用户名: 密码: 验证码:
新型纤维挂膜填料污水处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着最严格水资源管理制度的实施,全国范围内,节水减排和水生态环境修复任务更加艰巨,污水处理厂提标改造势在必行。研究开发新型污水处理材料、工艺、技术以及强化现有工艺的处理能力形势迫切。生物膜法污水处理技术在治理点源污染和面源污染的实际应用中获得了普遍认可,对挂膜填料的改进研究受到了广泛关注。聚丙烯腈基的活性碳纤维(PAN-ACF)和活性碳纤维毡(PAN-ACFF)具有比表面积高、生物亲和性好、化学性质稳定等优异性能,作为生物膜法挂膜填料的相关研究倍受期待。
     1.以PAN-ACF填料为生物膜载体,对模拟生活污水和化工废水进行了小试实验。PAN-ACF用量为40g,比表面积为1200m2·g-1。(1)在模拟生活污水小试实验中,考察了水力停留时间(HRT)和回流比(R)对COD、 NH4+-N、TN去除率的影响。首先测试了HRT为16、12、8、4、2h时的污染物去除率,当HRT为8h时的去除率最高;设定HRT为8h,调节R为1:2、1:1、2:1、4:1,COD、NH4+-N、TN去除率在R为1:1时达到最大值,分别为94.8%、98.0%、62.2%,填料贡献力为1.99(gCOD·d-1)·g-1、0.20(gNH4+-N·d-1)·g-1、0.12(gTN·d-1)·g-1。测试了HRT为8h、R为1:1时4种浓度下填料生物膜抗有机负荷冲击能力,当进水COD浓度为1478.3~1652.4mg·L-1时,填料贡献力最大,为6.43(g·d-1)·g-1。(2)在化工废水小试实验中,进水COD为1900±50mg·L-1, BOD/COD为0.3,考察了DO和HRT对COD去除率的影响,HRT分别为20、15、10、5h,DO分别为3.0、4.0、5.0、6.0mg·L-1。结果表明,当13h     小试实验还发现, PAN-ACF负载生物膜的生物相非常丰富;PAN-ACF表面含有大量的亲水、亲脂活性官能团,有利于提高生物亲和性;填料负载生物量大,挂膜后质量增加了6倍多;填料干燥后仍可重复使用,使用寿命长。
     2.以PAN-ACFF和超细丙纶、涤纶纤维为原材料,制作了外夹层包裹内芯的复合填料(CFF)。以CFF为生物膜载体,对生活污水进行了中试实验。(1)制作了“环状毛圈+超细纤维网布+PAN-ACFF内芯”的纤维丝复合填料,比表面积为1450+100m2.g-1,填料束干重为70g.m-1。(2)将活性污泥法与生物膜法进行了整合,制作了“初沉池+预缺氧池+厌氧池+缺氧池1+缺氧池2+好氧池+二沉池”的改进型UCT反应器(MUCT),总有效体积0.54m3,体积比V预缺氧池:V厌氧池:V缺氧池:V好氧池=1:1:2:5。设置了“好氧池到第二缺氧池”(R1)、“二沉池到第一缺氧池”(R2)、“第一缺氧池到预缺氧池”(R3)三套回流系统。缺氧池、厌氧池MLSS为2.5土0.5g·L-1,好氧池MLSS为1.5+0.5g.L-1。反应池放置了CFF填料,总质量为3.36kg,填料束投放数量为T预气氧池:T厌氧池:T缺氧池:T好氧池为2:2:4:16。(3)考察了进出水污染物浓度。设定了三种工况:HRT为12、8、6h,分段进水比为1:9、2:8、3:7,R1为200%、300%、400%,R2=R3为20%、40%、60%,厌氧池、缺氧池、好氧池、二沉池的污泥停留时间(SRT)分别为6、10、10、7d。在工况3时,COD、NH4+-N和TP去除效果最好,进水日负荷分别为1384.8±80.4、113.3±8.9、25.1±2.5g.d-1,去除率分别为93.2±0.8%、87.4±2.1%和90.2+3.7%。出水的COD浓度达到了GB18918-2002一级B标准,NH4+-N接近一级B标准,TP达到了二级标准。填料贡献力为384.2±23.5(gCOD·d-1)·kg-1、29.5±2.6(gNH4+-N·d-1)·kg-1和6.8±0.9(gTP·d-1)·kg-1。(4)考察了MUCT生物膜反应器中含氮化合物浓度变化规律。三种工况下,NO3--N和NO2--N进水浓度低,出水浓度高,在工况1时累积率最高,在工况3时累积率最低。三种工况中NH4+-N的净去除百分比分别为31.4%、52.7%、78.0%。
     中试实验认为,MUCT生物膜反应器对污染物有较好的去除能力,在常温下实现了N02--N的高累积率;CFF不需定期反冲洗,在清水中漂洗、浸泡后可重复使用。
     3.以CFF为生态基对生活社区纳污人工湖进行了水生态功能修复工程实验。初步形成了“纤维丝复合填料+人工曝气+EM菌剂”的生态基技术,人工湖的水质在较短时间内由GB3838-2002劣五类提升为五类。
     总之,论文尝试性的制作了活性碳纤维填料和纤维丝复合填料,并以其作为微生物挂膜载体分别进行了应用研究,达到了预期效果;制作的MUCT生物膜反应器具有稳定的污染物去除能力,机理分析和工艺参数改进还有待进一步深入。
The excessive emissions of nitrogen and phosphorous compounds to waterbodies can give rise to eutrophication, oxygen depletion and even water source toxicity for life. Accordingly, the total nitrogen (TN) and total phosphorous (TP) removal from contaminated waters has become an imperative demand according to public health and environmental protection. Actually, the more stringent regulations for nitrogen and phosphorous removal from wastewater have been implemented in China. Without a doubt, it is a markedly hard challenge to reduce wastewater discharge and restore water environment for the society as a whole. Particularly, it is imperative for the sewage treatment plants to expand scale and upgrade technical level. Thus, the wide investigation has been carried out with regard to the new wastewater treatment materials and process and old system optimizing. Especially, the biofilm technology has attracted great attention in the wastewater treatment. Here, polyacrylonitrile-based activated carbon fiber (PAN-ACF) and activated carbon fiber felt (PAN-ACFF) are investigated as biofilm carriers in wastewater treatment process considering the characteristics of high specific surface area, good biocompatibility, and chemical stability.
     1. PAN-ACF40g with the specific surface area1200m2·g-1as the biofilm carrier was used to wastewater treatment in two small-scale tests for artificial sewage and organic industrial wastewater.(1) The influence of hydraulic retention time (HRT) and reflux ratio (R) on chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and TN removal was studied in the aerobic biofilm reactor for artificial sewage treatment. The evaluation on various HRT showed that the highest removal efficiencies of COD, NH4+-N, and TN was obtained at8h in contrast to the HRT of16,12,4, and2h. The removal efficiencies according to various R displayed that the removal of COD, NH4+-N, and TN reached maximum with the R of1:1compared to R of1:2,2:1, and4:1; and the average values were94.8%,98.0%, and62.2%, respectively; wherein the filler's contribution power per unit mass was1.99(gCOD·d-1)·g-1,0.20(gNH4+-N·d-1)·g-1, and0.12(gTN·d-1)·g-1. In addition, the COD removal efficiencies at four influent levels was measured at HRT=8h and R=1:1and the results showed that the highest (6.43(g·d-1)·g-1) filler's contribution power per unit mass was obtained at the influent COD of1478.3-1652.4mg·L-1.(2) In small-scale experiments for organic industrial wastewater treatment with the influent BOD/COD of0.3. The COD removal efficiencies were tested at different dissolved oxygen (DO) of3.0,4.0,5.0, and6.0mg·L-1; and HRT of20,15,10, and5h. The results showed that the COD removal efficiencies were higher than75%with13     2. The pilot-scale experiments for sewage treatment in MUCT biofilm reactor.(1) A complex fiber filler (CFF) carrier was produced with the characteristics of specific surface area1450±100m2·g-1, dry weight70g·m-1, and sized Φ5×50cm. The CFF was composed of an outer-coat made by polypropylene net-cloth with loops (ultra-fine polypropylene and terylene fiber) on outer surface and an inner-core made by PAN-ACFF.(2) A step-feeding pilot-scale modified University of Cape Town process (MUCT) included pre-anoxic/anaerobic/anoxic-l/anoxic-2/oxic tank. The total volume of the MUCT biofilm reactor was0.54m3, whereas the volume ratio of Vpre-anoxic:Vanaerobic:Vanoxic:aerobic was1:1:2:5. Three reflux systems were included as follows:nitrification liquor recycle (R1), sludge return (R2) and nitrosation liquor recycle (R3). The mixed liquor suspend solid (MLSS) was2.5±0.5g·L-1in the anoxic and anaerobic tanks, and1.5±0.5g-L"1in the oxic tanks. Each tank was filled with the CFF fixed-bed with the total filler mass3.36kg and the dosing ratio of Tpreanoxic:Tanaerobic:Tanoxic:Taerobic was2:2:4:16. (3) The inlet and output concentrations of COD, NH4+-N, NO3-N, NO2-N, and TP were tested by three kinds of working conditions, which included: HRT:12,8, and6h; the step-feeding ratios between pre-anoxic tank and anaerobic tank:1:9,2:8, and3:7; R1:200%,300%, and400%; R2=R3:20%,40%, and60%. The sludge residence time (SRT) of anaerobic/anoxic/aerobic/secondary settling tank were6,10,10, and7d, respectively. The influent loads were1384.8±80.4gCOD·d-1,113.3±8.9gNH4+-N·d-1, and25.1±2.5gTP·d-1. During working condition3, the removal rates of COD, NH4+-N, and TP were93.2±0.8%,87.4±2.1%, and90.2±3.7%, respectively, which is the highest among three working conditions. During the treatment, the effluent COD concentration achieved Grade1level-B of "Cities Sewage Treatment Plant Pollutant Discharge Standard"(GB18918-2002); the effluent NH4+-N concentration was close to Grade1level-B; and the effluent TP concentration reached the Grade2. As for the filler's contribution power per unit mass, it was384.2±23.5(gCOD·d-1)·kg-1,29.5±2.6(gNH4+-N·d-1)·kg-1,6.8±0.9(gTP·d-1)·kg-1.(4) The NO3--N and NO2--N concentrations in the MUCT biofilm reactor were measured in3working conditions. The results showed that the influent NO3--N and NO2-N concentrations were low and the effluent concentrations were high. The highest accumulative rate was achieved in working condition1and lowest accumulative rate was in working condition3. The net removal rates of NH4+-N were31.4%,52.7%, and78.0%, respectively among three working conditions.(5) To sum up, the pilot-scale tests showed that the MUCT biofilm reactor performed well on pollutants removal with CFF which showed the advantage of easy cleaning for reuse and need no periodic backwashing. However, sludge emission was carried out regularly for all the tanks in order to obtain high biological phosphorus removal.
     3. The engineering experiments with the CFF as biofilm carrier. A new ecological technique "CFF+aeration+EM bacterial agent" was developed from a contaminated artificial lake treatment, by which the water quality was markedly promoted from Inferior Grade5standard to Grade5standard according to "Environmental Quality Standards for Surface Water"(GB3838-2002). More importantly, a large number of fish appeared and the project successfully passed the government test after one month.
     In summary, PAN-ACF and CFF as biomembrane carrier were first developed and successfully used in wastewater treatment apparatus. Furthermore, the novel MUCT biofilm reactor with combined advantages of activated sludge and biofilm method has displayed some potential in pollutants removal. However, further studies are also needed on the mechanism discussion and parameters optimization.
引文
[1]曲久辉.生命之源[J].求是杂志,2012,8:3940
    [2]陈雷.保护好生命之源、生产之要、生态之基——落实最严格水资源管理制度[J].求是杂志,2012,14:38-40
    [3]甘泓,秦长海,汪林,等.水资源定价方法与实践研究Ⅰ:水资源价值内涵浅析[J].水力学报,2012,43(3):289-292
    [4]2012-4th Edition of the UN World Water Development Report [EB/OL]. http://www.unesco.org/en/world-water-assessment-programme/world-water-development-report /2012-4th-edition/
    [5]Justin S, Eric F W, Michael L R. Little change in global drought over the past 60 years [J]. Nature,2012,491:435-438
    [6]Stanley B G, Jean-Daniel S, David L F, et al. Taking the "Waste" out of "Wastewater" for human water security and ecosystem sustainability [J]. Science,2012,337(6095):681-686
    [7]国务院关于印发全国主体功能区规划的通知(国发(2010)46号)[EB/OL].http://www.gov.cn/zwgk/2011-06/08/content_187918O.htm
    [8]Shilong P, Philippe C, Yao H, et al. The impacts of climate change on water resources and agriculture in China [J]. Nature,2010,467:43-51
    [9]梅锦山.我国重要江河湖泊水功能区划特征[J].中国水利,2012,7:38-42
    [10]刘佳骏,董锁成,李泽红.中国水资源承载力综合评价研究[J].自然资源学报,2011,26(2):258-268
    [11]中国环境状况公报2007-2011年[EB/OL]. http://jcs.mep.gov.cn/hjzl/zkgb/
    [12]中共中央国务院关于加快水利改革发展的决定(中发(2011]1号)[EB/OL].http://www.gov.cn/jrzg/2011-01/29/content_1795245.htm
    [13]国务院关于实行最严格水资源管理制度的意见(国发[2012]3号)[EB/OL].http://www.gov.cn/zwgk/2012-02/16/content_2067664.htm
    [14]胡锦涛在中国共产党第十八次全国代表大会上的报告[EB/OL].http://news.xinhuanet.com/18cpcnc/2012-11/17/c_113711665.htm
    [15]杨柳,马克明,郭青海,等.城市化对水体非点源污染的影响[J].环境科学,2004,25(6):32-38
    [16]Tomohiro O, Masataka W, Kaiqin X. Analysis of water demand and water pollutant discharge using a regional input-output table:An application to the City of Chongqing, upstream of the Three Gorges Dam in China [J]. Ecological Economics,2006,58(2):221-237
    [17]Xiaowen D. The simulation research on agricultural non-point source pollution in Yongding River in Hebei Province [J]. Procedia Environmental Sciences,2010,2:1770-1774
    [18]Lei W, Tian-yu L, Xia L, et al. Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing River Watershed, China [J]. Journal of Hydrology,2012,475:26-41
    [19]杨林章,施卫明,薛利红,等.农村面源污染治理的“4R”理论与工程实践——总体思路与“4R”治理技术[J].农业环境科学学报,2013,32(1):1-8
    [20]Elizabeth P. Water reclamation going green [J]. Science,2012,337(6095):674-676
    [21]吕炳南,陈志强.污水生物处理新技术(修订版)(市政与环境工程系列研究生教材)[M].哈 尔滨:哈尔滨工业大学出版社,2007.20-70
    [22]康丽娜,王海杰.生物膜法在微污染水源水预处理中的研究进展[J].化工进展,2012,31(2):223-227
    [23]Kartal B, Kuenen J G, van Loosdrecht M C M. Sewage treatment with ANAMMOX [J]. Science, 2010,328(5979):702-703
    [24]Rong C, Deokjin J. Nitrogen control in A/O process with recirculation of solubilized excess sludge [J]. Water Research,2004,38(5):1159-1172
    [25]Hai-Yan F, Peng-Cheng X, Guo-He H, et al. Effects of aeration parameters on effluent quality and membrane fouling in a submerged membrane bioreactor using Box-Behnken response surface methodology [J]. Desalination,2012,302:33-42
    [26]钱林波,元妙新,陈宝梁.固定化微生物技术修复PAHs污染土壤的研究进展[J].环境科学,2012,33(5):1767-1776
    [27]Hyeyoung P. Reduction of antibiotics using microorganisms containing glutathione S-transferases under immobilized conditions [J]. Environmental Toxicology and Pharmacology, 2012,34(2):345-350
    [28]Zhiwei W. China's wastewater treatment goals [J]. Science,2012,338(6107):604-610
    [29]住房城乡建设部通报城镇污水处理设施运行情况[EB/OL].http://www.gov.cn/gzdt/2013-01/15/content_2312179.htm
    [30]Andres A, Sreepriya V, Peter G, et al. A compartmental model to describe hydraulics in a full-scale waste stabilization pond [J]. Water Research,2012,46(2):521-530
    [31]Joel C Q Kenneth R T, Helen I S. Inorganic nitrogen removal from wastewater:effect on phytoplankton growth in coastal marine waters [J]. Science,1973,180 (4089):955-956
    [32]Cristina A, Carolina R, Josep M B, et al. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: Influence of redox [J]. Water Research,2013,47(1):315-325
    [33]Valerie J F, James R M, John S G. Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions [J]. Water Research,2011,45(5):2073-2081
    [34]Amina A, Elise C, Tom S, et al. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant [J]. Water Research,2013,47(2):524-534
    [35]Yan Z, Adrian O, Melvin L, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants [J]. Water Research,2011,45(15):4672-4682
    [36]郭一凡.浅谈亚硝酸盐的危害[J].微量元素与健康研究,2012,29(6):73-74
    [37]Jeffrey J S, Andrew L M. Human safety controversies surrounding nitrate and nitrite in the diet [J]. Nitric Oxide,2012,26(4):259-266
    [38]Yakutina O P. Phosphorus content in sediment and eroded soils in the southeastern part of West Siberia [J]. Agriculture, Ecosystems & Environment,2011,140(1-2):57-61
    [39]Hong Y, Roger J F, Julian R T. Sustaining china's water resources [J]. Science,2013,339(6116): 141
    [40]Hong Y, Ping X, Leyi N, et al. Pollution in the Yangtze [J]. Science,2012,337(6093):410
    [41]Jianguo L, Wu Y. Water sustainability for china and beyond [J]. Science,2012,337(6095): 649-650
    [42]周静波,张宗应.我国水体富营养化的产生根源与治理对策[J].安徽农业科学,2009,21: 10126-10128
    [43]Margaret A P, Catherine M F. The heartbeat of ecosystems [J]. Science,2012,336(6087): 1393-1394
    [44]Richard S. China aims to turn tide against toxic lake pollution [J]. Science,2011,333(6047): 1210-1211
    [45]Miao L, Yue-Jin W, Zeng-Liang Y, et al. Nitrogen removal from eutrophic water by floating bed grown water spinach (Ipomoea aquatica Forsk.) with ion implantation [J]. Water Research, 2007,41(14):3152-3158
    [46]Arrigo K. Marine microorganisms and global nutrient cycles. Nature,2005,437:349-355
    [47]Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation [J]. International Society for Microbial Ecology,2007,1:19-27
    [48]贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406-415
    [49]Qiang K, Shuang L, Jian Z, et al. N2O emission in a partial nitrification system:Dynamic emission characteristics and the ammonium-oxidizing bacteria community [J]. Bioresource Technology,2013,127:400-406
    [50]Jorg S, Martin G K. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations [J]. Biochimicaet Biophysica Acta (BBA)-Bioenergetics, 2013,1827(2):114-135
    [51]张宽喜.分批进水SBR的脱氮除磷特性及在城市污水处理中的应用试验研究[D].西安:西安建筑科技大学,2005
    [52]Rassil R S, Pascal E S, Mutasem E, et al. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor [J]. Water Research,2013,47(2):881-894
    [53]Chao A, Guoqing L, Jingwen S, et al. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil [J]. Soil Biology and Biochemistry,2013,57:30-42
    [54]Zhen H, Jian Z, Huijun X, et al. Minimization of nitrous oxide emission from anoxic oxic biological nitrogen removal process:Effect of influent COD/NH4+ratio and feeding strategy [J]. Journal ofBioscience and Bioengineering,2013,115(3):272-278
    [55]Rusul N, Saad A, Lu X. Biological nutrient removal with limited organic matter using a novel anaerobic-anoxic/oxic multi-phased activated sludge process [J]. Saudi Journal of Biological Sciences,2013,20(1):11-21
    [56]Vargas M, Yuan Z, Pijuan M. Effect of long-term starvation conditions on polyphosphate and glycogen-accumulating organisms [J]. Bioresource Technology,2013,127:126-131
    [57]Zhiguo Y, Steven P, Damien J B. Phosphorus recovery from wastewater through microbial processes [J]. Current Opinion in Biotechnology,2012,23:878-883
    [58]Acevedo B, Oehmen A, Carvalho G, et al. Metabolic shift of polyphosphate accumulating organisms with different levels of polyphosphate storage [J]. Water Research,2012,46(6): 1889-1900
    [59]安健,伏光辉,阮记明,等.反硝化除磷菌筛选及其特性研究[J].微生物学通报,2012,39(2):162-171
    [60]Bassin J P, Kleerebezem R, Dezotti M, et al. Measuring biomass specific ammonium, nitrite and phosphate uptake rates in aerobic granular sludge [J]. Chemosphere,2012,9:1161-1168
    [61]阳素攀,方茜,林曼婷,等.同时硝化/反硝化除磷工艺的脱氮除磷效能[J].环境科学与技术,2012,35(6):106-109
    [62]Min W, Rui Z, Heguang Z, et al. Phosphorus removal and simultaneous sludge reduction in humus soil sequencing batch reactor treating domestic wastewater [J]. Chemical Engineering Journal,2013,215-216:136-143
    [63]Liu Y, Maite P, Zhiguo Y. The effect of free nitrous acid on key anaerobic processes in enhanced biological phosphorus removal systems [J]. Bioresource Technology,2013,130:382-389
    [64]Fang-Yuan C, Yong-Qiang L, Joo-Hwa T, et al. Alternating anoxic/oxic condition combined with step-feeding mode for nitrogen removal in granular sequencing batch reactors (GSBRs) [J]. Separation and Purification Technology,2013,105:63-68
    [65]Rajaa M, Nancy G L, Deborah A B, et al. Reactivity and chemical characterization of effluent organic nitrogen from wastewater treatment plants determined by Fourier transform ion cyclotron resonance mass spectrometry [J]. Water Research,2012,46(3):622-634
    [66]Wei C, Baogang Z, Yunxiao J, et al. Behavior of total phosphorus removal in an intelligent controlled sequencing batch biofilm reactor for municipal wastewater treatment [J]. Bioresource Technology,2013,132:190-196
    [67]吕炳南,董春娟.污水好氧处理新工艺[M].哈尔滨:哈尔滨工业大学出版社,2007.21-23
    [68]Park H, Oh S, Bade R, et al. Application of A2/O moving-bed biofilm reactors for textile dyeing wastewater treatment [J]. Korean Journal of Chemical Engineering,2010,27(3),893-899
    [69]Yang S, Yang F L. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor [J]. Journal of Hazardous Materials,2011,195(15):318-323
    [70]Adriana M L, Pascal W, Adriano J, et al. Nitrous oxide emissions from the oxidation tank of a pilot activated sludge plant [J]. Water Research,2012,46(11):3563-3573
    [71]周爱姣,陶涛,张太平,等.A-A2/O工艺处理低碳源城市污水的除磷脱氮效果[J].环境科学与技术,2008,31(12):150-152
    [72]张智,陈杰云,李勇.处理低温低碳源污水的倒置A2/O工艺强化脱氮研究[J].中国给水排水,2010,26(1):6-8+12
    [73]郑纬元,张新喜.A2/O2工艺处理焦化废水的工程应用[J].工业用水与废水,2007,38(2):74-76+73
    [74]赵曙光A2/O+MBR工艺特性及其膜污染控制研究[D].北京:中国矿业大学,2009
    [75]郭远凯,黎松强,吴馥萍.改良Bardenpho工艺同步脱氮除磷处理小区生活污水[J].水处理技术,2008,10:57-59
    [76]李亚峰,张晓宁,刘洪涛,等.采用UCT工艺的复合式MBR脱氮除磷影响研究[J].给水排水,2011(S1):101-104
    [77]Vaiopoulou E, Aivasidis A. A modified UCT method for biological nutrient removal: Configuration and performance [J]. Chemosphere,2008,72(7):1062-1068
    [78]葛士建,彭永臻.改良UCT分段进水脱氮除磷工艺的性能分析[J].中国给水排水,2011,27(21):31-35
    [79]Daniele D T, Marco C, Alida C, et al. Evaluation of biomass activity and wastewater characterization in a UCT-MBR pilot plant by means of respirometric techniques [J]. Desalination,2011,269(1-3):190-197
    [80]Guihua C, Shuying W, Yongzhen P, et al. Biological nutrient removal by applying modified four step-feed technology to treat weak wastewater [J]. Bioresource Technology,2013,128:604-611
    [81]王晓莲,彭永臻.A2/O法污水生物脱氮除磷处理技术与应用[M].北京:科学出版社,2009.352-370
    [82]Tchobanoglous G, Burton F, Stensel H D. Wastewater engineering treatment and reuse [D].4th ed. New York:Metcalf and Eddy, Inc,2001
    [83]周明.SBR系统中生物硝化与聚磷的相互作用及其影响特征研究[D].西安:西安建筑科技大学,2008
    [84]Szpyrkowicz L, Zilio-Grandi F. Seasonal phosphorus removal in a Phostrip process-Ⅰ. Two-years' plant performance [J]. Water Research,1995,29(10):2318-2326
    [85]Szpyrkowicz L, Zilio-Grandi F. Seasonal phosphorus removal in a phostrip process-Ⅱ. Phosphorus fractionation and sludge microbiology during start-up [J]. Water Research,1995, 29(10):2327-2338
    [86]Pradnya K. Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR) [J]. Bioresource Technology,2013,128: 273-280
    [87]Zixing W, Xiaochen X, Zheng G, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system [J]. Journal of Hazardous Materials,2012, 235-236:78-84
    [88]Xinxin Y, Muhammad R B, Ron G, et al. Comparison of MBR performance and membrane cleaning in a single-stage activated sludge system and a two-stage anaerobic/aerobic (A/A) system for treating synthetic molasses wastewater [J]. Journal of Membrane Science,2012, 394-395:49-56
    [89]张娜,王琳.A2/O淹没式生物膜工艺处理城镇污水的研究[J].水必理技术,2012,38(2):65-68
    [90]赵维电,王新华,高宝玉.A/O生物膜系统处理煤化工废水[J].环境工程学报,2012,6(10):3481-3484
    [91]张涛.A2/O水平推流式生物膜复合工艺性能研究[D].太原:太原理工大学,2012
    [92]Radhika K, Anuradha N, Anjana D. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry [J]. Bioresource Technology,2013,130:390-397
    [93]Mohammad S, Mohammad H F. Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor [J]. Applied Mathematical Modelling,2012,36(11): 5603-5613
    [94]Lingxiao G, Li J, Qing Y, et al. Biomass characteristics and simultaneous nitrification denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage [J]. Bioresource Technology,2012,119:277-284
    [95]Seyyedalireza M, Shaliza I, Mohamed K A. Sequential nitrification and denitrification in a novel palm shell granular activated carbon twin-chamber upflow bio-electrochemical reactor for treating ammonium-rich wastewater [J]. Bioresource Technology,2012,125:256-266
    [96]Peizhen C, Ji L, Qing X L, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24 [J]. Bioresource Technology,2012,116: 266-270
    [97]Xiaolian W, Yong M, Yongzhen P, et al. Short-cut nitrification of domestic wastewater in a pilot-scale A/O nitrogen removal plant [J]. Bioprocess and Biosystems Engineering,2007,30(2): 91-97
    [98]Letizia Z, Nicola F, Elisa N, et al. Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review review article [J]. Desalination,2012,286:1-7
    [99]Claros J, Serralta J, Seco A, et al. Real-time control strategy for nitrogen removal via nitrite in a SHARON reactor using pH and ORP sensors [J]. Process Biochemistry,2012,47(10): 1510-1515
    [100]Shuo Y, Jinren N, Qian C, et al. Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature [J]. Bioresource Technology,2013,127:151-157
    [101]任延丽,靖元孝.反硝化细菌在污水处理作用中的研究[J].微生物学杂志,2005,25(2):88-92
    [102]Wen Y, Wei CH. Heterotrophic nitrification and aerobic denitrification bacterium isolated from anaerobic/anoxic/oxic treatment system [J]. African Journal of Biotechnology,2011,10(36): 6985-6990
    [103]Laura V N, Mike S M J. Anaerobic ammonium-oxidizing bacteria:unique microorganisms with exceptional properties [J]. Microbiology and Molecular Biology Reviews,2012,76(3):585-596
    [104]Tao J, Hanmin Z, Hong Q, Fenglin Y, et al. Start-up of the anammox process and membrane fouling analysis in a novel rotating membrane bioreactor [J]. Desalination,2013,311:46-53
    [105]Yu T, Da-Wen G, Yuan F, et al. Impact of reactor configuration on anammox process start-up: MBR versus SBR [J]. Bioresource Technology,2012,104:73-80
    [106]Shalini S S, Joseph K. Nitrogen management in landfill leachate:Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process [J]. Waste Management,2012, 32(12):2385-2400
    [107]Monballiu A, Desmidt E, Ghyselbrecht K, et al. Enrichment of anaerobic ammonium oxidizing (Anammox) bacteria from OLAND and conventional sludge:Features and limitations [J]. Separation and Purification Technology,2013,104:130-137
    [108]Gonzalez M A, Poyatos J, Hontoria E, et al. Treatment of effluents polluted by nitrogen with new biological technologies based on autotrophic nitrification-denitrification processes [J]. Recent Patents on Biotechnology,2011,5(2):74-84
    [109]You-Peng C, Shan L, Yun-Fang N, et al. Start-up of completely autotrophic nitrogen removal over nitrite enhanced by hydrophilic-modified carbon fiber [J]. Applied Biochemistry and Biotechnology,2012,166(4):866-877
    [110]Bing-Jie N, Zhiguo Y. A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems [J]. Journal of Membrane Science,2013,428:163-171
    [111]Qia ng K, Jian Z, Mingsheng M, et al. Partial nitrification and nitrous oxide emission in an intermittently aerated sequencing batch biofilm reactor [J]. Chemical Engineering Journal, 2013,217:435-441
    [112]Yunxiao J, Dahu D, Chuanping F, et al. Performance of sequencing batch biofilm reactors with different control systems in treating synthetic municipal wastewater [J]. Bioresource Technology, 2012,104:12-18
    [113]Tarjanyi-Szikora S, J6zsef O, Magdolna M, et al. Comparison of different granular solids as biofilm carriers [J]. Microchemical Journal,2013,107:101-107
    [114]Hosseini K E, Alavi M M R, Hashemi S H. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye Acid Red 18: Comparison of using two types of packing media [J]. Bioresource Technology,2013,127: 415-421
    [115]Calderon K, Martin-Pascual J, Poyatos J M, et al. Comparative analysis of the bacterial diversity in a lab-scale moving bed biofilm reactor (MBBR) applied to treat urban wastewater under different operational conditions [J]. Bioresource Technology,2012,121:119-126
    [116]Shi-rong L, Wen C, Meng W, Chen C. The flow patterns of bubble plume in an MBBR [J]. Journal of Hydrodynamics, Ser. B,2011,23(4):510-515
    [117]Martina F, Giuseppe G, Gianni A. Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment [J]. Environmental Modelling & Software,2010,25(5):626-632
    [118]朱洁,东刘成,陈洪斌,等.不同填料类型污染源水生物预处理的比较[J].中国环境科学,2012,32(3):447-453
    [119]Yanjie L, Qinyan Y, Wenhong L, et al. Properties improvement of paper mill sludge-based granular activated carbon fillers for fluidized-bed bioreactor by bentonite (Na) added and acid washing [J]. Journal of Hazardous Materials,2011,197:33-39
    [120]Zhiwei L, Zhiying H, Shangyuan Y, et al. A control strategy of partial nitritation in a fixed bed bioflim reactor [J]. Bioresource Technology,2011,102(2):710-715
    [121]廖榆敏,汤兵,陈秋雯.移动床生物反应器启动特性研究进展[J].水必理技术2011,37(2):5-8+22
    [122]Marcin Z, Magdalena Z, Marcin D. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters [J]. Bioresource Technology,2013,127:223-230
    [123]靳琳芳.废旧织物应用于污水处理填料的可行性研究[D].上海:东华大学,2011
    [124]邵留,徐祖信,金伟,等.以稻草为碳源和生物膜载体去除水中的硝酸盐[J].环境科学,2009,5:1414-1419
    [125]Li-Juan F, Liang Z, Qi Y, et al. Simultaneous enhancement of organics and nitrogen removal in drinking water biofilm pretreatment system with reed addition [J]. Bioresource Technology, 2013,129:274-280
    [126]岳秀萍,员建.水处理滤料与填料[M].北京:化学工业出版社,2011.2-15
    [127]Wei-jia G, Heng L, Wen-zhe L, et al. Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energy,2011,36 (5):3572-3578
    [128]Yousef R, Ali T, Naser M, et al. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). Journal of Hazardous Materials, 2011,185 (2-3):852-857
    [129]Taichi Y, Keita T, Toichiro K, et al. Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology. Journal of Bioscience and Bioengineering,2006,102 (6):497-503
    [130]Xiuhong Z, Jiti Z, Haiyan G, et al. Nitrogen removal performance in a novel combined biofilm reactor. Process Biochemistry,2007,42 (4):620-626
    [131]Siqing X, Junying L, Rongchang W. Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecological Engineering,2008,32 (3):256-262
    [132]Wang Q, Feng C, Zhao Y, et al. Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresource Technology,2009,100 (7):2223-2227
    [133]Shinya M, Akihito O, Katsutoshi H. Carbon fiber as an excellent support material for wastewater treatment biofilms. Environmental Science & Technology,2012,46:10175-10181
    [134]Jechalke S, Vogt C, Reiche N, et al. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater. Water Research,2010,44 (6):1785-1796
    [135]刘景涛.绳式生物膜载体自然供氧处理污水新工艺研究[D].北京:农业部沼气科学研究所/中国农业科学院研究生院,2012
    [136]He Z K, Liu J, Wang S T. The formation mechanism of carbon fiber biofilm Ⅱ.—effects of carbon fiber surface characteristic on the activity and multiplication of microorganism. New Carbon Materials,2003,18 (1):43-47
    [137]朱富珍,李景义,张辉,等.一种纤维球过滤罐的冲洗方法[P].天津:CN102068837A,2011-05-25
    [138]陈俊杰,李顺灵,田水松.新型彗星式复合纤维滤料[P].河南:CN101766930A,2010-07-07
    [139]卢普伦.新型旋翼式纤维过滤料[P].湖北:CN101496972,2009-08-05
    [140]刘俊良,王琴.水处理填料与滤料[M].北京:化学工业出版社,2010.35-68
    [141]苏亿位,冯振秀,赵二军,等.自由体辫带式水处理填料[P].河北:CN2451576,2001-10-03
    [142]赵二军,苏亿位,冯振秀,等.防堵塞辫带式水处理填料[P].河北:CN201056515,2008-05-07
    [143]韩庆祥.上浮式填料及纤维束式填料在生物接触氧化法中的应用[D].西安:西安建筑科技大学,2004
    [144]苏亿位,冯振秀,靳维民,等.辫带式水处理填料[P].河北:CN2319400,1999-05-19
    [145]李全林.前沿领域新材料[M].南京:东南大学出版社,2008,457-459
    [146]Chen W, Liu X, He R L. Activated carbon powders from wool fibers [J]. Powder Technology, 2013,234:76-83
    [147]Yao M. Removal of volatile organic compounds from indoor air using regenerative activated carbon fiber cloth[D]. Michigan, USA:Michigan Technological University,2008
    [148]Huajun L. Evaluation of activated carbon fibers (ACF) for removal of volatile organic compounds (VOCs) in indoor environments[D]. West Lafayette, USA:Purdue University,2005
    [149]张巍巍.生物碳纤维的酶固定化研究[D].北京:北京化工大学,2010
    [150]Yan F, Zhihui A, Lizhi Z. Design of an electro-Fenton system with a novel sandwich film cathode for wastewater treatment [J]. Journal of Hazardous Materials,176(1-3):678-684
    [151]李全明.活性碳纤维的制备及性能研究[D].长春:吉林大学,2010
    [152]马兆昆,刘杰.改性碳纤维及表面含氧官能团对反硝化菌固着化的影响[J].功能材料,2003,34(5):592-594
    [153]Majid K, Bijan B, Hossein M, et al. Biological phosphorus and nitrogen removal from wastewater using moving bed biofilm process [J]. Iranian Journal of Biotechnology,2009,7(1): 19-27
    [154]Bernardino V, Suzanne T R, Korneel R, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode [J]. Bioresource Technology,2011,102(1): 334-341
    [155]韩笑.煤沥青基碳纤维的制备与表征[D].淮南:安徽理工大学,2011
    [156]苏灿军.PAN基碳纤维径向结构的高温演变规律的研究[D].北京:北京化工大学,2011
    [157]杨波.高温热处理制备国产PAN基高模量炭纤维的研究[D].武汉:中南大学,2011
    [158]高爱君.PAN基碳纤维成分、结构及性能的高温演变机理[D].北京:北京化工大学,2012
    [159]Jiuhui Q, Maohong F. The current state of water quality and technology development for water pollution control in china [J]. Critical Reviews in Environmental Science and Technology,2010, 40(6):519-560
    [160]康素梅.PAN基高模量碳纤维的表面涂层改性研究[D].北京:北京化工大学,2011
    [161]郭军.水解酸化-接触氧化-活性炭吸附工艺处理印染废水的实验研究[D].北京:北京化工大学,2012
    [162]谌莉莎.活性碳纤维吸附性能及其在水产养殖水体的处理研究[D].北京:北京化工大学,2012
    [163]Zhou J J, Hu Z H, Liu Y F, et al. Preparation and water treatment of biological activated carbon fiber [J]. New Carbon Materials,2006,21(1):64-69
    [164]Wang X, Liu J, Ma M. Quick culturing device for biological film in natural water, is used by adhering algae, bacteria and protist inside the natural water on activated carbon fiber by utilizing large specific area and strong absorption characters of fiber [P]. CN101928059-A,29 Dec 2010
    [165]Liu J, Chen Q, Ma M., et al. Quick biological membrane culturing device in natural water body has activated carbon fiber fixed disc mounted on disc carrier body through annular gasket [P]. CN102517194-A,27 Jun 2012
    [166]Wang J. Disposable female biological macromolecular adsorption bolt, has bolt core manufactured by activated carbon fiber felt textile and chitin-chitosan fiber non-woven fabric outer layer that is coated on bolt core [P]. CN101816803-A,01 Sep 2010
    [167]尹艳娥,胡中华,刘亚菲,等.生物活性炭纤维处理微污染原水的研究[J].给水排水(增刊),2006,32:56-58
    [168]Haireti T, He Y, Zhao D, et al. Biological carbon fiber flat panel membrane subassembly useful in sewage treatment reactor, comprises lining plate, ecological carbon fiber composite material arranged on plate, and filtering membrane arranged on side of composite material [P]. CN102489156-A,13 Jun 2012
    [169]Helmer C H, Kunst S. Simultaneous nitrification/denitrification in an aerobic biofilm system. Water Science & Technology,1998,37(4-5):183-187
    [170]赵丹丹.好氧反硝化菌株的快速筛选及其在硝态氮废水处理中的应用研究[D].长春:吉林大学,2007
    [171]王雷,席北斗,张列宇,等.序批式生物膜反应器处理农村生活污水的填料对比研究[J].环境污染与防治,2012,7:29-35
    [172]王朔.碳素纤维材料在污水治理中的应用研究[D].北京:北京化工大学,2012
    [173]Soo-Jin P, Byung-Joo K. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior [J]. Materials Science and Engineering:A,2005,408(1-2): 269-273
    [174]韩赞.PAN基碳纤维的制备与表征[D].北京:北京化工大学,2011
    [175]任瑞芳.光合细菌(PSB)处理明胶废水中填料挂膜性能的实验研究[D].兰州:兰州理工大 学,2011
    [176]曹远虑.提高烟用聚丙烯纤维丝束吸附性能的研究[D].无锡:江南大学,2007
    [177]张旭,李媛,柏丽梅,等.废水处理用聚乙烯生物填料表面改性与表征研究[J].环境工程学报,2010,4(5):961-966
    [178]Huijun L, Fenglin Y, Shuyi S, et al. Effect of substrate COD/N ratio on performance and microbial community structure of a membrane aerated biofilm reactor [J]. Journal of Environmental Sciences,2010,22(4):540-546
    [179]Schlegel S, Koeser H. Wastewater treatment with submerged fixed bed biofilm reactor systems-design rules, operating experiences and ongoing developments [J]. Water Science& Technology,2007,55(8-9):83-89
    [180]Jamal Khan S, Zohaib-Ur-Rehman, Visvanathan C, et al. Influence of biofilm carriers on membrane fouling propensity in moving biofilm membrane bioreactor [J]. Bioresource Technology,2012,113:161-164
    [181]Singh V, Mittal A K. Characterization of biofilm of a rotating biological contactor treating synthetic wastewater [J]. Water Science & Technology,2012,66(2):429-437
    [182]Giuseppe P, Roberto C, Luca P, et al.Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors [J].Water Science & Technology,1999,40(4-5):169-176
    [183]Jong H H, Nazim C, Jan A O. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen [J]. Water Research,2010,44(7):2283-2291
    [184]Kelly J M, Robert N. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments [J]. Bioresource Technology,2012,122:83-94
    [185]Mark S, Han-Seung K. Nitrification denitrification enhanced biological phosphorous removal (NDEBPR) occurs in a lab-scale alternating hypoxic/oxic membrane bioreactor [J]. Bioresource Technology,2012,104:173-180
    [186]Zhimin F, Fenglin Y, Yingyu A, et al. Simultaneous nitrification and denitrification coupled with phosphorus removal in a modified anoxic/oxic-membrane bioreactor (A/O-MBR) [J]. Biochemical Engineering Journal,2009,43(2):191-196
    [187]Wonji K, Perry L M, Jaeho B, et al. Efficient single-stage autotrophic nitrogen removal with dilute wastewater through oxygen supply control [J]. Bioresource Technology,2012, 123:400-405
    [188]Jianlong W, Yongzhen P, Shuying W, et al. Nitrogen removal by simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor [J]. Chinese Journal of Chemical Engineering,2008,16(5):778-784
    [189]Xiangyang X, Gang L, Liang Z. Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source [J]. Bioresource Technology,2011,102(22):10340-10345
    [190]Deborah E, Kim M, Wei Z, et al. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm [J]. Water Research,2007,41 (20):4657-4671
    [191]Michael A H, William P S. A novel porous nylon biocarrier for immobilized bacteria [J]. American Society for Microbiology,1996,62(12):4659-4662
    [192]Yen-Hui L. Nitrification/denitrification in swine wastewater using porous ceramic sticks with plastic rings as supporting media in two-stage fixed-biofilm reactors [J]. Water Science & Technology,2010,62(5):985-994
    [193]Liwei Z, Ken S, Na H. Degradation of organic matter from domestic wastewater with loofah sponge biofilm reactor [J]. Water Science & Technology,2012,65 (1):190-195
    [194]Jun-Wei L, Chye-Eng S, Poh-Eng L, et al. Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials [J]. Bioresource Technology,2011,102(21):9876-9883
    [195]Antonella L, Paolo V, Giuseppe M, et al. An integrated wastewater treatment system using a BAS reactor with biomass attached to tubular supports [J]. Journal of Environmental Management,2012,113:51-60
    [196]Laura J, Katalin B, Eva K, et al. Intensification of wastewater treatment with polymer fiber-based biofilm carriers [J]. Microchemical Journal,2013:107:108-114
    [197]Chen Y R, Yu J, Xu H W, et al. Oxygen transfer and hydrodynamics in a flexible fibre biofilm reactor for wastewater treatment [J]. Chinese Journal of Chemical Engineering,2009,17(5): 879-882
    [198]Brasquet C, Subrenat E, Le C P. Removal of phenolic compounds from aqueous solution by activated carbon cloths [J]. Water Science and Technology,1999,39(10-11):201-205
    [199]Yingwen C, Mingqing L, Fuyuan X, et al. Phenol biodegradation and simultaneous nitrogen removal using a carbon fiber felt biofilm reactor [J]. Water Science & Technology,2010,62(5): 1052-1059
    [200]Shaowei H, Fenglin Y, Cui S, et al. Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor [J]. Journal of Environmental Sciences,2008,20(2): 142-148
    [201]Ayranci E, Duman O. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification [J]. Journal of Hazardous Materials,2006,136:542-552
    [202]Susanne L, Maria H, Akihiko T, et al. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification [J]. Water Research,2009,43(14):3469-3478
    [203]Wantawin C, Juateea J, Noophan P L, et al. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes [J]. Water Science & Technology,2008, 58(10):1889-1894
    [204]Lee C K, Haiyang Z, Thi T H N, et al. Performance of an ultra-compact biofilm reactor treating domestic and synthetic wastewaters [J]. Water Science & Technology,2012,65(3):484-489
    [205]海热提·吐尔逊,赵东林,吴伟明,等.生态碳纤维复合材料、其制备方法以及包括其的污水处理反应器[P].北京:CN102491498A,2012-06-13
    [206]赵东林,海热提·吐尔逊,吴伟明,等.生物活性碳纤维、包括其的生态碳纤维复合材料及其制备方法[P].浙江:CN102660813A,2012-09-12
    [207]彭勤纪,张蓉,靳焜,等.典型表面活性剂结构和组成的波谱表征-脂肪醇聚氧乙烯醚和壬基酚聚氧乙烯醚的波谱[J].分析测试学报,2001,6:36-39
    [208]唐川江,郑香娣,李立平.脂肪醇聚氧乙烯醚和脂肪酸聚氧乙烯酯共混物鉴定方法初探[J].北京服装学院学报,2002,1:1-5
    [209]Xu W, Junxin L, Nan-Qi R, et al. Environmental profile of typical anaerobic/anoxic/oxic wastewater treatment systems meeting increasingly stringent treatment standards from a life cycle perspective [J]. Bioresource Technology,2012,126:31-40
    [210]陈庆彩,史江红,李泽兵,等.分段进水A/O工艺运行优化研究[J].中国给水排水,2012,28(9):73-76
    [211]Edward O. Wilson. http://edge.org/memberbio/e_o_wilson.2013-3.14
    [212]Billore S K, Prashant, Sharma J K. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra [J]. Water Science & Technology,2009,60(11):2851-2859
    [213]Haiming W, Jian Z, Peizhi L, et al. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China [J]. Ecological Engineering,2011,37(4): 560-568
    [214]Weizhong W, Yong L, Qing Z, et al. Remediation of polluted river water by biological contact oxidation process using two types of carriers [J]. International Journal of Environment and Pollution,2009,38(3):223-234
    [215]Liandong Z, Zhaohua L, Tarja K. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area [J]. Ecological Engineering,2011, 37(10):1460-1466
    [216]Dunqiu W, Shaoyuan B, Mingyu W, et al. Effect of artificial aeration, temperature, and structure on nutrient removal in constructed floating islands [J]. Water Environment Research,2012, 84(5):405-410
    [217]Wenxiang L, Zhongjie L. In situ nutrient removal from aquaculture wastewater by aquatic vegetable Ipomoea aquatica on floating beds [J]. Water Science & Technology,2009,59(10): 1937-1943
    [218]Fengliang Z, Shu X, Xiaoe Y, et al. Purifying eutrophic river waters with integrated floating island systems [J]. Ecological Engineering,2012,40:53-60
    [219]Xian-Ning L, Hai-Liang S, Wei L, et al. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water [J]. Ecological Engineering,2010,36(4):382-390
    [220]Arndt R E, Routledge M D, Wagner E J, et al. The use of AquaMats((R)) to enhance growth and improve fin condition among raceway cultured rainbow trout Oncorhynchus mykiss (Walbaum) [J]. Aquaculture Research,2002,33(5):359-367
    [221]Wei D, Liang Z, Jing X, et al. Bioremediation of micro-polluted source water by simulated river bioreactor with different carriers [J]. Huan Jing Ke Xue,2010,31(11):2639-2644
    [222]Yan-Zhi Q, Cao L, Ri-Hong L, et al. Treatment of micro-polluted river water by immobilized microorganism technique [J]. Huan Jing Ke Xue,2009,30(11):3306-3310
    [223]王朔,海热提,周东凯,等.碳素纤维泛氧化塘治理高寒地河水的试验研究[J].环境科学与技术,2012,35(12):13-18
    [224]新型生态碳纤维污水处理关键技术及其装备鉴定意见[EB/OL].浙江欣之球科技发展有限公司网站http://www.zjxzq.com/hbxm.html
    [225]绍兴县兴越小区大山池水体净化工程施工招标公告[EB/OL].中国国际招标网.http://www.chinabidding.com/zbzx-detail-215114289.html
    [226]谌建宇,许振成,骆其金,等.曝气复氧对滇池重污染支流底泥污染物迁移转化的影响[J].生态环境,2008,17(6):2154-2158
    [227]郭祥,钟成华,王晓雪,等.城市湖泊污染水体原位修复工程实践——以重庆渝北双龙湖为例[J].重庆师范大学学报(自然科学版),2012,29(3):37-41
    [228]何岩,沈叔云,黄民生,等.城市黑臭河道底泥内源氮硝化-反硝化作用研究[J].生态环境学报,2012,21(6):1166-1170
    [229]Xiang-Yang X, Li-Juan F, Liang Z, et al. Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation [J]. Environmental Science and Pollution Research,2012,19(5):1584-1593
    [230]绍兴县兴越小区大山池水体净化工程初显成效[EB/OL].绍兴市水利网.http://www.sxslw.gov.cn/art/2012/10/15/art_6703_324839.html
    [231]绍兴县兴越小区大山池净水试点工程顺利通过验收[EB/OL].绍兴市政府官网.http://www.sx.gov.cn/art/2012/11/2/art_2663_344139.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700