用户名: 密码: 验证码:
星球车单吊索重力补偿与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为模拟星球车在低重力环境中的运动性能,需要对星球车进行重力补偿。传统的重力补偿方法是使用吊索向构件质心施加补偿力。由于星球车是多自由度系统,传统补偿方法需使用多根吊索。这给重力补偿的实施带来很大难度。为此,本文前半部分进行单吊索重力补偿的模型和实验研究。按照探月二期需求,重力补偿系统的位置跟踪范围30m×30m,位置跟踪误差小于28mm,恒拉力控制误差小于5‰(1σ)。针对此系统的设计问题,本文后半部分进行大范围重力补偿系统的设计和实验研究。
     补偿力的约束方程组称为“重力补偿模型”,模型的每一组解都对应一种重力补偿方案。建立重力补偿模型的目的是获得补偿力解系,以获得单吊索的补偿力解。为建立重力补偿模型,首先给出在约束力学体系内建立星球车动力学方程的方法;然后通过对比低重力状态和重力补偿状态的星球车动力学方程,获得补偿力应服从的约束(适用所有悬架构型)。针对只含转动自由度和差速器自由度的星球车,建立了重力补偿模型的表达式。按照星球车的构型特点,分别求解单关节链、多关节链、分叉关节链和差速器耦合关节链的补偿力解系,明确多关节链和分叉关节链的解系独立原则。在此基础上,获得星球车补偿力的解系。
     在补偿力解系中,总存在一类特殊的解向量。此类解向量中只含一个正分量,其余分量均为负值;正分量对应吊索补偿力,负分量对应配重补偿力,此解即对应“单索重力补偿”。通过向“重力补偿模型”的解系中加入的单索约束条件,得到“单吊索重力补偿模型”的解系。给出六轮和八轮摇臂—转向架式星球车的单索补偿力解系的算例。建立了轮地力模型,在此基础上证明单吊索重力补偿能够准确地模拟星球车轮地力。通过软件仿真,验证了单吊索重力补偿模型的正确性。为避免拆解星球车进行质心测量,提出通过星球车轮地力计算、校正补偿力系的方法;给出轮地力测试台结构。为向星球车车厢内部施加吊索补偿力,利用平行全等体的性质设计了车厢平行吊架,通过平行吊架等效地向车厢内部施加补偿力。
     为进行星球车重力补偿,研究重力补偿系统的设计方法。针对拉力系统激发位置系统主梁谐振的问题,设计大小电机同轴驱动系统,利用双输入系统等效惯量可变的性质,实现按工作频带配置等效惯量的目的。针对拉力系统马达高频响应滞后的问题,设计主动、被动响应结合的拉力系统:使用恒力机构张紧吊索,大量降低吊索等效刚度,吸收高频拉力干扰。针对位置系统主梁惯性大、运动精度差的问题,设计粗控、精控结合的位置系统。使用天车系统搭载二维跟踪平台,实现大范围的精确位置跟踪。针对位置系统激发主梁横振的问题,为天车系统和二维跟踪平台的距离设置阈值,使天车系统在完全静止和匀速运动两个状态间缓慢、平稳地切换。
     为验证重力补偿系统的工作性能,进行重力补偿系统性能实验。针对拉力系统,进行星球车平地越硬障碍、下坡越硬障碍、平地过缓坑三组测试。针对位置系统,进行星球车斜穿场地的测试。通过综控系统记录的数据,验证重力补偿系统的工作性能,证明系统设计的正确性。
     本文建立了单吊索重力补偿模型,给出了单吊索重力补偿的实验方法,解决了大范围重力补偿系统的关键设计问题。本文研究结果成功地应用于探月二期的星球车运动性能测试实验中,实现了大范围、高精度的星球车重力补偿。
To simulate the low-gravity wheel pressure, the rover’s gravity shall becompensated. Traditionally, compensation forces are applied onto center of massesof each moving part. Since planetary rovers are multiple DOF systems, themethod always includes multiple cables, which difficulties to the implementationprocess. Therefore, the first half of the dissertation is contributed to research on theSingle-Cable Gravity Compensation model and its implementations. According tothe demand of lunar exploration program, the gravity compensation system shallcover an area of30m×30m, with a position servo error no more than28mm and atension servo error no more than5‰(1σ). The second half of the dissertation iscontributed to research on the design of the Large-Scale gravity compensationsystem and its experimental researches.
     The constraint on the gravity compensation forces is named “model of thegravity compensation”, each solution of which forms a gravity compensationscheme. The reason to model gravity compensation is to acquire its solution system,which contains the single-cable solution. To model gravity compensation, thedynamic modeling of planetary rovers is firstly presented, and then the constraintson compensation forces, by comparing the dynamic models in low gravity situationand in compensated situation, are acquired (applicable to all rovers). Specifically,an expression of the compensation model is built for rovers with only rotation DOFand differential DOF. The solution of the model, with respect to topology relation ofplanetary rovers, is acquired according the single joint-chain, the multiplejoint-chains, the bifurcation joint-chains, and the chains coupled by differentialmechanism. Also acquired are the independence of compensation forces solution inmultiple chains and bifurcation chains. The solution system of compensation forcesis then acquired.
     In the solution system, there are always such solution that includes only onpositive elements and that all other elements are negative. The positive elementcorresponds to a force applied by a cable, and the negative element corresponds to aforce applied by a counterweight, and this solution corresponds to single-cablegravity compensation. By imposing single-cable constraint onto the solution systemof gravity compensation model, the solution system of the single-cable gravitycompensation model is acquired. Two examples are presented according tosix-wheeled and eight-wheeled rocker-bogie rovers. The wheel pressure model isbuilt to prove that single-cable gravity compensation can correctly simulate thewheel pressures. Additionally, software simulations are also presented to prove the single-cable gravity compensation model. To avoid measuring the centers of massof rovers and avoid dissembling the rover, the method to calculate and adjustcompensation forces by the measure of contact forces is brought forward. Alsopresented are the method and platform to measure wheel pressures. To apply a forceto an inner point in the carriage of rovers, the property of parallel congruent bodiesis used to design the parallel suspension platform, which constantly transforms theforce on the similar suspension to the inner point.
     To implement gravity compensation over a large test field, the design ofLarge-Scale Gravity Compensation System is researched on. Because that theposition system could easily excite the resonance of the girder, a macro-microcoaxial dual-motor-driven system is designed. The system utilize the property thatthe inertia of a double-input system could be changed, and arranging its inertial withrespect to working frequency. Because that the motor are incapable to reducehigh-frequency disturbance, an active-passive tension system is designed. Thesystem tightens the cable with a constant-force mechanism, and therefore reducesthe equivalent stiffness of the cable greatly to absorb impacts. Because that thegirder possess a massive inertia and can hardly be precisely controlled, amacro-micro position system is designed. The girder-trolley system carries thetwo-dimensional servo platform, and the position system can precisely follow therover over a large area. Because that the horizontal resonance of the girder could beeasily excited, the threshold method is employed to control the girder-trolley system,so that the girder-trolley system is either moving or resting, switching slowly andstably between motion and motionless.
     To prove the property of the gravity compensation system, experimentalresearches are carried out to test the system. To test the tension system, the rover aremade to traverse over hard obstacle on flat terrain and on descending slop, as wellas traverse shallow holes on flat terrain. To test the position system, the rovers aremade to travel the diagonal line of the test field. By analyzing data from the system,the property of the system and the correctness of system design, is verified.
     This dissertation builds the single-cable gravity compensation model, presentsthe experimental methods of single-cable gravity compensation, and solved keyproblems in Large-Scale Gravity Compensation design. The dissertation finds itsuses in the mobility test on rovers in the lunar exploration program, which appliesgravity compensation on rovers over a large field with high precision.
引文
[1] Warren P H. The Magma Ocean Concept and Lunar Evolution[J]. Annu.Rev. Earth P. lanel. SCI.1985,13:201~240
    [2]胡明.月球车机械系统的概念设计及行走技术研究[D].哈尔滨工业大学.2001:1~2
    [3] SCHILLING K, JUNGIUS C. Mobile Robots for Planetary Exploration[J].Control Engineering Practice.1996,4(4):513~524
    [4]欧阳自远,邹永廖.月球的地质特征和矿产资源及我国月球探测的科学目标[J].国土资源情报.2004
    [5] CALLENS N, VENTURA-TRAVESET J, DE LOPHEM T-L, et al. ESAparabolic flights, drop tower and centrifuge opportunities for universitystudents [J]. Microgravity Science and Technology,2011,23(2):181-189.
    [6] CHEN C I, CHEN Y T, WU S C, et al. Experiment and simulation indesign of the board-level drop testing tower apparatus [J]. ExperimentalTechniques,2012,36(2):60-69.
    [7] Kampen V, Peter K, Ulrich D, Rath A, Hans J. The new drop twoercatapult system[J]. Acta Astronautica,2006,59(1):278-283
    [8] NICOLAU E, POVENTUD-ESTRADA C M, ARROYO L, et al.Microgravity effects on the electrochemical oxidation of ammonia: Aparabolic flight experiment [J]. Electrochimica Acta,2012,75:88-93.
    [9] SATOH T, SATO T, KUBO A, et al. Tandem time-of-flight massspectrometer with high precursor ion selectivity employing spiral iontrajectory and improved offset parabolic reflectron [J]. Journal of theAmerican Society for Mass Spectrometry,2011,22(5):797-803.屈斌,王启,王海平,贾晓鹏.失重飞机飞行方法研究[M].飞行力学,2007,02:72-74
    [10] Losch S, Gunther B H, Les G N, et al. Microgravity compatible equipmentfor inert gas condensation of metals during parabolic flights[J]. Review ofScientific Instruments,2009,180:37-39
    [11] Melnikov D E., Ryzhkov I I, Mialdun A, Shevtsova V. Thermovibrationalconvection in microgravity: Preparation of a parabolic flight experiment[J].Microgravity Science and Technology,2008,20(1):29-39
    [12] Schlacht I L, Brambillasca S,Birke H. Color perception in microgravityconditions: The results of CROMOS parabolic flight experiment[J].Microgravity Science and Technology,2009,21[2]:21-30
    [13] Lindemann R A, Bickler D B, Harington B D, et al. Mars Exploration Rovermobility development-Mechanical mobility hardware design, development,and testing[J]. IEEE Rob Autom Mag,2006,2(2):19-26
    [14] Andrew J, Reg W, Jay G, et al. Field testing of the Mars exploration roversdescent image motion estimation system[C]//IEEE. Proc IEEE Int Conf RobAutom: Press of Barcelona,2005:4463-4469
    [15] Richard V. Navigation results from desert field tests of the Rocky7Marsrover prototype[J]. Int J Rob Res,1999,18(7):669-683
    [16] Kuroday Y, Teshima T, Sato Y, et al. Mobility performance evaluation ofplanetary rover with similarity model experiment[C]//IEEE Robotics&Automation Society. International Conference on Robotics and Automation.LA:IEEE RAS,2004:2098-2103
    [17] Kemurdjian A. Development of simulation means for a gravity forces[C]//Aerospace Division of the ASCE. Robotics2000. Albuquerque, NM: ASCE,2000:220-225.
    [18] Lake M S, Heard W L, Watson J J, et al. Evaluation of hardware andprocedures for astronaut assembly and repair of large precision reflector[R].New York: NASA,1967:36-38
    [19] Schmitz E. Modeling and control of a planar manipulator with an elasticforearm[C]//IEEE. IEEE Int. Conf. Robotics&Automation, Scottsdale, AZ:IEEE RAS,1989:894-899
    [20] Matunaga S, Onoda J. New gravity compensation method by dither for low-gsimulation[J]. Journal of space rockets,1995,32(2):364-369
    [21] LORIN C, MAILFERT A. Magnetic compensation of gravity and centrifugalforces [J]. Microgravity Science and Technology,2009,21(1-2):123-127.
    [22] MAHONEY A W, SARRAZIN J C, BAMBERG E, et al. Velocity controlwith gravity compensation for magnetic helical microswimmers [J].Advanced Robotics,2011,25(8):1007-1028.
    [23] NIKOLAYEV V S, CHATAIN D, BEYSENS D, et al. Magnetic gravitycompensation [J]. Microgravity Science and Technology,2011,23(2):113-122.
    [24] Hol S A, Lomonova E, Vandenput A J. Design of a magnetic gravitycompensation system[J]. Precise Engineering,2006,30(3):265-273
    [25] MEGURO A, MITSUGI J. Ground verification of deployment dynamics oflarge deployable space structures [J]. Journal of Spacecraft and Rockets,1992,29(6):835-841.
    [26] TABATA M, NATORI M C, TASHIMA T, et al. Adjustment procedure of ahigh precision deployable mesh antenna for MUSES-B spacecraft [J]. Journalof Intelligent Material Systems and Structures,1997,8(9):801-809.
    [27] GAO H, HAO F, DENG Z, et al. Zero-g simulation of space manipulator infurled status [J]. Jiqiren/Robot,2011,33(1):9-15.
    [28] LIN P-Y, SHIEH W-B, CHEN D-Z. A theoretical study of weight-balancedmechanisms for design of spring assistive mobile arm support (MAS)[J].Mechanism and Machine Theory,2013,61:156-167.
    [29] TANG X, HOU J, NI T, et al. Analysis on autonomous task trajectorytracking performance of construction robot with online gravity compensation[J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society ofAgricultural Engineering,2013,29(3):30-37.
    [30] Wonggratanaphisan T, Chew M. Gravity compensation of spatial two-DOFserial manipulators[J]. Journal of robotic system,2002,19(7):329-347
    [31] Danabalan T L, Sahu S. Development of gravity compensation system forsatellite reflector by helium ballon[J]. Journal of Spacecraft Technology,2007,17[1]:14-19
    [32]王少纯,邓宗全,胡明,高海波.一种模拟月球着陆器低重力着陆试验方法[J].上海交通大学学报,2005,39(6):989-992
    [33]刘荣强,郭宏伟,邓宗全.空间索村铰接式伸展臂设计与试验研究[J].宇航学报,2009,30(1):315-320
    [34] Fischer A, Pellegrino S. Interaction between gravity compensationsuspension system and deployable structure[J]. Journel of spacecr rockets,2000,37(1):93-99
    [35] Brown H B, Dolan J.M, Dolan J.R. A novel gravity compensation systemfor space robots[C]//ASCE. Specialty Conf. on Robotics for ChallengingEnvironments. Albuquerque, NM, USA: ASCE,1994:250-258
    [36] Gregory C W, Xu Y S. An active vertical-direction gravity compensationsystem[J]. IEEE Transactions on instrumentation and measurement,1994,43(46):786-792
    [37] Sato Y, Ejiri A, Iida Y, et al. Micro-G emulation system usingconstant-tension suspension for a space manipulator[C]//IEEE. Proc IEEE IntConf Rob Autom.1991,1(3):1893-1900
    [38] Sato Y, Ejiri A, Iida Y, et al. Micro-G emulation system usingconstant-tension suspension for a space manipulator[C]//IEEE. Proc IEEE IntConf Rob Autom.1991,1(3):1893-1900
    [39] LI S, GAO H, DENG Z. Kinematics modeling of rocker-bogie lunar rover andsuspension parameter optimization [J]. Hsi-An Chiao Tung Ta Hsueh/Journalof Xi'an Jiaotong University,2009,43(9):62-66.
    [40] NISHIKORI S, HOKAMOTO S, KUBOTA T. Kinematic discussion anddevelopment of a multi-legged planetary exploration rover with an isotropicleg arrangement [J]. Advanced Robotics,2011,25(6-7):789-804.
    [41] GRAND C, BENAMAR F, PLUMET F. Motion kinematics analysis ofwheeled-legged rover over3D surface with posture adaptation [J].Mechanism and Machine Theory,2010,45(3):477-495.
    [42] WITHERS P. Trajectory and atmospheric structure from entry probes:Demonstration of a real-time reconstruction technique using a simpledirect-to-Earth radio link [J]. Planetary and Space Science,2010,58(14-15):2044-2049.
    [43] DU J, REN M, LIU T, et al. Dynamics simulation and motion capabilityanalysis on the mobile system for asymmetric planetary rover [J].Jiqiren/Robot,2011,33(1):1-8.
    [44] GAO H, LI W, DING L, et al. A method for on-line soil parametersmodification to planetary rover simulation [J]. Journal of Terramechanics,2012,49(6):325-339.
    [45] MOSADEGHZAD M, NADERI D, GANJEFAR S. Dynamic modeling andstability optimization of a redundant mobile robot using a genetic algorithm[J]. Robotica,2012,30(3):505-514.
    [46] DING L, GAO H-B, DENG Z-Q, et al. Wheel slip-sinkage and its predictionmodel of lunar rover [J]. Journal of Central South University of Technology(English Edition),2010,17(1):129-135.
    [47] ISHIGAMI G, NAGATANI K, YOSHIDA K. Slope traversal controls forplanetary exploration rover on sandy terrain [J]. Journal of Field Robotics,2009,26(3):264-286.
    [48] KURODA Y, SAKAI A, TAMURA Y. Six-degree-of-freedom localizationusing an unscented kalman filter for planetary rovers [J]. Advanced Robotics,2010,24(8-9):1199-1218.
    [49] SILVA A F B, SANTOS A V, MEGGIOLARO M A, et al. A rough terraintraction control technique for all-wheel-drive mobile robots [J]. Journal ofthe Brazilian Society of Mechanical Sciences and Engineering,2010,32(4):489-501.
    [50] Paulnock R S. First interim report:preliminary design study of a lunargravity simulator[R]. USA: LockHeed Missile&Space Company,1966:1-15
    [51] Paulnock R S. Second interim report:preliminary design study of a lunargravity simulator[R]. USA: LockHeed Missile&Space Company,1966:1-15
    [52] Paulnock R S. Third interim report:preliminary design study of a lunargravity simulator[R]. USA: LockHeed Missile&Space Company,1966:1-9
    [53]于丽霞,王福明.一维PSD器件及其在测量中的应用[J].现代电子技术,2007,7:15-19
    [54] Kemurdjian A, Khakhanov UA. Development of simulation means for agravity forces[C]//ASCE. Proceeding of the4th Internation Conference onExposition Robot for Chanllegeing Situationuat. Enviroment. DenverCO:ASCE,2000,299:220-225
    [55]卢波,范嵬娜.国外月球车及火星车技术发展综述[C]//中国空间科学学会.空间探测专业委员会第十八次学术会议.2006:107-115.
    [56]董玉红,邓宗全,高海波.低重力补偿下六轮独立驱动月球车的运动分析[J].哈尔滨工程大学学报,2009(1):65-72
    [57] WILKENING A, BAIDEN D, IVLEV O. Assistive acting movementtherapy devices with pneumatic rotary-type soft actuators [J].Biomedizinische Technik,2012,57(6):445-456.
    [58] KLOOSTERMAN M G M, SNOEK G J, KOUWENHOVEN M, et al.Influence of gravity compensation on kinematics and muscle activationpatterns during reach and retrieval in subjects with cervical spinal cord injury:An explorative study [J]. Journal of Rehabilitation Research andDevelopment,2010,47(7):617-628.
    [59] LU Q, LIANG J, QIAO B, et al. A new active body weight support systemcapable of virtually offloading partial body mass [J]. IEEE/ASMETransactions on Mechatronics,2013,18(1):11-20.
    [60] PRANGE G B, KRABBEN T, RENZENBRINK G J, et al. Changes inmuscle activation after reach training with gravity compensation in chronicstroke patients [J]. International Journal of Rehabilitation Research,2012,35(3):234-242.
    [61] Stienen, Arno H A, Hekman, et al. Dedicated gravity compensation for theupper extremities[C]//IEEE. Proceeding of IEEE International Conference onRehabilitation Robot. Piscataway, NJ: IEEE CS,2007”804-808
    [62] Michel G, Van E, Bart J F, et al. A motorized gravity compensationmechanism used for active rehabilitation of upper limbs[C]//IEEE.Proceeding of IEEE International Conference on Rehabilitation Robot.Piscataway, NJ: IEEE CS,2005:152-155
    [63]严辉,李路明,郝红伟,等.一种恒力机构的设计与测试[J].中国科技论文在线,2009,4(8):550-554
    [64] Jet Propulsion Laboratory[EB/OL]. Http://Robotics.jpl.nasa.gov.
    [65] Ellery A. Environment–robot interaction—the basis for mobility in planetarymicro-rovers[J].Robotics and Autonomous Systems,2004,27:1~10
    [66] Harrington B D, Voorhees C. Challenges of Designing the Rocker-BogieSuspension for the Mars Exploration Rover[R]. US: JPL,2004:10-11
    [67] Shirley D L. Touching Mars:1998Status of the Mars Robotic ExplorationProgram[J]. Acta Astronautica,1995,45(4-9):249~265
    [68] Iagnemma K, Shibl H, Rzepniewski A, et al.Planning and control algorithmsfor enhanced Rough terrain rover mobility[C]//Canadian space Agency.Proceeding of the6th international symposium on Artificial Intelligence andRobotics&Automation in space. Quebec, Canada: Canadian Space Agency,2001:1~8
    [69] Lin M, Zhu J H, Meng J H, et al. Tsinghua Lunar Rover Prototype And ItsHardware Design[J]. Proceedings of Ieee Tencon’02,2002,02:1579
    [70]陈百超.月球车悬架研究及动力学仿真[D].吉林大学.2006:45~46
    [71] DING L, GAO H-B, DENG Z-Q, et al. Wheel-soil interaction mechanicsmodel for lunar rover: Decoupling and application [J]. Harbin Gongye DaxueXuebao/Journal of Harbin Institute of Technology,2011,43(1):56-61.
    [72] DONG Y H, DENG Z Q, GAO H B. Wheel velocity analysis of a rover withsix wheels independently driven on uneven terrain [J]. Key EngineeringMaterials,2009,335-340.
    [73] DONG Y-H, DENG Z-Q, FANG H-T. Dynamics modeling and simulation ofa lunar rover with six cylindrical wheels [J]. Harbin Gongcheng DaxueXuebao/Journal of Harbin Engineering University,2009,30(2):192-197.
    [74] GU K-F, WEI Y-Z. Analysis of the dynamic characteristics for six wheelslunar rover [J]. Nanjing Li Gong Daxue Xuebao/Journal of NanjingUniversity of Science and Technology,2012,36(SUPPL.2):202-209.
    [75] GE P-S, WANG R-B, GUO L. Path following control for six-wheel lunarrover based on fuzzy logic [J]. Jilin Daxue Xuebao (Gongxueban)/Journal ofJilin University (Engineering and Technology Edition),2011,41(2):503-508.
    [76] YANG Y-C, BAO J-S, JIN Y. Movement performance analysis of six-wheeledlunar rover in virtual reality environment [J]. Shanghai Jiaotong DaxueXuebao/Journal of Shanghai Jiaotong University,2010,44(8):1079-1083.
    [77] LIU J, TANG S, CHENG P, et al. Influence analysis and evaluation ofwheel parameters on motion performance of lunar rover [J]. InformationTechnology Journal,2012,11(2):225-232.
    [78] LUO Z-R, SHANG J-Z, ZHANG Z-X. Analysis and composition of lunarrover locomotion mechanism [J]. Guofang Keji Daxue Xuebao/Journal ofNational University of Defense Technology,2009,31(1):109-113.
    [79] Takashi K, Kuroda Y, Kunii Y, et al. Small, light-weight rover “Micro5”for lunar exploration. Acta Astronaut,2003,52:447-453
    [80] Kunii Y, Kuroda Y, Kubota T. Development of micro-manipulator fortele-science by lunar rover: Micro5[J]. Acta Astronaut,2003,52:433-439
    [81]付宜利,徐贺,王树国.具有新型轮式走行部的移动机器人及其特性研究[J].高技术通讯,2004,12:73~77
    [82] http://www.asl.ethz.ch/robots/crabThe crab rover[EB/OL].(2011-4-9)[2011-5-7].
    [83] Lee C, Dalcolmo J, Klinkner S, et al. Design and Manufacture of a FullSize Breadboard EXOMARS Rover Chassis[C]//ASTRA.9th ESA Workshopon Advanced Space Technologies for Robotics and Automation. Noordwijk,the Netherlands: ESTEC,2006:28~30
    [84] Siegwart R, Lamon P, Estier T. Innovative Design for WheeledLocomotion in Rough Terrain[J]. Robotics and Autonomous Systems,2002,40:151~162
    [85] Pierre L. The SOLERO rover[J]. Springer Tracts Adv Rob,2008,43:7-19
    [86] Michaud S, Schneider A, Bertrand R,et al. SOLERO: Solar PoweredExploration Rover[C]//ESA. In the7th ESA Workshop on Advanced SpaceTechnologies for Robotics and Automation,2002
    [87] http://asl.epfl.ch/index.html?c/systems/Shrimp/shrimp.phpShrimp Rover[EB/OL].
    [88] Vladinir K, Alexel B, Michel v W. Chassis Concepts for the ExoMarsRover[C]//ASTRA. Proceedings of the8th ESA Workshop on AdvancedSpace Technologies for Robotics and Automation. Noordwijk, TheNetherlands: ASTRA,2004:1~8
    [89] Engineering Support on Rover Locomotion for ExoMars Rover Phase a–“ESROL-A”. Science&Technology Rover Co. ltd.2004,(13)
    [90] Maurette M. Robots for Lunar Exploration: Present and Future[J].Advanced Space Research,1999,23(11):1894~1855
    [91] Kassel. S. Lunokhod-1Soviet lunar surface vehicle[R]. US: JPL,1971:15-19
    [92]禹鑫益,高海波,邓宗全.新型八轮双摇杆摇臂扭杆月球车悬架设计.哈尔滨工程大学学报,2009,30(2):160-165
    [93]邱雪松,邓宗全,胡明.月球探测车可展开式悬架的设计分析[C]//中国宇航学会.深空探测技术专业委员会第二届学术会议.北京:国防科公委,2005:436-438
    [94]董磊.八轮摇臂式月球车悬挂系统机构设计与分析[D].哈尔滨工业大学,2005:7
    [95]邓宗全,高海波,等.八轮扭杆弹簧悬架式车载机构专利.申请号200410043932.0,申请公开号CN1600587A
    [96] M. G. Bekker. The Development of A Moon Rover[J]. Journal of the BritishInterplanetary Society.1985,38(4):537~543
    [97] Schilling K, Jungius K. Mobile robots for planetary exploration[C]//IFAC.Intelligent Autonomous Vehicles. Espoo, Finland: IFAC,1995:109~119
    [98] Ketmurdjian L. Planet rover as an object of the engineering designwork[C]//IEEE. Proceedings of the1998IEEE International Conference onRobotics&Automation. Leuven, Belgium: IEEE,1998:140~145
    [99]刘方湖,陈建平,马培荪等.五轮月球机器人及其特性分析[J].机械设计,2001,5(l5):15~18
    [100] Pol S. Odometry for a Planetary Exploration Rover. Sweden: Kungligakniska h gskolan Electrical Engineering,2007:25~42
    [101] Rollins E, Luntz J, Foessel A. Nomad: A Demonstration of the TransformingChassis[C]//IEEE. Proceeding of IEEE International Conference on Roboticsand Automation,1998:611~617
    [102] Bapna D, Rollins E, Murphy J, et al. The Atacama Desert Trek:Outcomes[C]//IEEE. Proceeding of IEEE International Conference onRobotics and Automation,1998:597-604
    [103] Wettergreen D, Bapna D, Mainone D, et al. Developing Nomad for roboticexploration of the Atacama Desert[J]. Robotics and Autonomous Systems.1999,26:127~148
    [104]陶建国,孟宪伟,邓宗全等.月球车差动平衡机构的建模及仿真[J].机械设计,2007,24(3):1~5
    [105] Lindemann R A, Voorhees C J. Mars Exploration Rover Mobility AssemblyDesign, Test and Performance[C]//IEEE.2005IEEE InternationalConference on Man andCybemetics, Systems,2005,1(10):450~455
    [106]李允旺,葛世荣,朱华.行星齿轮式差动平衡机构[P].申请号:200820034725.2,公开号: CN201218316
    [107] Rooney J, Hobbs J D. Towards Kinematic Classification Schemes forPlanetary Surface Locomotion Systems[J]. Mechatronics.2003,(13):153~174
    [108] Hobbs J D, Rooney J. Kinematic Structure for Robust MechanicalArchitectures in Robotic Planetary Exploration[J]. Mecharonics,2003,13:153~174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700