用户名: 密码: 验证码:
城乡耦合系统人类主导的碳循环及生态服务
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动已强烈修饰(干扰)甚至主导陆地生态系统碳的生物地球化学循环,在满足人类食物和居住等基本需求的同时,也产生严重的环境和健康问题。自工业革命以来,人类对原生态系统干扰使其发生结构破缺和功能分化,形成为人类需求服务的单一目标功能单元(如农田、城市、污水处理厂等)。这些单元再通过耦合与自组织升级形成现实物理空间中以城市为核心的新系统——城乡耦合系统(Urban and Rural Coupling Systems, URCS)。尽管URCS的结构与功能日益完备,其碳生物地球化学循环过程以及所提供的生态服务仍不清楚。为明确URCS中不同功能子系统的碳循环特征及生态服务,本研究尝试构建URCS中人类主导的碳循环框架,阐明其中典型过程的碳平衡和生态服务变化,并探讨其自然-社会-经济影响因素。
     本文将URCS分为生产、分解、人居和生命支持四个功能子系统,以其中典型人工系统为例打开URCS中人类主导下碳循环黑箱,基于质量平衡法构建生产-分解-人居-生命支持功能子系统之间的碳循环框架。同时,通过温室农业、人工湿地和城市等案例来研究URCS中典型的人类活动影响碳平衡和生态服务的过程,并探究其中的自然-社会-经济影响因素。本文采取实验测定和文献数据收集相结合的整合分析法来编译相关碳循环的数据集,并以质量平衡和生命周期法来量化相应过程的碳平衡及生态服务,再通过回归和差异显著性分析来阐明相关的影响因素。以下是主要结论:
     1)人类主导作用增加URCS各功能子系统之间的碳流路径和碳库种类,并增加碳积累。其中,农田子系统2009年光合碳输入(623.1Tg C yr-1)约有88%的光合碳输入由于人类利用而进入工业、人居、畜牧水产等子系统,其碳输出路径多于分解和人居子系统;分解子系统向生命支持子系统的碳输出小于农田和人居子系统,能处理约79%的人居子系统废物碳输出;人居子系统2009年碳积累分别相当于农田和分解子系统的1.9和3.2倍,其中无机碳固持和农田相当,揭示出人类的居住和生活需求倾向于在人居子系统中积累碳。2009年农田和人居子系统的生命周期碳平衡为净碳源,分解子系统为净碳汇。但分解子系统仍是一个净温室气体的排放源(12.8-69.1Tg C02-eq),并不能缓解温室效应。
     2)在URCS中,从传统农业转变为塑料温室农业的食物生产集约化过程在中国五个气候区(寒温带区、中温带区、北亚热带区、南亚热带区和青藏高原区)中均可减少生命周期碳排放,平均为1.51t C hm-2yr-1。若考虑N20排放,生命周期温室气体减排平均约为5.42t C02-eqhm-2yr1。这是主要是由于转变为塑料温室后净初级生产力和土壤碳固持的增加抵消外部有机肥碳输入和化石燃料碳排放的增加。该集约化过程还增强作为生产子系统目标功能——食物供给并伴随着多重生态服务和负服务的增加。塑料温室农业供给服务的经济价值占全部服务经济总价值的84%。在中国五个气候区中,从传统农业转变为塑料温室农业既增加生态服务(如蔬菜供给、碳固定、节水和减缓沙尘暴等)又增加负服务(如土壤盐渍化和酸化、温室气体排放等),但其生态系统服务净经济价值均为正。
     3)人工湿地作为传统人工分解系统替代的典型案例,增强URCS的污水处理能力,是污水处理厂的重要补充途径之一。它在处理污水的同时可利用废N生产生物能源。人工湿地的生命周期碳排放比污水处理厂减少14tCt-1N去除,生命周期温室气体排放减少575t CO2-eq t-1N去除。主要是由于其较低的建造和运行成本使得物质和能量消耗较少。无论作为污水处理还是能源生产系统,人工湿地污水处理(或提供清洁水)的经济价值占生态服务总经济价值的97%。作为污水处理系统,人工湿地供给服务和调节服务经济价值分别是污水处理厂9.5和10.4倍,其负服务经济价值仅为污水处理厂的0.09%;作为能源生产系统,人工湿地生态服务总价值略高于微藻系统,是其他能源系统(如柳枝稷和大豆)的153-602倍。
     4)城市生态系统作为URCS的调控中心,包括城市绿地系统和人居系统。尽管城市是一个巨大的碳源,但城市化过程增加碳密度。中国16个城市建成区人居系统平均碳密度(177.8t C hm-2)高于城市绿地系统(120.1t C hm-2)和同区域自然生态系统(109.8t C hm-2)。若考虑城市生态系统作为URCS物理空间上的一个结构功能单元,中国16个城市生态系统平均碳密度可达297.9t C hm-2,高于中国森林生态系统的平均碳密度(208.5t C hm-2)和热带雨林(40-250t C hm-2)的碳密度。这主要是由于绿地土壤碳密度的增高和人居系统碳库种类的增加.城市绿地系统作为生命支持系统之一,为人居系统提供景观美学、气候调节、空气净化等服务,改善城市的环境。其中文化服务(景观美学)经济价值平均为总服务经济价值的84%。同时,中国16个城市建成区绿地系统在人类管理下仍可带来生命周期净碳减排达,其负服务相对较小。
     5)在URCS中生产、分解和城市生态系统碳平衡仍受到自然因素的直接或间接影响,并均为温度。如传统农业转变为塑料温室过程中积温增高可延长蔬菜生长季,提高系统的净初级生产力进而增加土壤碳固持;温度影响人工湿地的微生物过程从而改变CH4和N2O的排放;绿地碳密度随年均温增高而显著降低,可能由于高温增加土壤碳呼吸,而城市人居碳密度则与城市年均温呈显著的二次关系并在年均温居中的城市里最高,这可能是由于人们倾向于居住在温度适中的地方。社会经济对碳平衡的影响因素却比较多样化。如塑料温室农业在寒冷地区转变收益高于温暖地区,从而农户更愿意输入更多有机肥,从而增加净初级生产力和土壤碳固持;人工湿地中通过采取合理的N利用技术,使用垂直流人工湿地以及选取芦竹、芦苇等生产力较高的物种等易行手段可提高净初级生产力;城市绿地碳密度与单位面积能耗呈显著的二次关系并在单位面积能耗适中的城市里最低。城市人居系统碳密度同时随着单位面积家庭数和能耗的增加而线性增高,与城市人均GDP呈显著线性负相关。
     综上,本研究揭示URCS中不同功能(生产、分解和人居)子系统的碳循环过程,补充碳的生物地球化学循环理论中人类主导影响下的碳循环部分。同时,通过食物生产集约化、传统人工分解系统替代和城市化过程理解人类主导下碳平衡与生态服务,以及自然-社会-经济影响因素,将为未来制定经济-生态-社会三赢的可持续发展模式提供科学理论依据。
Human activities have intensively modified and domianted the carbon cycle of terrestrial ecosystems. While satisfying basic needs for food and housing, human activities have brought serious environmental and health problems. Since industrial revolution, the human disturbances have broken the structure and differentiate the function of pristine ecosystems, forming functional units (e.g. croplands, city or wastewater treatment) with single goal to meet human needs. These units are in turn coupling, self-organizing and upgrading into new systems existing in real world with city as the core, i.e. Urban and Rural Coupling Systems (URCS). Although the structure and function of URCS is approaching perfect, its carbon cycle and ecosystem services remain largely unknown. In order to understand the carbon cycle and ecosystem services of different functional sub-systems, this study tried to construct the framework of human dominated carbon cycle in URCS. Based on the framework, we investigated the change of carbon cycle and ecosystem services during typical human dominated processes (e.g. agricultural intensification), and explored their natural, social and economic effect factors.
     This study devided URCS into four functional subsystems:production, decomposition, human settlement and life-supporter. The specific processes of human dominated carbon cycle for URCS were explained using typical artificial ecosystems. Then, the framework of carbon cycle among production-decomposition-human settlement and life-supporter sub-systems were constructed with mass balance method. Finally, this paper used greenhouse agriculture, constructed wetland and urban ecosystem as case studies to investigate the human dominated carbon balance and ecosystem services during typical processes of URCS. Furthermore, the natural and socialeconomic factors affected the carbon cycle are also considered. This paper use meta-analysis to compile dataset with multiple data sources from experiments and literatures. Next, the carbon balance and ecosystem services during corresponding processes are quantified using mass balance and life cycle analysis. The effect factors are explained with statistial methods. The main results are as follows:
     1) Human domination has increased the pathways of carbon fluxes and diversities of carbon pools among different functional sub-systems in URCS. As a result, carbon accumulation also increased in human dominated systems. In2009, the photosynthetic carbon inputs of croplands is623.1Tg C yr-1. About88%of the photosynthetic carbon inputs are appropriated by humans and exported into industry, human settlement and livestock sub-systems. The pathways of carbon outputs for croplands are more than that of decomposition and human settlement. The carbon output intensity of deompositon sub-systems into life-supporter sub-systems is lower than that of croplands and human settlements, In2009, the decomposition sub-system can treat~79%waste carbon outputs from human settlements. Human settlements can accumulate1.9-and3.2-fold carbon that of croplands and decomposition sub-systems in2009. The inorganic carbon sequestration in human settlement is similar to that of croplands. These resutls indicates human activities tend to accumulate carbon in human settlements. The life cycle carbon balances of croplands and human settlement in2009act as carbon sources while that of decompositon sub-systems is carbon sinks. However, decompostion sub-systems are also a net greenhouse gas souces (12.8-69.1Tg CO2-eq), contributing to greenhouse effect.
     2) As intensification of food production in URCS, the conversion from conventional farming to plastic greenhouse agriculture can reduce carbon emissions under five climatic zones (cold-temperate, mid-temperate, Tibet, northern and southern subtropical zones) in China. The average carbon emission and greenhouse gas reduction is1.51t C hm-2yr-1and5.42t CO2-eq hm-2yr-1under life cycle analysis, respectively. This is because the increase of net primary production and soil carbon sequestration following the conversion can more than offset the increment of the external organic fertilizer carbon inputs and fossil fuel carbon emissions. This intensification can strengthen the basic function of production sub-systems, i.e. food supply while simutaneously increase mutiple ecosystem services and dis-services. The economic value of provision services is about84%that of total services from plastic greenhouse. Conversion from conventional farming to plastic greenhouses increase both ecosystem services and dis-services under five climatic zones in China. However, all the net econimic values are positive.
     3) As the typical case for diversification of artificial decomposition sub-system, constructed wetlands can increase the capacity of wastewater treatment in URCS. Constructed wetlands is one of important substitute approaches for wastewater treatment, treating wastewater nitrogen while producing biofuel. The life cycle carbo emissions and greehouse gas emissions of constructed wetlands are14t C t-1N removal and575t CO2-eq t-1N removal less than that of wastewater treatment plants, respectively. This is mainly because the low construct and operation cost lead to low material and energy consumption. The economic value of provision service (clean water supply) from constructed wetlands can reach97%of total economic values, either as wastewater treatment or biofuel production system. As wastewater treatment, the provision and regulation services from constructed wetland is9.5-and10.4-fold that of wastewater treatment plants, while its dis-service is only0.09%. As biofuel production systems, the total economic value of construted wetlands is slightly higher than microalgea systems, and is153-602fold that of other biofuel production systems (e.g. switchgrass and corn).
     4) As the regulation center of URCS, urban ecosystem include urban greenspace and human settlement. Urbanization increased carbon density release large amount of carbon. The average carbon density of human settlement (177.8t C hm-2) is higher than that of urban greenspace (120.1t C hm"2) and adjacent natural ecosystems (109.8t C hm-2) across built-up area of16cities in China. Considering the urban ecosystem as an integrative functional unit in real world, the average total carbon density of built-up area (297.9t C hm-2) can be higher than that of forest ecosystem (208.5t C hm-2) and tropical rain forests (40-250t C hm"2). This may be due to increase of greenspace soil carbon density and diversity of carbon pools in human settlements. As the life-support sub-systems, urban greenspace can provide ecosystem services such as aesthetic value, climate regulation, air purification and improve urban environment. The economic value of cultural services from urban greenspace is on average~84%that of total ecosystem services. Moreover, urban greenspace, though managed by human, can reduce carbon emissions under life cycle analysis and provide low dis-services.
     5) The carbon balance of production, decomposition and urban ecosystem in URCS is directly or indirectly affected by natural factors, namely temperature. For example, the conversion from conventional farming to plastic greenhouses have increased the accumulated temperature and thus prolonged the growth seasons, which in turn increase net primary production and soil carbon sequestration; Temperature can affect the microorganism activities and change CH4and N2O emissions; Carbon density of urban greenspace significantily decrease with increasing annual mean temperature, suggesting high temperature would increase soil respiration; Carbon density of human settlements in built-up area peaks in the cities with medium annual mean temperature. This may be because people tend to live in mild climate. Socioeconomic factors affecting carbon balance is more diverse. For instance, farmers are willing to apply more organic fertilizers in cold regions than warm regions due to higher economic return, increasing net primary production and soil carbon sequestration; Net primary production of constructed wetlands could be improved by reasonable nitrogen level, vertical constructed wetland and species with high productivity; Carbon density of urban greenspace is lowest in cities with medium energy intensity, while that of human settlement increase with household density and energy intensity and decreas with per capita GDP.
     Above all, this study reveals the carbon cycle of subsytems with different functions in URCS, supplementing the parts of human dominated carbon cycle in the context of global carbon cycle. Furthermore, this study use intensification of food production, replacement of conventional artifical decomposition approaches and urbanization to understand human dominated carbon balance and ecosystem services, and their natural and socioeconomic factors. This study will provide scientific foundations for sustainable development in the future.
引文
1. Akihiko I. A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Global Change Biology,2011,17:3161-3175.
    2. Alberti M, Marzluff JM, Shulenberger E, et al. Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bio Science,2003, 53:1169-1179.
    3. Ali M. Horticulture revolution for the poor:nature, challenges and opportunities. Tainan, Taiwan:The World Vegetable Center,2008, www-wds.worldbank.org/external/default/ WDSContentServer/WDSP/IB/2007/11/06/000020953 20071 106140621/Rendered/PDF/413530HorticulturelforlthelPoor 01PUBLICl.pdf.
    4. Alonso W. A Theory of the Urban Land Market. Papers of Regional Science, 1960,6:149-157.
    5. Alperin M, Hoehler T. The Ongoing Mystery of Sea-Floor Methane. Science, 2010,329:288-289.
    6. Aratrakorn S, Thunhikorn S, Donald PF. Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conservation International,2006,16:71-82.
    7. Baker LA, Hope D, Xu Y, Edmonds J, Lauver L. Nitrogen balance for the Central Arizona-Phoenix (CAP) ecosystem. Ecosystems,2001,4:582-602.
    8. Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 2012,488:70-72.
    9. Balmford A, Green RE, Scharlemann JPW. Sparing land for nature:exploring the potential impact of changes in agricultural yield on the area needed for crop production. Global Change Biology,2005,11:1594-1605.
    10. Barlaz, MA. Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills. Global biogeochemical cycles,1998,12: 373-380.
    11. Bastian O. Landscape Ecology-towards a unified discipline? Landscape Ecology, 2001,16:757-766.
    12. Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agricultural Systems,2007,94:13-25.
    13. Baumgardner D, Varela S, Escobedo FJ, Chacalo A, Ochoa C. The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis. Environmental Pollution,2012,163:174-183.
    14. Baynes TM, Wiedmann T. General approaches for assessing urban environmental sustainability. Current Opinion in Environmental Sustainability,2012,4: 458-464.
    15. Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agricultural Systems,2010,103:371-379.
    16. Begon M, Townsend CR, Harper JL. Ecology:from individuals to ecosystems. Wiley-Blackwell,2009.
    17. Beier C, Rasmussen L. Effects of whole-ecosystem manipulations on ecosystem internal processes. Trends in Ecology and Evolution,1994,9:218-223.
    18. Benbi DK, Brar JS. A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agronomy for Sustainable Development,2009,29: 257-265.
    19. Bernacchi CJ, Hollinger SE, Meyers T. The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Global Change Biology,2005,11:1867-1872.
    20. Berner A, Hildermann I, FlieBbach A, Pfiffner L, Niggli U, Ma"der P. Crop yield and soil fertility response to reduced tillage under organic management. Soil & Tillage Research,2008,101:89-96.
    21. Birch JC. Newton AC, Aquino CA, et al. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proceedings of the National Academy of Sciences,2010,107:21925-21930.
    22. Boden TA, Marland G, Andres RJ. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.2011.
    23. Borlaug NE. Feeding a hungry world. Science,2007,318:359.
    24. Boschma R. Frenken K. The emerging empirics of evolutionary economic geography. Journal of Economic Geography,2011,11:295-307.
    25. Boyle CA, Lavkulich L. Carbon pool dynamics in the lowerfraser basin from 1827 to 1990. Environmental Management,1997,21:443-455.
    26. Brady NC, Well RR. The natural and properties of soils. Eleventh Edition, Prentice Hall,1996.
    27. Bramryd T. Fluxes and accumulation of organic carbon in urban ecosystems on a global scale. In:Urban Ecology (eds Bornkamm R, Lee JA, Seaward MRD), Oxford:Blackwell Scientific Publications,1982:3-12.
    28. Brennan L, Owende P. Biofuels from microalgae:a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews,2010,14:557-577.
    29. Brentrup F, Kusters J, Kuhlmann H, et al. Application of life cycle assessment methodoloy to agicultural production:an example of sugarbeet production with different forms of nitrogen fertilisers.European Journalof Agronomy,2001,14: 221-233.
    30. Breuste J, Niemela J, Snep RP. Applying landscape ecological principles in urban environments. Landscape Ecology,2008,23:1139-1142.
    31. Brown S, Swingland IR, Hanbury-Tension R, Prance GT, Myers N. Changes in the use and management of forests for abating carbon emissions:issues and challenges under the Kyoto Protocol. Philosophical Transactions of the Royal Society of London, Series A,2002,360:1593-1605.
    32. Burney JA, Davis SJ, Lobell DB. Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci,2010,107:12052-12057.
    33. Buzhdygan OY, Patten BC, Kazanci C, Ma Q, Rudenko SS. Dynamical and system-wide properties of linear flow-quantified food webs. Ecological Modelling,2012,245:176-184.
    34. Byrne KA, Kiely G, Leahy P. Carbon sequestration determined using farm scale carbon balance and eddy covariance. Agriculture, Ecosystems and Environment, 2007,121:357-364.
    35. Cadenasso ML, Pickett STA, Schwarz K. Spatial heterogeneity in urban ecosystems:reconceptualizing land cover and a framework for classification. Frontiers in Ecology and The Environment,2007,5:80-88.
    36. Campbell JE, Lobell DB, Field CB. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science,2009,324:1055-1057.
    37. Campra P, Garcia M, Canton Y, Placios-Orueta A. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain. Journal of Geophysical Research-atmospheres, 2008,113:D18.
    38. Canadell JG, Quere CL, Raupach MR. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences,2007,104: 18866-18870.
    39. Canadell JG, Ciais P, Dhakal S, et al. Interactions of the carbon cycle, human activity, and the climate system:a research portfolio. Current Opinion in Environmental Sustainability,2010,2:301-311.
    40. Caride C, Pineiro G, Paruelo JM. How does agricultural management modify ecosystem services in the argentine Pampas? The effects on soil C dynamics. Agriculture, Ecosystems & Environment,2012,154:23-33.
    41. Carpenter SR, Mooney HA, Agard J, et al. Science for managing ecosystem services:Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences,2009,106:1305-1312.
    42. Carpenter SR. The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. Successes, limitations, and frontiers in ecosystem science,1998:287-312.
    43. Ceschia E, Beziat P, Dejoux JF, et al. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems and Environment,2010,139:363-383.
    44. Chang J, Wu X, Liu A, et al. Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China. Ecological Economics,2011,70: 740-748.
    45. Chang J, Ren Y, Shi Y, et al. An inventory of biogenic volatile organic compounds for a subtropical urban-rural complex. Atmospheric Environment, 2012.
    46. Chang J, Wu X, Wang Y, et al. Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply? Frontiers in Ecology and the Environment,2013,11:43-49.
    47. Chapin III FS, Matson PA, Vitousek PM. The Ecosystem Concept. In Principles of Terrestrial Ecosystem Ecology. Springer New York,2012.
    48. Chapin III FS, Power ME, Cole JJ. Coupled biogeochemical cycles and Earth stewardship. Frontiers in Ecology and the Environment,2011,9:3-3.
    49. Chapin III FS, Woodwell GM, Randerson JT, et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems,2006,9:1041-1050.
    50. Chapman JL, Reiss MJ. Ecology:principles and applications. Cambridge University Press,1999.
    51. Charles R, Jolliet O, Gaillard G, et al. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agriculture, Ecosystems and Environment,2006,113:216-225.
    52. Chen D, Christensen TH. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Waste Management & Research,2010,28:508-519.
    53. Chen Y, Cai Q. Dust storm as an environmental problem in North China. Environmental Management,2003,32:413-417.
    54. Cheng C, Wang R, Jiang J. Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China. Journal of Environmental Science,2007,19:348-352.
    55. Chester M, Pincetl S, Allenby B. Avoiding unintended tradeoffs by integrating life-cycle impact assessment with urban metabolism. Current Opinion in Environmental Sustainability,2012,4:451-457.
    56. Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology advances,2011,29:686-702.
    57. Churkina G, Brown D, Keoleian G. Carbon stored in human settlements:the conterminous United States. Global Change Biology,2009,16:135-143.
    58. Churkina G. Modeling the carbon cycle of urban systems. Ecological Modeling, 2008,216:107-113.
    59. Churkina G. Carbon Cycle of Urban Ecosystems, Carbon Sequestration in Urban Ecosystems. Springer Netherlands,2012:315-330.
    60. Ciais P, Bousquet P, Freibauer A, et al. Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2. Global Biogeochemical cycles,2007,21:1-12.
    61. Ciais P, Gervois S, Vuichard N, Piao S, Viovy N. Effects of land use change and management on the European cropland carbon balance. Global Change Biology, 2011,17:320-338.
    62. Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology,2010,44:1813-1819.
    63. Clements FE. Plant succession:an analysis of the development of vegetation. Carnegie Institution of Washington,1916.
    64. Collins SL, Carpenter SR, Swinton SM. An integrated conceptual framework for long-term social-ecological research. Frontiers in Ecology and The Environment, 2010,9:351-357.
    65. Conant RT, Ogle SM, Paul EA, Paustian K. Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation. Frontiers in Ecololy and the Environment,2011,9:169-173.
    66. Costa M, Heuvelink EP. Protected cultivation rising in China. Fruit and Vegetable Technology,2004,4:8-11.
    67. Costa JM, Heuvelink E, Botden N. Chinese growth held in check. Fruit and Vegetable Technology,2003,3:12-15.
    68. Cucek L, Klemes JJ, Kravanja Z. A Review of Footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production,2012,34: 9-20.
    69. Currie B, Bass B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosystems,2008,11:409-422.
    70. Dalal RC, Allen DE, Livesley SJ, Richards G. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes:a review. Plant Soil,2008,309:43-76.
    71. Dallimer M, Tang Z, Bibby PR, Brindley P, Gaston KJ, Davies ZG. Temporal changes in greenspace in a highly urbanized region. Biology letters,2011,7: 763-766.
    72. Daniel TC, Muhar A, Arnberger A. et al. Contributions of cultural services to the ecosystem services agenda. Proceedings of the National Academy of Sciences, 2012,109:8812-8819.
    73. Davis SJ, Caldeira K. Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences,2010,107:5687-5692.
    74. Deumlich D, Funk R, Frielinghaus M, Schmidt WA, Nitzsche O. Basic of effective erosion control in German agriculture. Journal of Plant Nutrition and Soil Science,2006,169,380-381.
    75. Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy,2009,37:4208-4219.
    76. Dietz T, Ostrom E, Stern PC. The struggle to govern the commons. Science, 2003,302:1907-11.
    77. Duguay S, Eigenbrod F, Fahrig L. Effects of surrounding urbanization on non-native flora in small forest patches. Landscape Ecology,2007,22:589-599.
    78. Edmondson JL, Davies ZG, McHugh N, Gaston KJ, Leake JR. Organic carbon hidden in urban ecosystems, Scientific reports,2012,2:963.
    79. Ellis EC, Ramankutty N. Putting people in the map:anthropogenic biomes of the world. Frontiers in Ecology and the Environment,2008,6(8):439-447.
    80. Elmore AJ, Kaushal SS. Disappearing headwaters:patterns of stream burial due to urbanization. Frontiers in Ecology and the Environment,2008,6:308-312.
    81. Enoch HZ, Enoch Y. The history and geography of the greenhouse. Ecosystems of the world,1999:1-16.
    82. Escobedo FJ, Kroeger T, Wagner JE. Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environmental Pollution,2011, 159:2078-2087.
    83. Evenson RE, Gollin D. Assessing the impact of the green revolution,1960 to 2000. Science,2003,300:758-62.
    84. Falk JH. The primary productivity of lawns in a temperate environment. Journal of Applied Ecology,1980,689-695.
    85. Fang C, Ling D. Investigation of the noise reduction provided by tree belts. Landscape and Urban Planning,2003,63:187-195.
    86. FAO,2005 & 2008. FAOSTAT. http://www.fao.org2005,2007 & 2008 Data, Accessed 25 April,2010.
    87. FAOSTAT. The State of Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome,2010.
    88. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land Clearing and the Biofuel Carbon Debt. Science,2008,319:1235-1238.
    89. Fernandez MD, Gonzalez AM, Carreno J, Perez C, Bonachela S. Analysis of on-farm irrigation performance in Mediterranean greenhouses. Agricultural Water Management,2007,89:251-260.
    90. Finkbeiner M. Carbon footprinting-opportunities and threats. International Journal of Life Cycle Assessment,2009,14:91-94.
    91. Finzi AC, Cole JJ, Doney SC, Holland EA, Jackson RB. Research frontiers in the analysis of coupled biogeochemical cycles. Frontiers in Ecology and the Environment,2011,9:74-80.
    92. Fischer J, Brosi B, Daily GC, et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecological and the Environment, 2008,6:380-385.
    93. Forman RTT, Gordon M. Landscape Ecology. New York:John Wiley &Sons, 1986.
    94. Forman RTT. Land Mosaics:the Ecology of Landscape and Region. London: Cambridge University Press,1995.
    95. Fortin MJ, Agrawal AA. Landscape ecology comes of age. Ecology,2005,86: 1965-1966.
    96. Frank AB, Liebig MA, Tanaka DL. Management effect on soil CO2 efflux in northern semiarid grassland and cropland. Soil & Tillage Research,2006,89: 78-85.
    97. Friedman JR. Regional development policy:a case study of Venezuela. Cambridge:MIT Press,1966.
    98. Fujimori S, Matsuoka Y. Development of estimating method of global carbon, nitrogen, and phosphorus flows caused by human activity. Ecological Economics, 2007,62:399-418.
    99. Fuller RA, Gaston KJ. The scaling of green space coverage in European cities. Biology letters,2009,5:352-355.
    100.Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proceedings of the National Academy of Sciences,2011,108: 13864-13869.
    101.Glass GV. Primary, secondary and meta-analysis. Educational Researcher,1976, 5:3-8.
    102.Godfray HC, Beddington JR, Crute IR, et al. Food security:the challenge of feeding 9 billion people. Science,2010,327:812-18.
    103.Golley FB. Caloric Value of Wet Tropical Forest Vegetation. Ecology,1996,50: 517-519.
    104.Golubiewski NE. Urbanization increases grassland carbon pools:effects of landscaping in Colorado's front range. Ecological Applications,2006,16: 555-571.
    105.Gotelli NJ, Ellison AM, Ballif BA. Environmental proteomics, biodiversity statistics and food-web structure. Trends in ecology evolution,2012,27(8): 436-442.
    106.Goulder LH, Kennedy D. Valuing ecosystem services:philosophical bases and empirical methods. Nature's services:societal dependence on natural ecosystems. Island Press, Washington, DC,1997:23-48.
    107.Grace J. Understanding and managing the global carbon cycle. Journal of Ecology,2004,92:189-202.
    108.Grant SB, Saphores JD, Feldman DL, et al. Taking the "Waste" Out of "Wastewater" for Human Water Security and Ecosystem Sustainability. science, 2012,337(6095):681-686.
    109.Green RE, Cornell SJ, Scharlemann JPW, Balmford A. Farming and the Fate of Wild Nature. Science,2005,307:550-555.
    110.Griffith S. Carbon sequestration in urban landscapes. The Grass Roots,2010, 39(3):26-27.
    111.Grimm NB, Faeth SH, Golubiewski NE, et al. Global change and ecology of the cities. Science,2008,319:756-760
    112.Grimm NB, Morgan GJ, Pickett STA, Redman CL. Integrated approaches to long-term studies of urban ecological systems. BioScience,2000,50:571-584.
    113.Gu B, Chang J, Ge Y, Ge H, Yuan C, et al. Anthropogenic modification of the nitrogen cycling within the Greater Hangzhou Area system, China. Ecological Applications,2009,19:974-988.
    114.Gu B, Liu D, Wu X, et al. Utilization of waste nitrogen for bio fuel production in China. Renewable and Sustainable Energy Reviews,2011(b),15(9):4910-4916.
    115.Gu B, Zhu Y, Chang J, et al. The role of technology and policy in mitigating regional nitrogen pollution. Environmental Research Letters,2011 (a),6(1): 014011.
    116.Guerra F, Trevizam AR, Muraoka T, et al.2012. Heavy metals in vegetables and potential risk for human health. Sci Agric 69:54-60. http://scitech.people.com.cn/GB/7631831.html.
    117.Guinee JB, Heijungs R, Huppes G et al. Life Cycle Assessment:Past, Present, and Future. Environmental Science and Technology,2011,45,90-96.
    118.Gunderson LH, Holling CS (Eds). Panarchy:understanding transformations in human and natural systems. Washington, DC:Island Press.2002.
    119.Guo J, Liu X, Zhang Y, et al. Significant acidification in major Chinese croplands. Science,2010,327:1008-10.
    120.Guo L, Gifford RM. Soil carbon stocks and land use change:a meta-analysis. Global Change Biology,2002,8:345-360
    121.Guo L, Erda L. Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils:a review of work in China. Chemosphere-Global Change Science,2001,3:413-418.
    122.Gurevitch J, Curtis PS, Jones MH. Meta-analysis in ecology. Advances in Ecological Research,2001,32:199-247.
    123.Gurney KP. China at the carbon crossroads. Nature,2009,458:977-979.
    124.Haber W. Landscape ecology as a bridge from ecosystems to human ecology. Ecological Research,2004,19:99-106.
    125.Havstad KM, Huenneke LF, Schlesinger WH. Structure and function of a Chihuahuan Desert ecosystem:the Jornada Basin Long Term Ecological Research site. Oxford:Oxford University Press,2006.
    126.He F, Chen Q, Jiang R, et al. Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill) with conventional and site-specific nitrogen management in Northern China. Nutrient Cycling in Agroecosystems,2007,77: 1-84.
    127.He F, Jiang R, Chen Q, Zhang F, Su F. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollution,2009,157:1666-1672.
    128.Herrero M, Thornton PK, Notenbaert AM, et al. Smart investments in sustainable food production:revisiting mixed crop-livestock systems. Science,2010,327: 822-825.
    129.Herte M, Kobriger N, Stearns F. Productivity of an urban park. University of Wisconsin Field Station Bulletin,1971,4:14-18.
    130.Hertwich EG, Peters GP. Carbon footprint of nations:a global, trade-linked analysis Environment, Science and Technology,2009,43:6414-6420.
    131.Hickman GW. Greenhouse Vegetable Production Statistics:a review of current world-wide data and research reports on the commercial production of greenhouse vegetables. Mariposa, California, USA:Cuesta Roble Greenhouse Consultants,2011.
    132.Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental,economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of National Academy of Science,2006,10:11206-11210.
    133.Holm AM, Watson IW, Loneragan WA, Adams MA. Loss of patch-scale heterogeneity on primary productivity and rainfall-use efficiency in Western Australia. Basic and Applied Ecology,2003,4:569-578.
    134.Hondo H, Sakai S. Consistent method for system boundary definition in LCA:an application of sensitivity analysis. Journal of Advanced Science,2001,13: 491-494.
    135.Hotes S, Grootjans AP, Takahashi H, Ekschmitt K, Poschlod P. Resilience and alternative equilibria in a mire plant community after experimental disturbance by volcanic ash. Oikos,2010,119:952-963.
    136.Houghton RA, Hackler JL. Emissions of carbon forestry and land use change in tropical Asia. Global Change Biology,1999,5:481-492.
    137.Houghton RA. Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Science,2007,35:313-47.
    138.Houghton RA, Hackler JL, Lawrence KT, The U.S. carbon budget:contributions from land-use change. Science,1999,285:574-578.
    139.Huang SL, Wong JH, Chen TC. A framework of indicator system for measuring Taipei's urban sustainability. Landscape and Urban Planning,1998,42:15-27.
    140.Huang Y, Sun W, Zhang W, Yu Y, Su Y, Song C. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology,2010,16:680-695.
    141.Huang Y, Zhang W, Sun W, Zhang X. Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications,2007,17:692-701.
    142.1mhoff ML, Bounoua L, DeFries R, et al. The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing of Environment,2004,89:434-443.
    143.Imhoff ML, Tucker CJ, Lawrence WT, Stutzer DC. The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Transactions on Geoscience and Remote Sensing,2000,38:2549-2556.
    144.IPCC, Guidelines for national greenhouse gas inventories. In:Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) National greenhouse gas inventories programme. IGES, Japan,2006.
    145.IPCC, Climate Change 2001:Impaction, and vulnerability, Cambridge University Press,2001.
    146.IPCC, Climate Change 2007:Synthesis Report (Pachauri, R. K.& Reisinger, A. eds), Cambridge University Press,2007.
    147.Iqbal J, Lin S, Hu RG, Feng ML. Temporal variability of soil-atmospheric CO2 and CH4 fluxes from different land uses in mid-subtropical China. Atmospheric Environment,2009,43:5865-75.
    148.1sard W. The General Theory of Location and Space-Economy. Quarterly Journal of Economics,1949,63:476-506.
    149.ISO, ISO 14040 International Standard. In:Environmental Management-Life Cycle Assessment-Principles and Framework. International Organisation for Standardization, Geneva, Switzerland,2006.
    150.Janssens IA, Freibauer A, Ciais P, et al. Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science,2003,300: 1538-1542.
    151.Jenerette GD, Wu J, Grimm NB, Hope D. Points, patches, and regions:scaling soil biogeochemical patterns in an urbanized arid ecosystem. Global Change Biology,2006,12:1532-1544.
    152.Jeong SJ, Ho CH, Gim HJ, Brown ME. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology,2011,17:2385-2399.
    153.Jiang W, Qu D, Mu D, Wang L. China's Energy-Saving Greenhouses. Chronica Hort 2004,44:15-17
    154.Jim CY. Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystems,1998,2:171-181.
    155.Jo HK, McPherson EG. Carbon storage and flux in urban residential greenspace. Journal of Environmental Management,1995,45:109-133.
    156.Jo H, Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management,2002,64:115-126.
    157.Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological applications,2000,10:423-436.
    158.Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 2007,150:107-124.
    159.J(?)rgensen SE, Fath B, Bastianoni S, et al. A new ecology:systems perspective. Amsterdam, The Netherlands, Elsevier,2011.
    160 Ju X, Kou C, Christie P, Dou Z, Zhang F. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution,2007,145: 497-506.
    161.Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV. A distinct urban biogeochemistry. Trends in Ecology and Evolution,2006,21:192-199.
    162.Kaye JP, Mcculley RL, Burke IC. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Global Change Biology,2005,11:575-587.
    163.Keeling RF, Najjar RP, Bender ML. What atmospheric oxygen measurements can tell us about the global carbon-cycle. Global Biogeochemical Cycles,1993,7: 37-67.
    164.Kennedy CA, Cuddihy J, Engel-Yan J. The changing metabolism of cities. Journal of Industrial Ecology,2007,11:43-59.
    165.Kenward RE, Whittingham MJ, Arampatzis S, et al. Identifying governance strategies that effectively support ecosystem services, resource sustainability, and biodiversity. Proceedings of the National Academy of Sciences,2011,108: 5308-5312.
    166.King AW, Dilling L, Zimmerman GP, et al. The First State of the Carbon Cycle Report (SOCCR):The North American Carbon Budget and Implications for the Global Carbon Cycle. US Climate Change Science Program, Washington, DC, 2007,142.
    167.Koerner BA, Klopatek JM. Carbon fluxes and nitrogen availability along an urbanerural gradient in a desert landscape. Urban Ecosystems,2009,13:1-21.
    168.Kowata H, Moriyama H, Hayashi K, Kato H. Comparison of air emissions for the construction of various greenhouses. Proceedings of the 6th International Conference on LCAin the Agri-Food Sector. Zurich, Switzerland,2008.
    169.Krugman P. Increasing Returns and Economic Geography. Journal of Political Economy,1991,99:483-499.
    170.Kumar HD. Modern concepts of ecology. Vikas Publishing House,1992.
    171.Kutsch WL, Aubinet M, Buchmann N, et al. The net biome production of full crop rotations in Europe. Agriculture, ecosystems & environment,2010,139: 336-345.
    172.Lai L, Huang X. Environmental cost accounting of chemical fertilizer utilization in China. Bioinformatics and Biomedical Engineering. The 2nd International Conference,2008.
    173.Lal R. Soil carbon sequestration impacts on global climate change and food security. Science,2004,304:1623-1627.
    174.Lal R. Urban Ecosystems and Climate Change, In:R. Lal and B. Augustin (eds.), Carbon Sequestration in Urban Ecosystems. Springer Science+ Business Media, 2012,3-19.
    175.Lal R. Carbon emission from farm operations. Environment international,2004, 30:981-990.
    176.Lal R. Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 2002,116:353-362.
    177.Laothawornkitkul J, Taylor JE, Paul ND. Biogenic volatile organic compounds in the Earth system. New Phytol,2009,183:27-51.
    178.Lausch A, Herzog F, Applicability of landscape metrics for the monitoring of landscape change:issues of scale, resolution and interpretability. Ecological Indicators,2002,2:3-15.
    179.Leemans R. Ecological Systems, Introduction. In:R. Leemans (ed.), Ecological Systems:Selected Entries from the Encyclopedia of Sustainability Science and Technology. Springer Science+ Business Media New York,2013.
    180.Lenzen M, Peters GM. How city dwellers affect their resource hinterland:a spatial impact study of australian households. Journal of Industrial Ecology,2010, 14:73-90.
    181.Lenzen M. The path exchange method for hybrid LCA. Environmental Science and Technology,2009,43:8251-8256.
    182.Li J, Zhuang X, Pat D, Larson ED. Biomass energy in China and its potential. Energy for Sustainable Development,2001,4,66-80.
    183.Li C, Zhuang Y, Frolking S, et al. Modeling soil organic carbon change in croplands of China. Ecological Applications,2003,13:327-336.
    184.Li J, Ren Z, Zhou Z. Ecosystem services and their values:a case study in the Qinba mountains of China. Ecological Research,2006,21,597-604.
    185.Li W, Zhang M, Van Der Zee S. Salt contents in soils under plastic greenhouse gardening in China. Pedosphere,2001,11:359-367.
    186.Li Z, Han F, Su Y, Zhang T, Sun B, Monts DL, Plodinec, MJ. Assessment of soil organic and carbonate carbon storage in China. Geoderma,2007,138:119-126.
    187.Lindeman RL. The trophic-dynamic aspect of ecology. Ecology,1942,23: 399-418.
    188.Liu H, Jiang G, Zhuang H, Wang K. Distribution, utilization structure and potential of biomass resources in rural China:With special references of crop residues. Renewable and Sustainable Energy Reviews,2008a,12:1402-1418.
    189.Liu J, Daily GC, Ehrlich PR, Luck GW. Effects of household dynamics on resource consumption and biodiversity. Nature,2003,1359:1-3.
    190.Liu J, Li S, Ouyang Z, Tam C, Chen X. Ecological and socioeconomic effects of China's policies for ecosystem services. Proceedings of the National Academy of Sciences,2008b,105:9477-9482.
    191.Liu J, G Diamond J. China's environment in a globalizing world. Nature,2005, 435:1179-1186.
    192.Liu JG, Dietz T, Carpenter SR, Alberti M, Folke C, et al. Complexity of Coupled Human and Natural Systems. Science,2007,317:1513-1516.
    193.Liu D, Ge Y, Chang J, Peng C, Gu B, Chan G, Wu X. Constructed wetlands in China:recent developments and future challenges. Frontiers in Ecology and the Environment,2009b,7:261-268.
    194.Liu D, Wu X, Chang J, et al. Constructed wetlands as biofuel production systems. Nature Climate Change,2012,2:190-194.
    195.Liu J, Ma X. The analysis on energy and environmental impacts of microalgae-based fuel methanol in China. Energy Policy,2009,37:1479-1488.
    196.Lu F, Wang XK, Han B, Ouyang Z, Duan X, Zheng H, Miao H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland. Global Change Biology,2009,15:281-305.
    197.Luck GW, Smallbone LT, O'Brien R. Socio-economics and vegetation change in urban ecosystems:patterns in space and time. Ecosystems,2009,12:604-620.
    198.Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:a meta-analysis. Ecology,2006,87:53-63.
    199.Lv Y, Gu S. Guo D. Valuing environmental externalities from rice-wheat farming in the lower reaches of the Yangtze River. Ecology and Economics,2010, 69:1436-1442.
    200.MA, Ecosystems and Human Well-being:Synthesis. World Resources Institute.Island Press, Washington, DC. (Millennium Ecosystem Assessment), 2005.
    201.MAC (Ministry of Agriculture of China) Agricultural Yearbook of China 2005. China Agriculture Press Beijing (in Chinese),2006.
    202.MacFarlane DW. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the USA. Biomass and Bioenergy,2009,33:628-634.
    203.Machlis GE, Force JE, Burch JWR. The human ecosystem part I:the human ecosystem as an organizing concept in ecosystem management. Society and Natural Resources.1997,10:347-367.
    204.Mackenzie A, Ball AS, Virdee SR. Instant notes in ecology. Colchester:BIOS Scientific publishers,2001.
    205.Mackinnon D, Cumbers A, Pike A, Birch K, McMaster R. Evolution in economic geography:institutions, political economy, and adaptation. Economic Geography, 2009,85:129-150.
    206.Maisiri N, Senzanje A, Rockstrom J, Twomlow SJ. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system. Physics and Chemistry of the Earth,2005, 20:783-791.
    207.Mankiw NG. Principles of Economics. South-Western, Division of Thomson Learning,2006.
    208.Marcotullio PJ, Sarzynski A, Albrecht J, Schulz N. The geography of urban greenhouse gas emissions in Asia:A regional analysis. Global Environmental Change,2012,22:944-958.
    209.Margalef R. Information theory in ecology. General Systems:Yearbook of the International Society for the Systems Sciences,3,1958.
    210.Margulis L. Symbiosis in Cell Evolution:Life and Its Environment on the Early Earth. San Francisco:WH Freeman,1981.
    211.Martin JH, Gordon M, Fitzwater S. Iron in Antarctic waters. Nature,1990, 345:156-158.
    212.Martin R, Sunley P. Path dependence and regional economic evolution. Journal of Economic Geography,2006,6:395-437.
    213.Matthews HS, Hendrickson CT, Weber CL. The importance of carbon footprint estimation boundaries. Environmental Science and Technology,2008:42: 5839-5842.
    214.McMichael AJ, Powles JW, Butler CD, Uauy R. (). Food, livestock production, energy, climate change, and health. The Lancet,2007,370:1253-1263.
    215.McNaughton SJ. Grazing as an optimization process grass:ungulate relationships in the Serengeti. The American Naturalist,1979,113:691-703.
    216.McPeak JG, Lee DR, Barrett CB. Introduction:The dynamics of coupled human and natural systems. Environment and Development Economics,2006,11:9-13.
    217.McPherson G, Simpson JR, Peper PJ, Maco SE, Xiao QF. Municipal forest benefits and costs in five US cities. Journal of Forestry,2005,103:41-416.
    218.Miao S, Carstenn S, Nungesser, MK. Real world ecology:large-scale and long-term case studies and methods. Springer. Science+ Business Media,2009.
    219.Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environmental Management,2005,36:426-438.
    220.Milner J, Davies M, Wilkinson P. Urban energy, carbon management (low carbon cities) and co-benefits for human health. Current Opinion in Environmental Sustainability,2012,4:398-404.
    221.Minx JC, Wiedmann T, Wood R, et al. Input-output analysis and carbon footprinting:an overview of applications. Economic Systems Research,2009,21: 187-216.
    222.Mitsch WJ, Gosselink JG. Wetlands.4th Edition. Hoboken. John Wiley & Sons: New York,2007.
    223.Mitsch WJ, Wu X, Nairn RW, Weihe PE, Wang N, Deal R, Boucher CE, Creating and restoring wetlands:a whole-ecosystem experiment in self-design. BioScience, 1998,48:1019-1030.
    224.MOA/DOE Project Expert Team. Assessment of Biomass Resource Availability in China. China Environmental Science Press, Beijing(in Chinese),1998,8.
    225.Mohareb E, Kennedy C. Gross direct and embodied carbon sinks for urban inventories. Journal of Industrial Ecology,2012,16:302-316.
    226.Murty D, Kirschbaum MF, Mcmurtrie RE, Mcgilvray H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology,2002,8:105-123.
    227.Naveh Z. Ten major premises for a holistic conception of muhifunctional landscapes. Landscape and Urban Planning,2001,57:269-284.
    228.Nishimura S, Yonemura S, Sawamoto T, et al. Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agr Ecosyst Environ,2008,125:9-20.
    229.NOAA (National Oceanic and Atmospheric Administration). Atmospheric CO2 data for Mauna Loa Observatory. http://co2now.org/Current-CO2/CO2-Now/noaa-mauna-loa-co2-data.html,2013.
    230.Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution,2013,178:229-236.
    231.Nowak DJ, Stevens JC, Sisinni SM, Luley CJ. Effects of urban tree management and species selection on atmospheric carbon dioxide. Journal of Arboriculture, 2002,28:113-122.
    232.Nowak DJ, Crane DE. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution,2002,116:381-389.
    233.Odum EP. The strategy of ecosystem development. Science,1969,164:262-270.
    234.Odum EP. Fundamental of ecology. WB Saunders, Philadelphia,1971.
    235.Odum EP. Ecology and our endangered life-support systems. Sinauer Associates Inc,1989.
    236.Odum EP. Great ideas in ecology for the 1990s. BioScience,1992,42:542-545.
    237.Odum HT. Systems Ecology; an introduction. J Wiley & Sons, New York,1983.
    238.Odum HT, Ewel KC, Mitsch WJ, Ordway, JW. Recycling treated sewage through cypress wetlands. In F. M. D'Itri, editor. Wastewater Renovation and Reuse. Marcel Dekker, New York,1977,35-67.
    239.Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S. Driving on biomass. Science,2009,324:1019.
    240.Olah GA, Prakash GS, Goeppert A.. Anthropogenic chemical carbon cycle for a sustainable future. Journal of the American Chemical Society,2011,133: 12881-12898.
    241.Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature,2001,411:469-72.
    242.Osenberg CW, Sarnelle O, Cooper S, et al. Resolving ecological questions through meta-analysis:goals, metrics and models. Ecology,1999,80:1105-1117.
    243.Ostrom E. Governing the commons:the evolution of institutions for collective action. Cambridge, UK:Cambridge University Press,1990.
    244.Ovington JD. Quantitative ecology and the woodland ecosystem concept. Advances in ecological research,1962,1:103-192.
    245.Pacala SW, Hurtt GC, Baker D et al. Consistent land-and atmosphere-based US carbon sink estimates. Science,2001,292:2316-2320.
    246.Pacione M. Urban geography-a global perspective. Routledge, New York,2009.
    247.Palmer MA, Bernhardt E, Chornesky E, et al. Ecology for the 21st century:an action plan. Frontiers in Ecology and the Environment,2005,3:4-11.
    248.Pan Y, Birdsey RA, Fang JY, et al, A Large and Persistent Carbon Sink in the World's Forests. Science,2011,333:988-993.
    249.Pataki DE, Alig RJ, Fung AS et al. Urban ecosystems and the North American carbon cycle. Global Change Biology,2006,12:2092-2102.
    250.Pataki, DE, Carreir MM, Cherrier J, et al. Coupling biogeochemical cycles in urban environments:ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment,2011,9:27-36.
    251.Peter GP. Carbon footprints and embodied carbon at multiple scales. Current Opinion in Environmental Sustainability,2010,2:1-6.
    252.Phalan B, Onial M, Balmford A, Green RE. Reconciling Food Production and Biodiversity Conservation:Land Sharing and Land Sparing Compared. Science, 2011,333:1289-1291.
    253.Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. The carbon balance of terrestrial ecosystems in China. Nature,2009,458:1009-1013.
    254.Piao S, Fang J, Zhou L, Zhu B, Tan K, Tao S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles,2005, 19(2).
    255.Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM et al. Urban ecological systems:Scientific foundations and a decade of progress. Journal of Environmental Management,2011,92:331-362.
    256.Pickett STA, Cadenasso ML, Grove JM. Biocomplexity in coupled natural-human systems:a multidimensional framework. Ecosystems,2006,8: 225-232.
    257.Pickett STA, Cadenasso ML, Grove JM, et al. Beyond urban legends:an emerging framework of urban ecology as illustrated by the Baltimore Ecosystem Study. BioScience,2008,58:139-150.
    258.Pouyat RV, Yesilonis ID, Golubiewski NE. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems,2009, 12(1):45-62.
    259.Pouyat RV, Carreiro MM. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urbanerural land-use gradient. Oecologia,2003,135:288-298.
    260.Pouyat RV, Effland WR. The investigation and classification of humanlymodified soils in the Baltimore Ecosystem Study. In:Kimble, J.M., Ahrens, R.J.,Bryant, R.B. (Eds.), Classification, Correlation, and Management of AnthropogenicSoils.USDA-NRCS,National Soil Survey Center,Nevada and California,1999,141-154
    261.Pouyat RV, Russell-Anelli J, Yesilonis ID, Groffman PM. Soil carbon in urban forest ecosystems. In:Kimble, J.M., Heath, L.S., Birdsey, R.A., Lal, R. (eds.), The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, Boca Raton,2003,347-362.
    262.Pouyat RV, Yesilonis I, Russell-Anelli J, Neerchal NK. Soil chemical and physical properties that differentiate urban land-use and cover. Frontiers in Ecology and the Environmen,2007,71:1010-1019.
    263.Pouyat RV, Yesilonis ID, Nowak DJ. Carbon storage by urban soils in the United States. Journal of Environmental Quality,2006,35:1566-1575.
    264.Prentice IC, Farquhar GD, Fasham MJR, et al. The carbon cycle and atmospheric carbon dioxide. In:Houghton JT, Ding Y, Griggs DJ, et al., (eds). Climate Change.
    265.Qiu S, Ju X, Ingwersen J et al (2010) Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil Till Res 107:80-87
    266.Rasmussen, P.E., Albrecht, S.L., Smiley, R.W. Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil & Tillage Research.1998,47:197-205.
    267.RCW (Ramsar Convention on Wetlands). Classification system for wetland type, 2006.
    268.Reynolds JF, Smith DMS, Lambin EF. et al. Global desertification:building a science for dryland development. Science,2007,316:847-851.
    269.Reynolds TW. Institutional determinants of success among forestry-based carbon sequestration projects in Sub-Saharan Africa. World Development,2012,40 (3): 542-554.
    270.Ricklefs RE. Ecology. Newton, MA:Chiron Press,1973.
    271.Risser P, Parton WJ. Ecological analysis of a tall grass prairie:Nitrogen cycle. Ecology,1982,63:1342-1351.
    272.Rocco SCM, Emmanuel Ramirez-Marquez J, Salazar ADE. Bi and tri-objective optimization in the deterministic network interdiction problem. Reliability Engineering & System Safety,2010,95(8):887-896.
    273.Rosso D, Stenstrom MK. The carbon-sequestration potential of municipal wastewater treatment. Chemosphere,2008,70:1468-1475.
    274.Sanchez P. A smarter way to combat hunger. Nature,2009,458(7235):148-148.
    275.Sander K, Murthy GS. Life cycle analysis of algae biodiesel. The International Journal of Life Cycle Assessment,2010,15(7):704-714.
    276.Sarmiento JL, Gruber N. Ocean biogeochemical dynamics. Princeton:Princeton University Press,2006.
    277. Savage N. The scum solution. Nature,2011,474:15-16.
    278.Schandl H, Boyden S, Capon A, Hosking K.'Biosensitive'cities-a conceptual framework for integrative understanding of the health of people and planetary ecosystems. Current Opinion in Environmental Sustainability,2012,4:378-384.
    279.Schindler DW. Carbon, nitrogen, phosphorus and the eutrophication of freshwater lakes. Journal of Phycology,1971,7:321-329.
    280.Schlesinger, WL. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature,1990,348:232-234.
    281.Schmer MR, Vogel KP, Mitchell RB, Perrin RK. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences,2008, 105(2):464-469.
    282.Scholes RJ, Monteiro PMS, Sabine CL, Canadell JG. Systematic long-term observations of the global carbon cycle. Trends in Ecology and Evolution,2009, 24 (8):427-430.
    283.Seto KC, Satterthwaite D. Interactions between urbanization and global environmental change. Current Opinion in Environmental Sustainability,2010, 2(3):127-128.
    284.Sevigne Itoiz E, Gasol CM, Farreny R, Rieradevall J, Gabarrell X. CO2ZW: Carbon footprint tool for municipal solid waste management for policy options in Europe. Inventory of Mediterranean countries. Energy Policy,2013,56:623-632.
    285.Shao M, Tang X, Zhang Y, Li W. City clusters in China:air and surface water pollution. Frontiers in Ecology and the Environment,2006,4:353-361.
    286.Shaw M, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. Grassland responses to global environmental changes suppressed by elevated CO2. Science,2002,298:1987-90.
    287.Shen W, Wu J, Grimm NB, Hope D. Effects of urbanization-induced environmental changes on ecosystem functioning in the Phoenix metropolitan region, USA. Ecosystems,2008,11:138-155.
    288.Shi W, Yao J, Yan F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in south-eastern China. Nutrient Cycling in Agroecosystems,2009,83(1):73-84.
    289.Shi Y, Ge Y, Chang J, Shao H, Tang Y. Garden waste biomass for renewable and sustainable energy production in China:Potential, challenges and development. Renewable and Sustainable Energy Reviews,2013,22:432-437.
    290.Silalertruksa T, Bonnet S, Gheewala SH. Life cycle costing and externalities of palm oil biodiesel in Thailand. Journal of Cleaner Production,2012,28:225-232.
    291. Smith P, Lanigan G, Kutsch WL, et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, ecosystems & environment,2010,139(3):302-315.
    292.Somerville C, Youngs H, Taylor C, Davis S, Long SP. Feedstocks for lignocellulosic biofuels. Science,2010,329:790-792.
    293.Sonneveld C, Voogt W. Plant nutrition in future greenhouse production. In: Sonneveld C and Voogt W (eds). Plant nutrition of greenhouse production. Amsterdam, The Netherlands:Springer,2009.
    294.Stanghellini C, Kempkes FLK, Knies P. Enhancing environmental quality in agricultural systems. Acta Horticulturae,2003,609:277-283.
    295.Steinfeld H, Gerber P. Livestock production and the global environment: Consume less or produce better? Proceedings of the National Academy of Sciences,2010,107(43):18237-18238.
    296.Stephens BB, Gurney KR, Tans PP, et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science,2007, 316(5832):1732-1735.
    297.Stringer LC, Dougill AJ, Thomas AD, et al. Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands. Environmental Science & Policy,2012,19:121-135.
    298.Stringer LC, Dyer J, Reed MS, Dougill AJ, Twyman C, Mkwambisi DD. Adaptations to climate change, drought and desertification:insights to enhance policy in southern Africa. Environmental Science and Policy,2009,12 (7): 748-765.
    299.Strohbach MW, Arnold E, Haase D. The carbon footprint of urban green space-a life cycle approach. Landscape and urban planning,2012,104(2):220-229.
    300.Strohbach MW, Haase D. Above-ground carbon storage by urban trees in Leipzig, Germany:Analysis of patterns in a European city. Landscape and Urban Planning, 2012,104(1):95-104.
    301.Suh S, Nakamura S. Five years in the area of input-output and hybrid LCA. International Journal of Life Cycle Assessment,2007,12:351-352.
    302.Suh S, Lenzen M, Treloar GJ, et al. System boundary selection in life cycle inventories using hybrid approaches. Environmental Science & Technology,2004, 38(3),657-664.
    303.Svirejeva-Hopkins A, Schellnhuber HJ. Urban expansion and its contribution to the regional carbon emissions:Using the model based on the population density distribution. Ecological Modelling,2008,216(2):208-216.
    304.Tan JL, Kang YH. Changes in soil properties under the influences of cropping and drip irrigation during the reclamation of severe salt-affected soils. Agricultural Sciences in China,2009,8(10):1228-1237.
    305.Tansley AG. The use and abuse of vegetational concepts and terms. Ecology, 1935,16(3):284-307.
    306.Thomson AM, Izaurralde RC, Rosenberg NJ, He X. Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agriculture, ecosystems & environment,2006,114(2):195-209.
    307.Tian H, Melillo J, Lu C, et al. China's terrestrial carbon balance:Contributions from multiple global change factors. Global biogeochemical cycles,2011,25(1): GB1007, doi:10.1029/2010GB003838.
    308.Tilman D, Balzer C, Hill J, Befort B. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 2011,108(50):20260-20264.
    309.Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature,2002,418:671-677.
    310.Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science,2006,314:1598-1600.
    311.Trumbore S. Carbon respired by terrestrial ecosystems-recent progress and challenges. Global Change Biology,2006,12:141-153.
    312.Tsao CC, Campbell JE, Mena-Carrasco M, Spak SN, Carmichael GR, Chen Y. Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol. Nature Climate Change,2011,2(1):53-57.
    313.Tumer MG. Landscape ecology in north America:past, present, and future. Ecology,2005,86:1967-1974.
    314.Tiizel Y, Leonardi C. Protected Cultivation in Mediterranean Region:Trends and Needs. Ege Univ Ziraat Fak Derg,2009,46:215-223.
    315.UNPD. World urbanization prospects. UN Population Division,2011. http://esa/un.org/undp/wup/unup/
    316.Verberg PH, Kok K, Pontius JRG, Veldkamp A. Modeling land use and land cover change. In:Lambin E F, Geist H ed. Land-use and land cover change:local processes and global impacts. Springer-Veflag Berlin Heidelberg,2006,117-135.
    317.Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA. Human appropriation of the products of photosynthesis. Bioscience,1986,36:368-373.
    318.Vitousek PM, Mooney HA, Lubchenco J, et al. Human Domination of Earth's Ecosystems. Science,1997b,277(5325):494-499.
    319.Vitousek, P.M, Aber J, Howarth RW, et al. Human alteration of the global nitrogen cycle:Causes and consequences. Issues in Ecology,1997a,1:1-16.
    320.Vogt RG, et al. Spatial patterns of factory neurons expressing specific odor receptor genes in 48 hr old embryos of zebrafish Danio rerio. Journal of Experimental Biology,2004,433-443.
    321.Voogt JA, Oke TR. Thermal remote sensing of urban climates. Remote sensing of environment,2003,86(3):370-384.
    322.Vymazal J. Removal of nutrients in various types of constructed wetlands. Science of the Total environment,2007,380:48-65.
    323.Vymazal J. Types of constructed wetlands for wastewater treatment:their potential for nutrient removal. In:Vymazal J(ed). Transformations of nutrients in natural and constructed wetlands. Backhuys:Leiden,2001:-1-93.
    324.Vymazal J. Enhancing ecosystem services on the landscape with created, constructed and restored wetlands. Ecological Engineering,2011,37(1):1-5.
    325.Walker BH, Salt DA. Resilience thinking. Washington, DC:Island Press,2006.
    326.Wang Y, Xu H, Wu X, et al. Quantification of net carbon flux from plastic greenhouse vegetable cultivation:A full carbon cycle analysis. Environmental Pollution,2011,159:1427-1434.
    327.Warren-Rhodes K, Koenig A. Escalating Trends in the Urban Metabolism of Hong Kong:1971-1997. Ambio,2001,30(7):429-438.
    328.West TO, Marland G. Net carbon flux from agriculture:carbon emission, carbon sequestration, crop yield, and land use change. Biogeochemistry,2003,63:73-83.
    329.West TO, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture:comparing tillage practices in the United States. Agriculture, Ecosystems and Environment,2002a,91:217-232.
    330.West TO, Brandt CC, Baskaran LM, et al. Cropland carbon fluxes in the United States:increasing geospatial resolution of inventory-based carbon accounting. Ecological Applications,2010,20(4):1074-1086.
    331.West TO, Marland G. Net carbon flux from agricultural ecosystems:methodology for full carbon cycle analyses. Environmental Pollution,2002b,116:439-444.
    332.West TO, Marland G, Singh N, Bhaduri BL, Roddy AB. The human carbon budget:an estimate of the spatial distribution of metabolic carbon consumption and release in the United States. Biogeochemistry,2009,94(1):29-41.
    333.Wiedmann T, Minx J. A definition of'carbon footprint'. In:Pertsova CC (Ed.), Ecological Economics Research Trends. Nova Science Publisher, Hauppauge, NY, US. Ch 1,2008:1-11.
    334.Wiedmann T. A review of recent multi-region input-output models used for consumption-based emissions and resource accounting. Ecological Economics, 2009,69:211-222.
    335.Wischmeier WH, Smith DD. Predicting rainfall erosion losses:a guide to conservation planning. Science and Education Administration. U.S. Department of Agriculture, Washington, DC,1978.
    336.Wolman A. The metabolism of cities. Scientific American,1965,213:179-188.
    337.Wright LA, Coello J, Kemp S, Williams I. Carbon footprinting for climate change management in cities. Carbon Management,2011b,2(1):49-60.
    338.Wright LA, Kemp S, Williams I.'Carbon footprinting':towards a universally accepted definition. Carbon Management,2011a,2(1):61-72.
    339.Wrobel C, Coulman BE, Smith DL. The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agriculturae Scandinavica Section B-Soil and Plant Science,2009,59(1):1-18.
    340.Wu J. A Landscape Approach for Sustainability Science. In:M.P. Weinstein and R.E. Turner (eds.), Sustainability Science:The Emerging Paradigm and the Urban Environment, Springer,2012:59-77.
    341.Wu J. Landscape ecology, cross-disciplinarily and sustainability science. Landscape Ecology,2006,21(1):1-4.
    342.Wu H, Guo Z, Gao Q, Peng C. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agriculture, Ecosystems and Environment,2009,129:413-421.
    343.Xie Z, Zhu J, Liu G, Cadisch G, Hashgawa T, Sun H, Tang H, Zeng Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology,2007,13:1989-2007.
    344.Xu C, Liu M, Ana S, Chen J, Yan P. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China. Journal of Environmental Management,2007,85:597-606.
    345.Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008,14(7):1592-1599.
    346.Yang W, Chang J, Xu B, Peng C, Ge Y. Ecosystem service value assessment for constructed wetlands:A case study in Hangzhou, China. Ecological Economics, 2008,68(1):116-125.
    347.Yang Y, Mohammat A, Feng J, Zhou R, Fang J. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochenustry,2007, 84(2):131-141.
    348.Yeh C, Huang S. Global Urbanization and Demand for Natural Resources. In:R. Lal and B. Augustin (eds.), Carbon Sequestration in Urban Ecosystems. Springer Science+ Business Media,2012:355-371.
    349. You F, Hu D, Zhang H, et al. Carbon emissions in the life cycle of urban building system in China-A case study of residential buildings. Ecological Complexity, 2011,8(2):201-212.
    350.Yu D, Shao H, Shi P, Zhu W, Pan Y. How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen city, China. Agricultural and Forest Meteorology,2009,149(11):2054-2060.
    351.Yu G, Li X, Wang Q, Li S. Carbon storage and its spatial pattern of terrestrial ecosystem in China. Journal of Resources and Ecology,2010,1(2):97-109.
    352.Zeng X, Ma Y, Ma L. Utilization of straw in biomass energy in China. Renewable and Sustainable Energy Reviews,2007,11(5):976-987.
    353.Zhang D, Tan S, Gersberg RM. Municipal solid waste management in China: status, problems and challenges. Journal of environmental management,2010b, 91(8):1623-1633.
    354.Zhang C, Tian H, Chen G, et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution, 2012,164:89-101.
    355.Zhang D, Gersberg RM, Keat TS. Constructed wetlands in China. Ecological Engineering,2009,35(10):1367-1378.
    356.Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM. Ecosystem services and dis-services to agriculture. Ecological Economics,2007,64:253-260.
    357.Zhang Y, Baral A, Bakshi BR. Accounting for ecosystem services in life cycle assessment, Part Ⅱ:Toward an ecologically based LCA. Environmental science& technology,2010a,44(7):2624-2631.
    358.Zhao J, Chen S, Jiang B, Ren Y, Wang H, Vause J, Yu H. Temporal trend of green space coverage in China and its relationship with urbanization over the last two decades. Science of The Total Environment,2013,442:455-465.
    359.Zhao Y, Xing W, Lu W, Zhang X, Christensen TH. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China. Waste Management,2012,32(10):1989-1998.
    360.Zhou J, Chen Z, Liu X, et al. Nitrate accumulation in soil profiles under seasonally open "sunlight greenhouses" in northwest China and potential for leaching loss during summer fallow. Soil Use Manage,2010,26:332-339.
    361.Zhou J, Jiang M, Chen B, Chen G. Energy evaluations for constructed wetland and conventional wastewater treatments. Communications in Nonlinear Science and Numerical Simulation,2009,14(4):1781-1789.
    362.Zhou L, Dickinson R, Tian Y, et al. Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America,2004,101:9540-9544.
    363.Zhou Y, Wu Y, Yang L, et al. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China. Atmospheric Environment,2010,44(3):285-293.
    364.白彦锋,姜春前,张守攻。中国木质林产品碳储量及其减排潜力。生态学报,2009,29(1):399-405。
    365.蔡晓明。生态系统生态学。北京:科学出版社,2000。
    366.蔡晓明,尚玉昌。普通生态学(下)。北京:北京大学出版社,1995。
    367.常杰,葛滢。生物多样性的自组织,起源和演化。生态学报,2001,21(7):1180-1186。
    368.常杰,葛滢。隐没的群落:重构生态学Ⅰ。植物生态学报,2003,27(1):141-142。
    369.常杰,葛滢。统和生物学纲要。北京:高等教育出版社,2005。
    370.常杰,葛滢。生态学。北京:高等教育出版社,2010。
    371.戴保国。废塑料制品对土壤环境的影响及防治。农业科技通讯,2003,9:27。
    372.董红敏,李玉娥,陶秀萍,彭小培,李娜,朱志平。中国农业源温室气体排放与减排技术对策。农业工程学报,2008,24(10):269-273。
    373.段佐亮。我国作物秸秆燃烧甲烷,氧化亚氮排放量变化趋势预测(1900-2020)。农业环境保护,1995,14(3):111-116。
    374.Fujita M, Krugman P, Venables AJ。空间经济学——城市、区域与国际贸易。梁琦译。北京:中国人民大学出版社,2005。
    375.方新启。发展农业旅游打造寿光旅游特色品牌。山东经济战略研究,2006,8:28-29。
    376.高卫东。中国种植业大观·肥料卷。北京:中国农业科技出版社,2001。
    377.高翔,李骅。我国工厂化农业的现状与发展对策分析。中国农机化,2007,2:5-7。
    378.高祥照,马文奇,马常宝,张福锁,王运华。中国作物秸秆资源利用现状分析。华中农业大学学报,2002,21:242-247。
    379.谷保静。人类-自然耦合系统氮循环研究——中国案例(博士学位论文)。杭州:浙江大学,2011。
    380.顾启峰,乌兰。污水处理厂污泥产量工艺计算及污泥处置工艺选择。天津建设科技,2006,16(4):50-52。
    381.国家林业局。林业行业标准《森林生态系统服务功能评估规范》(LY/T1721-2008)。北京:中国标准出版社,2008。
    382.国家统计局。中国统计年鉴(2009)。北京,中国统计出版社,2010。
    383.国家统计局。中国能源统计年鉴(2009)。北京,中国统计出版社,2010。
    384.国家统计局固定资产投资统计司。中国建筑业统计年鉴。北京:中国统计出版社,2010。
    385.Hirschman AO。经济发展战略。北京:经济科学出版社,1991。
    386.黄德林,杨军,蔡松锋。中国非CO2类温室气体减排潜力及其政策意涵。中国农学通报,2011,27(2):253-259。
    387.黄鸿翔,李书田,李向林等。我国有机肥的现状与发展前景分析。土壤肥料, 2006,1:1-8。
    388.黄亚军。污水处理厂污泥处理与利用研究(硕士学位论文)。重庆:西南农业大学,2003。
    389.姜华,吴波。城市生活垃圾处理现状、趋势及对策建议。电力环境保护,2008,24(1):50-52。
    390.金晓彤,陈艺妮。中日农民收入与消费结构比较研究。现代日本经济,2007,4:23-26。
    391.乐群,张国君,王铮。中国各省甲烷排放量初步估算及空间分布。地理研究,2012,31(9):1559-1570。
    392.李梅,周恭明,陈德珍。中国废旧农用塑料薄膜的回收与利用。再生资源研究,2004:6,18-21。
    393.刘冬。人类-自然耦合系统中生产和分解子系统功能强化研究(博士学位论文)。杭州:浙江大学,2011。
    394.刘晓利,许俊香,‘王方浩,张福锁,马文奇。我国畜禽粪便中氮素养分资源及其分布状况。河北农业大学学报,2005,28(5):27-32。
    395.马世骏。现代生态学透视。北京:科学出版社,1990,224-235。
    396.马世骏。中国生态学发展战略研究。北京:中国经济出版社,1991,405-444。
    397.马忠海。中国几种主要能源温室气体排放系数的比较评价研究(博士学位论文)。北京:中国原子能科学研究院,2002。
    398.毛学森,李登顺。日光温室黄瓜节水灌溉研究。灌溉排水,2000,19(2):45-47。
    399.聂桂惠。菜博会——现代农民的孵化场。农业知识:瓜果菜,2006,(8):38。
    400.牛晓音,樊梅英,常杰,徐青山,郑家文,葛滢。人工湿地运行过程中有机物质的积累。生态学报,2002,22(8):1240-1246。
    401.潘涛。人工湿地减排温室气体估算研究(博士学位论文)。南京:南京大学,2009。
    402.齐晔,李惠民,王晓。农业与中国的低碳发展战略。中国农业科学,2012,45(1):1-6。
    403.翟凤英,何字纳,马冠生等。中国城乡居民食物消费现状及变化趋势。中华流行病学杂志,2005,26(7):485-488。
    404.SDPC.中华人民共和国国家发展和改革委员会价格司(2006)。中国农业成本收益汇编。北京:中国统计出版社,2005。
    405.孙程旭,李建设,高艳明。我国设施园艺农用覆盖材料的应用与展望。长江蔬菜,2007,4:32-36。
    406.孙儒泳,李庆芬,牛翠娟。基础生态学。北京:高等教育出版社,2002。
    407.孙新章,谢高地,成升魁,肖玉,鲁春霞。中国农田生产系统土壤保持功能及其经济价值。水土保持学报,2005,19(4):156-159。
    408.孙新章,周海林,谢高地。中国农田生态系统的服务功能及其经济价值。中国人口、资源与环境,2007,17(4):55-60。
    409.Thunen V。孤立国同农业和国民经济的关系。吴衡康译。北京:商务印书馆,1986。
    410.唐志军。王乐义感动了谁?招商周刊,2006,7:20。
    411.王方浩,马文奇,窦争霞等。中国畜禽粪便产生量估算及环境效应。中国环境科学,2006,26:614-617。
    412.王如松,胡聃,王祥荣等。城市生态服务。北京:气象出版社,2004。
    413.王雪娜。我国能源类碳源排碳量估算办法研究(博士学位论文)。北京:北京林业大学,2006。
    414.温家石,葛滢,焦荔,邓志平,彭长辉,常杰。城市土地利用是否会降低区域碳吸收能力?——台州市案例研究。植物生态学报,2010,34(6):651-660。
    415.肖兴威。中国森林生物量与生产力的研究(博士学位论文)。哈尔滨:东北林业大学,2005。
    416.徐华,蔡祖聪,李小平。种稻土壤CH4排放规律的研究。土壤与环境,1999,8(3):193-197。
    417.徐少义。农行吉林省分行小额贷款助农民“棚里刨金”。吉林农业,2009,(24):12。
    418.叶道勤,闵富斌。效益源于机制创新——金北镇大棚蔬菜示范园二次创业的启示。江苏统计,2001,9:43。
    419.张福春,朱志辉。中国作物的收获指数。中国农业科学,1990,23(2):83-87。
    420.张光斗。面临21世纪的中国水资源问题。地球科学进展,1999,14(1):16-17。
    421.张文君。河北省农林科学院成功研制出新型节能温室。2008。http://scitech.people.com.cn/GB/7631831.html.
    422.张亚红,陈青云。中国温室气候区划及评述。农业工程学报,2006,22(11):197-202.
    423.张真和。我国设施园艺产业发展对策研究。长江蔬菜,2010,3:1-5。
    424.中国环保局。中国第一次污染源普查报告(国家统计局)。2010。http://www.stats.gov.cn/tigb/qttjgb/qgqttjgb/t20100211_402621161.htm.
    425.中国农业年鉴编辑部(2009)。中国农业年鉴。北京:中国农业出版社,2010。
    426.中国畜牧业年鉴编辑委员会(2009)。中国畜牧业年鉴。北京,中国农业出版社,2010。
    427.周和平。我国碳酸氢铵市场变化及前景。价格月刊,2004,7:35-36。
    428.朱超,赵淑清,周德成。1997-2006年中国城市建成区有机碳储量的估算。应用生态学报,2012,23(5):1195-1202。
    429.朱明,周长吉。我国设施农业的新发展。2009。www.amic.agri.gov.cn/nxtwebfreamwork/detail.jsp?articleId=80656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700