大林.工程流体力学[M].哈尔滨:黑龙江科学技术出版社,2001.
    [82]屠大燕.流体力学、泵与风机[M].北京:建筑工业出版社,1994.
    [83]蔡增基,李炳田.管道内污水两相流的阻力计算[J].管道技术与设备,2005(3):12-14.
    [84]刘大有.研究多相介质运动的意义、内容和方法[J].力学与实践,1995,17(6):1-10.
    [85]赵丽娟,倪福生.管道固-液两相流研究的意义、内容和方法[J].管道技术与设备,2003(1):3-6.
    [86]段金明,周敬宣.真空排污管内多相流动阻力特征研究[J].华中科技大学学报,2006,23(1):46-48.
    [87]汪体乾.化工流变学[M].上海:华东理工大学出版社,2004.
    [88]汪体乾.非牛顿流体流态分析[J].力学学报,1988,20(3):29-36.
    [89] Metaner A B, Doge D W, Rheologia Acta, band1P205.
    [90]汪体乾.化工工艺手册[M].上海:上海科学技术出版社,1995.
    [91]徐莹.城市污水流变与换热特性研究[D].哈尔滨:哈尔滨工业大学,2009.
    [92] Toms B A. Some observations on the Flow of Linear Polymer Solutions throughStraight Tubes at Large Reynolds Numbers[C]. Proc. of the1st InternationalCongress on Rheology, North-Holland, Amsterdam,1949,2:135.
    [93]王红苗,葛绍岩,姚永庆. b/a=0.5的椭圆形通道内非牛顿流体的强化传热[J].工程热物理学报,1996,17(2):203-209.
    [94]唐福瑞.搅拌槽内非牛顿流体换热特性[J].化工学报,1983(4):289.
    [95]赵明明.热泵冷热源污水的换热特性研究[D].哈尔滨:哈尔滨工业大学,2008.
    [96]吴学慧,孙德兴.城市原生污水换热器的能效分析[J].可再生能源,2007,25(2):73-75.
    [97]姜益强,姚杨,马最良等.具有快速除污功能的干式管壳式换热器[P].中国发明专利:200810136804.9,2008.07.28.
    [98]白莉.城市污水热能利用的实验研究[D].长春:吉林大学,2002.
    [99]姚杨,姜益强,马最良等.寒冷地区处理后污水-原生污水热泵系统[P].中国发明专利:200510010384.6,2005.09.28.
    [100]宋艳.处理后污水-原生污水热泵的淋激式换热器研究[D].哈尔滨:哈尔滨工业大学,2008.
    [101]黎庆明.论板式换热器的反冲洗[J].山西建筑,2009,35(4):224-225.
    [102]姚杨,马最良,赵丽莹.污水源热泵系统的设计计算[J].煤气与热力,2005,25(2):39-42.
    [103]秦娜.原生污水的紊流特性及其热泵系统的研究[D].天津:天津大学,2010.
    [104]张承虎,孙德兴,吴荣华等.城市污水冷热源输送换热法(1):流动阻力与能耗分析[J].暖通空调,2008,38(2):75-79.
    [105]张承虎,孙德兴,吴荣华等.城市污水冷热源输送换热法(2):换热形式与效率分析[J].暖通空调,2008,38(3):68-72.
    [106]钱剑锋,孙德兴,张承虎等.城市污水热泵系统的有限时间热力学优化分析[J].煤气与热力,2007,27(6):61-64.
    [107]吴学慧,孙德兴.基于遗传算法的原生污水源热泵优化设计[J].节能技术,2007,3(2):99-101.
    [108]庄兆意,孙德兴,张承虎等.污水源热泵系统优化设计[J].暖通空调,2009,39(9):111-114.
    [109]张承虎,吴荣华,刘志斌等.污水源热泵系统双级水泵运行特性研究[J].哈尔滨工业大学学报,2007,39(10):1601-1605.
    [110] Zhuang Zhaoyi, Zhang Chenghu, Wang Haiyan. Parallel OperationCharacteristics Analysis of Sewage Source Heat Pump Units in Winter,Transactions of Tianjin University,2010,16(6):461-466.
    [111]崔福义,李晓明,周红.污水源热泵供热空调的技术经济分析[J].节能技术,2005,23(1):14-17.
    [112]黄国琦.城市污水源热泵的开发和应用[J].流体机械,2005,6(33):76-78.
    [113]王宏哲,尹军.城市污水热能回收与利用评价指标体系的探讨[J].长春科技大学学报,2001,4(31):382-384.
    [114]张承虎.地表水源热泵的技术经济与环保效益分析[J].节能技术,2007,5(25):199-202.
    [115]曹玉璋,邱续光.实验传热学[M].北京:国防工业出版社,1999.
    [116]方修睦,姜永成,张建利.建筑环境测试技术[M].北京:中国建筑工业出版社,2002.
    [117]徐莹,张承虎,孙德兴.城市污水源热泵工质流变特性研究[J].节能技术,2009,27(3):201-204.
    [118]王凯.非牛顿流体的流动、混合和传热[M].杭州:浙江大学出版社,1986.
    [119] Wu Xue-hui, ZHANG Cheng-hu, ZHAO Ming-ming. Experimental study onviscosity characteristic of sewage in urban untreated sewage source heat pumpsystem[J]. Journal of Harbin Institute of Technology,2010,17(1):82-84.
    [120] Vargaftjk N B. Tables on the Thermophysical Properties of liquids andGases[M]. John Wiley&Sons Inc.,New York,1975.
    [121]国家环境保护总局,水和废水检测分析方法编委会.水和废水检测分析方法[M].北京:中国环境科学出版社,2002.
    [122] Wagner L, Make J S. Factors influencing the adhesion of microorganisms tosurfaces[J]. Journal of Adhesion,1986,20:187-210.
    [123]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.
    [124]杨善让,徐志明,孙灵芳.换热设备的污垢与对策(第二版)[M].北京:科学出版社,2004.
    [125]贾月梅.流体力学[M].北京:国防工业出版社,2005.
    [126]徐莹,伍悦滨,孙德兴.城市污水的流动特性理论研究[J].哈尔滨工业大学学报,2010,42(8):1292-1296.
    [127]章熙民,任则霈,梅飞鸣.传热学[M].北京:中国建筑工业出版社,1997.
    [128] Glen N F, Howarth H J, Jenkins A M. The estimation of errors and uncertaintyin the determination of fouling resistances[M]. In: Bott T R, et al. eds.Understanding heat exchanger fouling and its mitigation. New York, BegellHouse Inc,1999:369-375.
    [129] Gnielinski V. New equations for heat and mass transfer in turbulent pipe andchannel flow. International Journal of Chemical Engineering,1976,16(2):359-368.
    [130]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006:505-506.
    [131] Cheng B, Tao W Q. Experimental study of R152a film con-densation on singlehorizontal smooch tube and enhanced tubes[J]. ASME Jounral of Heat Transfer,1994,116(2):266-270.
    [132]张定才,王凯,何雅玲等. R134a在水平双侧强化管外沸腾换热[J].化工学报,2007,58(11):2710-2714.
    [133]刘启斌,何雅玲,张定才. R123在水平双侧强化管外池沸腾换热[J].化工学报,2006,57(2):251-257.
    [134] Webb R L, Pals C. Nucleate boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries[J]. International Journal of Heat and MassTransfer,1992,35(8):1893-1904.
    [135]黄兴华,王启杰,王如竹.基于分布参数模型的满液式蒸发器性能模拟[J].上海交通大学学报,2004,38(7):1164-1169.
    [136]陆亚俊,马最良,姚杨.空调工程中的制冷技术[M].哈尔滨:哈尔滨工程大学出版社,1997:112-115.
    [137]周光辉,张定才. R134a在水平强化管外凝结换热的实验研究[J].制冷学报,2006,27(6):25-28.
    [138]张定才,刘启斌,陶文铨等. R22在水平双侧强化管外的凝结换热[J].化工学报,2005,56(10):1865-1868.
    [139]曹建英,罗忠,吴剑.一种蒸发冷凝兼备型传热管[P].中国发明专利:200710036471.8,2007.01.15.
    [140]朱聘冠.换热器原理与计算[M].北京:清华大学出版社,1987.
    [141]钱颂文.管壳式换热器设计原理[M].广州:华南理工大学出版社,1990.
    [142]潘继红,田茂诚.管壳式换热器的分析与计算[M].北京:科学出版社,1996.
    [143]张光玉,姜守忠.满液式蒸发器的液位检测与控制[J].制冷空调与电力机械,2006,27(2):56-58.
    [144] Webb R L, Pals C. Nucleate boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries[J]. International Journal of Heat and MassTransfer,1992,35(8):1893-1904.
    [145] Browne M W, Bansal P K. Heat transfer characteristics of boiling phenomenonin flooded refrigerant evaporators[J]. Applied Thermal Engineering,1999,19:595-624.
    [146]黄兴华,沈坤全,史剑戟.电站凝汽器蒸汽流动和换热的数值模拟[J].动力工程,1998,18(3):79-86.
    [147] Danilova G. Heat exchangers in refrigeration plant[M]. Lenigrad, Russia:Machinostroenie Publishing House,1986.
    [148]马志先,张吉礼,孙德兴. HFC245fa水平光管与强化管管束外冷凝换热[J].化工学报,2010,61(5):1097-1106.
    [149] Webb R L, Choi K D, Apparao T R. A theoretical model for prediction of theheat load in flooded refrigerant evaporators[J]. ASHRAE Transactions,1989,95(1):326-338.
    [150]丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社,2001.
    [151]彦启森.空气节用制冷技术[M].北京:中国建筑工业出版社,2004.
    [152]张乐平,张早校,郁永章.电子膨胀阀流量特性及选型的分析[J].流体机械,2000,28(12):51-53.
    [153]翁文兵,王瑾竹,蒋能照.电子膨胀阀的质量流量特性的实验研究[J].流体机械,1998,26(10):58-61.
    [154]丁国良,张春路.制冷空调装置智能仿真[M].北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700