用户名: 密码: 验证码:
铝合金机身壁板结构双侧激光焊接特征及熔池行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型客机机身铝合金壁板结构由蒙皮与桁条组成,其轻量化加工制造是飞机制造领域的发展热点,空客公司以激光焊接技术代替原有铆接工艺,实现了减轻机身重量和降低成本的目标。现阶段,我国也在发展自己的大型客机,关于机身壁板结构的轻量化制造经过技术论证同样拟采用激光焊接技术。然而,该革新技术国际上仅有空客公司掌握并应用,国内尚属空白,亟需开展相关研究工作以突破并掌握机身壁板结构双侧激光焊接技术,为实现国产大型客机机身壁板结构的轻质、高效、低成本加工制造奠定坚实的理论基础,以缩短与空客公司在机身制造技术上的差距。
     针对这一特定需求,本文从最基础的工艺问题着手开展了铝合金机身壁板结构双侧激光焊接特征研究,充分理解焊缝成形质量、气孔缺陷及力学性能的控制工艺要点;研究了高速焊接条件下T型接头焊接过程的焊丝熔入特征;建立了双侧倾斜热源作用下的三维热-流耦合数学模型,借助数值模拟的手段从熔池流动行为角度深入理解双侧激光焊接的物理过程,获得了成形质量及气孔缺陷有效控制的理论依据。
     通过双侧激光焊接基础工艺试验研究发现,焊缝对称性、熔深及焊缝角度是体现T型接头成形质量的三个重要特征参数,其中光束姿态是关键影响工艺参数。光束间距决定了焊缝成形的对称性及微观组织的均匀性,减小入射角度可有效提高蒙皮与桁条的熔合能力并显著降低对蒙皮背部的热影响,光束入射位置偏移桁条有助于获得平滑过渡的焊缝角度。焊缝无损探伤结果表明,提高焊接速度与严格控制光束间距是抑制气孔缺陷的两个最重要的措施。
     T型接头双侧激光同步焊接的特点导致双侧热源相互交汇耦合,蒙皮侧热影响区明显宽于桁条侧是整个接头的最薄弱环节。结合机身壁板实际受力环境,对接头进行横向、轴向、纵向拉伸性能及横向拉压疲劳进行测试,测试结果表明接头轴向、横向拉伸性能与焊缝熔深密切相关,熔深控制在蒙皮厚度一半左右时抗拉强度达最大值,其横向、轴向、纵向抗拉强度分别达母材的87.8%、53.1%、90.8%,达到或者超过了空客公司的水准;接头的条件疲劳强度约为80.7MPa,为其静载强度的30%左右。
     针对长焊缝、多桁条、高速焊接容易出现焊接过程不稳定的问题,借助高速摄像手段分析了焊丝熔入特征的主要影响因素,结果表明:焊丝与激光束的相对位置关系是影响焊丝稳定熔入的关键,当光-丝部分重叠时,液态焊丝经焊丝端部与匙孔前沿间的“液桥”稳定、持续的流入熔池,焊接过程最稳定且成形美观,该过渡模式需具有两个必要条件:焊丝与工件接触,接触位置位于匙孔前沿。
     建立了三维准稳态T型接头双侧激光焊接过程热-流耦合数学模型,计算结果表明双侧热源交汇位置能量耦合效果显著,导致熔池最大长度位于热源交汇位置附近,匙孔上方出现明显对流,匙孔底部存在明显的漩涡流动,熔池尾部液态金属先流向熔池长度最大位置附近再流向熔池表面。
     匙孔贯通性消失导致匙孔底部漩涡流动更明显且更复杂,熔池尾部流向熔池底部的倾向更明显;匙孔同步性降低致使双侧熔池不对称,前后两匙孔间出现两个新的漩涡流动;提高焊接速度双侧热源能量耦合减弱,匙孔上方对流现象消失,熔池尾部完全流向熔池表面。匙孔贯通性、同步性及焊接速度的改变促使熔池流动行为发生变化是影响气泡从熔池内部逃逸几率的关键因素。保证匙孔贯通、控制匙孔同步及提高焊接速度均有助于提高气泡的逃逸几率。
     最后,采用双侧激光焊接技术成功实现了大尺寸铝合金机身壁板结构件(2000mm×1000mm)的焊接。焊缝成形及力学性能满足设计要求;焊接过程稳定,焊接速度最快可达12m/min。
Lightweight processing and manufacturing of the large passenger aluminiumalloy aircraft panel structure is the hotspot in the aircraft manufacturing field,which is consist of skin and stringer. The Airbus had achieved the target of weightand costs reduction by using laser beam welding instead of the dominant rivetingtechnique. At present, our country is developing our own large aircraft, after fulltechnical appraisal and economic evaluation; the plan is to apply laser beamwelding technique to manufacture the aircraft panels. However, this innovativetechnology was only mastered by Airbus and still a blank in China. It isindispensable to carry out the related research work to breakthrough and masterthis technique. It will be a substantial theory basis for realizing the lightweightmanufacturing of China-made large passenger aircraft; also can shorten the gapwith Airbus in the fuselage panel manufacturing field.
     According to this specific requirement, in order to obtain the T-joints whichmeet the design requirements, we studied the double-sided laser beam weldingprocess, and researched the effects of the welding parameters on the weldappearance, porosity defects and mechanical properties in the present paper. Thefiller wire melting dynamics was also analysed. A3D mathematical model ofthermal-fluid coupling of double-sied laser beam welding was developed, with theaid of computational simulating to exactly understand what happens during thewelding process. Finally, we got the theoretical foundation for controllingeffectively the weld appearance and porosity defects.
     The experimental results showed that weld symmetrical characteristic, weldpenetration and weld seam were three main elements for evaluating the quality ofweld seam. The laser beam attitude was the key influence parameters. The beamdistance determined the symmetrical characteristic of the weld appearance and theuniformity of the microstructure. Reducing beam incident angles could increasethe fusion area between the skin and stringer; also reduce the thermal deformationof the skin panels. The beam incident position on the stringer was conducive toobtain smooth seam angle. Weld X-ray detection results show that increasewelding speed and control beam distance were two most important ways to reduceporosity defects.
     The characteristic of the double-sided laser beam welding of the T-jointsmade the two laser beam interaction with each other, resulting in the weld poolnear the skin retention high temperature for a long time and cooling speed was high. Therefore, the heat affected zone on the skin side was wider than that on thestringer side, resulting in it became the weakest area of the whole T-joint. Thetranserve, axial, longitudinal tensile tests and transerve pull-push fatigue test werecarried out according its actual stress conditions. The test results show that thetensile properties were decided by the weld penetratin, the tensile strength canreach a high level when the weld penetration was about half of the skin thickness.Its ranserve, axial, longitudinal tensile strengthes can reach87.8%、53.1%and90.8%of the base metal, which meets or surpasses the Airbus’s dates. Theconditioned fatigue strength was about80.7MPa, was30%of its tensile strength.
     Concerning the issue of welding process stablility under the special condition,we applied high speed photography to analyse the main influence of the filler wiremelting dynamics. The experimental results show that the laser-wire relatedposition was the main affecting factors of the filler wire melting dynamics. Whenlaser-wire partially overlapping, the liquid filler wire could through the liquidbridge between the wire tip and front keyhole smoothly and steadily flow into theweld melton pool, the welding process was stable and the weld appearance waswell. This transfer mode needs two necessary conditions: one is the filler wirecontact with the workpiece, the other one is the contact place located in front ofthe keyhole.
     A3D mathematical model of thermal-fluid coupling of double-sied laserbeam welding was developed. The numerical simulation results showed that thelaser energy coupling effect was remarkable; resulting in the longest size inside theweld pool located the coupling area and the convective flow was appeared abovethe keyhole. An obvious vortex was appeared under the keyhole. The liquid metalfirstly flowed to the bottom of the pool and then flowed to the surface.
     The disappearing of the keyhole contact condition resulted in the convectiveflow was completely disappeared and transferred to flow to the bottom of the weldmolten pool. The reducing of the keyhole synchronism resulted in the weld moltenpool was not symmetry, the trailing pool was flow into the leading pool, and twonew vortex flows were appeared between the two keyholes. Improve the weldingspeed resulted in the laser energy coupling effect was reduced, the convective flowwas completely disappeared and transferred to flow to the inside of the keyhole,and liquid metal was totally flow to pool surface. This was beneficial for pores toescape from the weld molten pool. Keep the keyhole linking, Symmetry andimprove welding speed are also good for pores to escape from the weld moltenpool.
     At last, we applied the double-sided laser beam welding to manufacture the large scale fuselage panel structure, the skin size was2000mm×1000mm. Theweld appearance and mechanical properties met the design requirements, and thewelding process was stable. The welding speed can reach up to12m/min.
引文
[1] Neye G, Heider P. Laser Beam Welding of Modern Al-Alloy for theAircraft Industry[C]. Proceedings of the Conference ECLAT’94/Dusseldorf:Deutscher Verband für Schweiβechnik,1994:108-117
    [2] Mendez P F, Eagar T W. Welding Process for Aeronautics[J]. AdvancedMaterials and Processes,2001,159(5):39-43
    [3] Neye G. Laserstrahlschweibkonzept für Rumpfschalen-Strukturen[M].Strahltechnik, Band5, Bremen: Bias-Verlag;1997, Hrsg Sepold G, JüptnerW (Eds.). ISBN:3-9805011-5-9
    [4] Ryazantsev V I, Fedoseev V A, Matsnev V N. Technological Aspects ofAssembly-Welding All-Welded Passenger Aircraft Made of AluminiumAlloys[J]. Welding International,2001,15(1):56-59
    [5] Schumacher J, Zerner I, Neye G, et al. Laser Beam Welding of AircraftFuselage Panels[C]. Proceedings of the Conference ICALEO Section A,Scottsdale, USA;2002
    [6] Zink W. Welding Fuselage Shells[C]. Industrial Laser Solutions forManufacturing,2001;16(4):7-10
    [7] Schneider K, Schumacher J. Lasertechnologie-ein Schlüssel imWettbewerb der Modernen Strukturtechnologien im ZivilenFlugzeugbau[C]. Laserstrahlfügen, Strahltechnik Band19, Bremen:BIAS-Verlag,2002:5-14
    [8] Brenneis H. Quo vadis Laserstrahlschweiβen[C].5. Tagung: ModerneWerkstoffe und Anwendungen im Luft-und Raumfahrzeugbau-Schweiβenund L ten in Neufertigung und Instandhaltung, Berlin, Mai12-13,2004,Tagungsband
    [9] Manuel M T, Manfred W, Gedrat O, et al. Laser Welding Machine for theWelding of Sections in Large Structural Components[P]. European Patent:Patent Number EP098548581,1999
    [10] Uz M V, Ko ak M, Lemaitre F, et al. Improvement of Damage Tolerance ofLaser Beam Welded Stiffened Panels for Airframes via LocalEngineering[J]. International Journal of Fatigue,2009,31(5):916-926
    [11] Gibson A, Sterling S G. A Design and Test Programme Involving WeldedSheet-Stringer Compression Panels[C]. Proceedings of the InternationalCouncil of the Aeronautical Sciences, Melbourne, Australia, September13-18,1998, ICAS-98-7.7.3:1-10
    [12] Miller W S, Zhuang L, Bottema J, et al. Recent Development in AluminiumAlloys for the Automotive Industry[J]. Materials Science and EngineeringA,2000,280:37-49
    [13] Schubert E, Klassen M, Zerner I, et al. Light-weight Structures Producedby Laser Beam Joining for Future Applications in Automobile andAerospace Industry[J]. Journal of Materials Processing Technology,2001,115(1):2-8
    [14] Jahazi M, Cao X. Laser Welding and Cladding of Aerospace Alloys[R].Ottawa, Canada: National Research Council Canada(NRC),2003
    [15] Rendigs K H. Airbus and Current Aircrafts Metal Technologies[R].Germany: Airbus Deutschland GmbH,2008
    [16] Ko ak M, Uz V. European FITNET Fitness-for-Service Procedure:Application of its Fracture Module to the Stiffened Al-alloy Panels ofAirframe Structures[C]. Workshop on Fracture Control of Spacecraft,Launchers and their Payloads and Experiments ESA/ESTEC Noordwijk,The Netherlands,9-10February,2009
    [17] Mendez P F, Eagar T W. New Trends in Welding in the AeronauticIndustry[C]. Proceedings of the Conference New Trends for theManufacturing in the Aeronautic Industry, San Sebastian, Spain, May24-25,2000:21-38,
    [18] Heider, P. Lasergerechte Konstruktion Und Lasergerechte FertigungsmittelZum Schweissengrossformatiger Aluminium-Strukturbauteile[D]. BremerInstitut fur Angewandte Strahltechnik,1994:29-100
    [19] Brenner B, Standfuss J, Morgenthal L, et al. New Technological Aspects ofLaser Beam Welding of Aircraft Structures. Düsseldorf: DVS-Berichte,2004,229:19-24
    [20] Gedrat O, Kuck G, Kolley A, et al. Verfahren Zum Schweissen VonProfilen auf Grossformatigen Aluminium-Strukturbauteilen MittelsLaserstrahlen und Vorrichtung zur Durchführung des Verfahrens[P].European Patent: Patent Number EP0838301B1,1997
    [21] Cical E, Duffet G, Andrzejewski H, et al. Hot Cracking in Al–Mg–SiAlloy Laser Welding-Operating Parameters and their Effects[J]. MaterialsScience and Engineering A,2005,395(1):1-9
    [22] Davis J R. Aluminum and Aluminum Alloys [M]. ASM SpecialtyHandbook.5th ed. Materials Park OH (USA),1993:376-389
    [23] Squillace A, Prisco U. Influence of Filler Material on Mirco-andMacro-Mechanical Behaviour of Laser-Beam-Welded T-joint forAerospace Applications[J]. Proceedings of the Institution of MechanicalEngineers, Part L: Journal of Materials: Design and Applications,2009,223(3):103-115
    [24] Dittrich D, Standfuss J, Liebscher J, et al. Laser Beam Welding of Hard toWeld Al Alloys for A Regional Aircraft Fuselage Design-First Results[J].Physics Procedia,2011,12:113-122
    [25] Herzen J, Beckmann F, Riekehn S, et al. SRμCT study of CrackPropagation within Laser-welded Aluminum-Alloy T-joints[C]. OpticalEngineering+Applications. International Society for Optics and Photonics,2008(7078):70781V1-9
    [26]张盛海.高强铝合金T型接头的激光焊接[D].北京:北京工业大学硕士学位论文,2005:42-50
    [27]杨涛.高强铝合金T型接头激光焊接技术研究[D].武汉:武汉理工大学硕士学位论文,2011:31-73
    [28]焦传江.铝合金T型接头激光-电弧两侧同步焊接技术研究[D].北京:北京工业大学硕士学位论文,2009:23-54
    [29] Tempus G. New Aluminium Alloys and Fuselage Structures in AircraftDesign[C]. Werkstoffe für Transport und verkehr, ETH Zürich,Switzerland,18May2001
    [30] Schumacher J. Laserstrahlachweiβen im Flugzeubau[C]. Kongress: NeuesteEntwicklungen der Industruellen Lasertechnik,20Oktober,2005
    [31] Eberl F, Gardiner S, Campanile G, et al. Ageformable Panels forCommercial Aircraft[J]. Proceedings of the Institution of MechanicalEngineers, Part G: Journal of Aerospace Engineering,2008,222(6):873-886
    [32] Blanchfield J. Advances in Aviation Technology[R]. Jakarta: Leaders inAviation,2007
    [33] Eberl F, Gardiner S, Campanile G, et al. Leading the Way with AdvancedAluminium Solutions for Aerospace Structures[C]. AGEFORM: FormingAdvanced Aerospace Panels at Reduced Cost, Vienna, Austria, Aerodays18-21June,2006
    [34] Kocik R, Vugrin T, Seefeld T. Laserstrahlschweissen im Flugzeugbau:Stand und künftige Anwendungen[C].5. Laser-Anwenderforum,Bremen-Germany, September13-14,2006:15-26
    [35] Müller-Hummel P, Ferstl S, Sengotta M, et al. Laser Beam Welding ofHigh Stressed Complex Aircraft Structural Parts[C]. In: First InternationalSymposium on High-Power Laser Macroprocessing, Osaka, Japan,Proceedings of SPIE4831;2002:438-441
    [36] Pacchione M, Telgkamp J. Challenges of the Metallic Fuselage[C].Proceedings of the25th International Congress of the AeronauticalSciences-ICAS.2006:451.1-4.5
    [37] Cao X, Wallace W, Poon C, et al. Welding of Wrought Aluminum Alloys. I.Laser Welding Processes[C]. Materials and Manufacturing Processes,2003,18(1):1-22
    [38] Sun Z, Kuo M. Bridging the Joint Gap with Wire Feed Laser Welding[J].Journal of Materials Processing Technology,1999,87(1):213-222
    [39] Salminen A S, Kujanp V P. Effect of Wire Feed Position on LaserWelding with Filler Wire[J]. Journal of Laser Applications,2003,15(1):2-10
    [40] Salminen A. The Filler Wire-Laser Beam Interaction during Laser Weldingwith Low Alloyed Steel Filler Wire[J]. Mechanika,2012,4(84):67-74
    [41] Dilthey U, Fuest D, Scheller W. Laser Welding with Filler Wire[J]. Opticaland quantum electronics,1995,27(12):1181-1191
    [42] Takallashi K,Katayama S,Matsunawa A. Observation of Filler WireMelting Dynamics during CO2Laser Welding of Aluminum Alloys andEvaluation of Weldability,Ronbunsh/Quarterly[J]. Journal of the JapanWelding Society,2002,20(2):220-227
    [43]于阳春.激光填丝焊的焊丝熔入行为及工艺研究[D].武汉:华中科技大学博士学位论文,2010:44-65
    [44] Xiao R S, Chen K, Zuo T C, et al. Influence of the Wire Addition Directionin CO2Laser Welding of Aluminum[C]. Lasers in Material Processing andManufacturing, Proceedings of SPIE Vol.4915,2010:128-137
    [45] Yang J, Li X Y, Gong S L, et al. Study on the Stability of Laser WeldingProcess with Filler Wire[C]. Proceedings of the Conference PICALO Paper#207, Wuhan, China,2010
    [46] Syed W U H, Li L. Effects of Wire Feeding Direction and Location inMultiple Layer Diode Laser Direct Metal Deposition[J]. Applied SurfaceScience,2005,248:518-524
    [47] Kumar A, DebRoy T. Heat Transfer and Fluid Flow during Gas-Metal-ArcFillet Welding for Various Joint Configurations and Welding Positions[J].Metallurgical and Materials Transactions A,2007,38(3):506-519
    [48] Kumar A, DebRoy T. Guaranteed Fillet Weld Geometry from HeatTransfer Model and Multivariable Optimization[J]. International Journal ofHeat and Mass Transfer,2004,47(26):5793-5806
    [49] Zhang W, Kim C H, DebRoy T. Heat and Fluid Flow in Complex Jointsduring Gas Metal Arc Welding-Part II: Application to Fillet Welding ofMild Steel[J]. Journal of Applied Physics,2004,95(9):5520-5529
    [50] Zain-Ul-Abdein M, Nélias D, Jullien J F, et al. Experimental Investigationand Finite Element Simulation of Laser Beam Welding Induced ResidualStresses and Distortions in Thin Sheets of AA6056-T4[J]. MaterialsScience and Engineering A,2010,527(12):3025-3039
    [51] Zain-Ul-Abdein M, Nélias D, Jullien J F, et al. Finite Element Analysis ofMetallurgical Phase Transformations in AA6056-T4and Their Effects uponthe Residual Stress and Distortion States of A Laser Welded T-joint[J].International Journal of Pressure Vessels and Piping,2011,88(1):45-56
    [52]刁旺战.铝合金双光束激光填丝焊温度场与应力场数值模拟[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010:43-51
    [53]郑文健.铝合金T型接头双激光束双侧同步焊接的数值模拟研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011:13-20
    [54] Reimers P, Gorba A. Nonlinear Buckling Analysis on Welded AirbusFuselage Panels[R]. Germany: IWiS,2003
    [55] Plam F. Can Welded Fuselage Structures Fulfil Future A/C DamageTolerance Requirements[C]. First International Conference on DamageTolerance of Aircraft Structures, TU Delft, Netherlands,2007
    [56] Labeas G N, Diamantakos I D. Calculation of Stress Intensity Factors ofCracked T-joints Considering Laser Beam Welding Residual Stresses[C].First International Conference on Damage Tolerance of Aircraft Structures,TU Delft, Netherlands,2007
    [57] Moreira P M G P, Trummer V R, de Castro P M S T. Lightweight StiffenedPanels Fabricated Using Emerging Fabrication Technologies: FatigueBehaviour[J]. Structural Connections for Lightweight Metallic StructuresAdvanced Structured Materials,2012,8:151-172
    [58] Rosenthal D.The Theory of Moving Sources of Heat and its Application toMetal Treatments[J].Transactions of the American Society of MechanicalEngineering,1946,68(8):849-866
    [59] Swift-Hook D T, Gick A E F. Penetration Welding with Lasers[J]. WeldingJournal Research Supplement,1973,52:412-499
    [60] Cline H E, Anthony T R. Heat Treating and Melting Materials with aScanning Laser or Electron Beam[J]. Journal of Applied Physics,1977,48(9):3895-3900
    [61] Pavefic V, Tanbakuchi R, Auyehara O. Experimental and ComputedTemperature Historips in Gas Tungsten Welding of Thin Plates[J].WeldingJoumal,1969,48(7):295s-305s
    [62] Mazumder J, Steen W M. Heat Transfer Model for CW Laser MaterialProcessing[J]. Journal of Applied Physics,1980,51(2):941-947
    [63] Steen W M, Dowden J, Davis M, et al. A Point and Line Source Model ofLaser Keyhole Welding[J]. Journal of Physics D: Applied Physics,1988,21:1255-1260
    [64]刘建华,李志远,胡伦骥,等.激光深熔焊传热模型的研究[J].激光技术,1995,19(1):10-13
    [65] Paley z, Hibbert P D. Computation of Temperture in Actual WeldDesigns[J]. Welding Journal,1975,54(11):285S-392S
    [66] Noller F. The Stationary Shapes of Vapor Cavity and Molten Zone onEb-Welding[C].3rd International Colloquium On Welding and Melt,Electrons and Laser beam,1983:89-97
    [67] Simon G, Gratzke U, Kroos J. Analysis of Heat Conduction in DeepPenetration Welding with A Time-Modulated Laser Beam[J]. Journal ofPhysics D: Applied Physics,1993,26:862-869
    [68] Lankalapalli K N. A Mode of Estimating Penetration Depth of LaserWelding Processes[J]. Journal of Physics D: Applied Physics,1996,29:1831-1841
    [69] Goldak J, Chakravarti A, Bibby M. A New Finite Model for Welding HeatSource[J]. Metallurgical Transactions B,1984,15B:299-305
    [70] Goldak J, Bibby M, Moore J, et al.Computer Modeling of Heat Flow inwelds[J]. Metallurgical Transactions B,1986,1713:587-600
    [71]吴甦,赵海燕,王煜,等.高能束焊接数值模拟中的新型热源模型[J].焊接学报,2005,24(1):91-94
    [72] Du H B, Hu L J, Liu J H, et al. A Study on Metal Flow in Full PenetrationLaser Welding for Titanium Alloy[J]. Computational Material Science,2004,29(4):419-427
    [73]王宏.激光深熔焊过程的流体动力学研究[D].北京:北京工业大学博士学位论文,2007:30-31
    [74]胡庆贤.穿孔等离子弧焊接温度场的有限元分析[D].济南:山东大学博士学位论文,2007:111-119
    [75] Zhou J, Tsai H L, Lehnhoff T F. Investigation of Transport Phenomena andDefect Formation in Pulsed Laser Keyhole Welding of Zinc-CoatedSteels[J]. Journal of Physics D: Applied Physics,2006,39(24):5338-5355
    [76] Zhou J, Tsai H L. Effects of Electromagnetic Force on Melt Flow andPorosity Prevention in Pulsed Laser Keyhole Welding[J]. International ofHeat and Mass Transfer,2007,50:2217-2235.
    [77]庞盛永.激光深熔焊接瞬态小孔和运动熔池行为及相关机理研究[D].武汉:华中科技大学博士学位论文,2011:17-19
    [78] Wang R P, Lei Y P, Shi Y W. Numerical Simulation of TransientTemperature Field during Laser Keyhole Welding of304Stainless SteelSheet[J]. Optics&Laser Technology,2011,43(4):870-873
    [79] Ye X H, Chen X. Three Dimensional Modeling of Heat Transfer and FluidFlow in Laser Full Penetration Welding[J]. Journal of Physics D: AppliedPhysics,2002,35(10):1049-1056
    [80] Kroos J, Gratzke U, Simon G. Towards A Self-consistent Model of theKeyhole in Penetration Laser Beam Welding[J]. Journal of Physics D:Applied Physics,1993,6(3):474-480
    [81] Solana P, Ocana J. Mathematical Model for Penetration Laer Welding as aFree-Boundary Problem[J]. Journal of Physics D: Applied Physics,1997,30(9):1300-1313
    [82] Solana P, Neqro G. Study of the Effect of Multipke Reflections on theShape of the Keyhole in the Laser Processing of Materials[J]. Journal ofPhysics D: Applied Physics,1997,30(23):3216-3222
    [83] Kapadia P, Solana P, Dowden J. Stochastic Model of the Deep PenetrationLaser Welding of Metals[J]. Laser Institute of America,1997,83(2):54-62
    [84] Zhang T,Wu C S, Feng Y H..Numerieal Analysis of Heat Transfer andFluid Flow in Key Hole Plasma Are Welding[J]. Numerical Heat Transfer,Part A: Applications,2011,60(8):685-698
    [85] Zhang T, Wu C S.3D Modeling of Heat Transfer and Fluid Flow in KeyHole Plasma Are Welding[C]. The International Student Conference onAdvanced Science and Technology Proceedings, Jinan,2011:59-60
    [86]张涛. PAW焊接熔池-小孔流场与热场动态行为的数值分析[D].济南:山东大学博士学位论文,2011:53-57
    [87] Kaplan A. A Model of Deep Penetration Laser Welding Based onCalculation of the Keyhole Profile[J]. Journal of Physics D: AppliedPhysics,1994,27(9):1805-1814
    [88] Rai R, DebRoy T. Tailoring Weld Geometry during Keyhole Mode LaserWelding using A Genetic Algorithm and A Heat Transfer Model[J]. Journalof Physics D: Applied Physics,2006,39(6):1257-1266
    [89] Rai R, Elmer J W, Palmer T A, et al. Heat Transfer and Fluid Flow duringKeyhole Mode Laser Welding of Tantalum, Ti-6Al-4V,304L StainlessSteel and Vanadium[J]. Journal of Physics D: Applied Physics,2007,40(18):5753-5766
    [90] Rai R, Roy G G, DebRoy T. A Computational Efficient Model ofConvective Heat Transfer and Solidification Characteristics duringKeyhole Mode Laser Welding[J]. Journal of Applied Physics,2007,101:054909
    [91] Rai R, Kelly S M, Martukanitz RP, et al. A Convective Heat TransferModel for Partial or Full Penetration Keyhole Mode Laser Welding of AStructure Steel[J]. Metallurgical and Materials Transactions A,2008,39(1):98-112
    [92] Rai R, Burgardt P, Milewski J O, et al. Heat Transfer and Fluid Flowduring Electron Beam Welding of21Cr-6Ni-9Mn Steel and Ti-6Al-4Valloy[J]. Journal of Physics D: Applied Physics,2009,42(2):025503
    [93] Semak V V, Bragg W D, Damkroger B, et al.Transient Model for theKeyhole during Laser Welding[J].Journal of Physics D: Applied Physics,1999,32: L6l-L64
    [94] Fabbro R, Chouf K. Keyhole Modeling during Laser Welding[J]. Journal ofApplied Phycis,2000,87(9):4075-4083
    [95] Ki H, Mohanty P S, Mazumder J. Modeling of Laser Keyhole Welding: partⅠ. Mathematical Modeling, Numerical Methodology, Role of RecoilPressure, Multiple Reflections, and Free-Surface Evolution[J].Metallurgical and Materials Transactions,2002,33A:1817-1830
    [96] Ki H, Mohanty P S, Mazumder J. Simulation of Keyhole Evolution,Velocity, Temperature Profile, and Experimental Verification[J].Metallurgical and Materials Transactions,2002,33A:1831-1842
    [97] Klemens P G. Heat Balance and Flow Conditions for Electron beam andLaser Beam Welding[J]. Journal of Applied Physics,1976,47(5):2304-2310
    [98] Kou S, Wang Y H. Weld Pool Convection and Its Effect[J]. WeldingJoumal,1986,65:63s-70s
    [99] Cho J H, Na S J. Implementation of Real-Time Multiple ReflectionsFresnel Absorption of Laser Beam in Keyhole[J]. Journal of Physics D:Applied Physics,2006,39:5372-78
    [100] Zhou J, Tsai H L. Modeling of Transport Phenomena in Hybrid Laser-MIGKeyhole Welding[J]. International Journal of Heat and Mass Transfer,2008,51:4353-4366
    [101]杜汉斌.钛合金激光焊接及其熔池流动场数值模拟[D].武汉:华中科技大学博士学位论文,2003:76-97
    [102] Wang H, Shi Y W, Gong S L. Numerical Simulation of Laser KeyholeWelding Processes Based on Control Volume Methods[J]. Journal ofPhysics D: Applied Physics,2006,39(21):4722-4730
    [103]汪任凭.激光深熔焊接过程传输现象的数值模拟[D].北京:北京工业大学博士学位论文,2011:52-69
    [104] Pang S Y, Chen L L, Zhou J X, et al. A Three-Dimensional Sharp InterfaceModel for Self-Consistent Keyhole and Weld Pool Dynamics in DeepPenetration Laser Welding[J]. Journal of Physics D: Applied Physics,2011:44(2):025301
    [105]左铁钏.高强铝合金的激光加工[M].北京:国防工业出版社,2002:59-63
    [106] Norris J T, Robino C V, Hirschfeld D A, et al. Effects of Laser Parameterson Porosity Formation: Investigating Millimeter Scale Continuous WaveNd: YAG Laser Welds[J]. Welding Journal,2011,90:198s-203s
    [107] Katayama S, Naito Y, Uchiumi S. Physical Phenomena and PorosityPrevention Mechanism in Laser-Arc Hybrid Welding[J]. Transactions ofJoining and Welding Research Institute,2006,35(1):13-18
    [108] Haboudou A, Peyre P, Vannes A B. Reduction of Porosity ContentGenerated during Nd: YAG Laser Welding of A356and AA5083Aluminium Alloys[J]. Materials Science and Engineering A,2003,363(1):40-52
    [109] Zhang W H, Tsai H L. Pore Formation and Prevention in Deep PenetrationPulsed Laser Welding[C]. Proceedings of21th International Conference onApplication of Lasers&Electron Optics, Scottsdale, USA,2002
    [110] Katayama S, Kawahito Y. Elucidation of Phenomena in High-power FiberLaser Welding and Development of Prevention Procedures of WeldingDefects[C]. Fiber Lasers VI: Technology, Systems, and Applications,Proceedings of SPIE-The International Society for Optical,2009,7195:71951R
    [111] Matsunawa A, Seto N. Dynamics of Keyhole and Molten Pool in HighPower CO2Laser Welding[C]. Proeeedings of SPIE,2000,3888:34-45
    [112] Wu N Q, Xia C, Li M, et al. Interfacial Structure and Micro andNano-Mechanical Behaviour of Laser-Welded6061Aluminum AlloyBlank[J]. Journal of Engineering Materials and Technology,2004,126(1):8-13
    [113] David S A, Vitek J M. Correlation Between Solidification Parameters andWeld Microstructures[J]. International Materials Reviews,1989,34(5):213-245
    [114] Braun R. Nd: YAG Laser Butt Welding of AA6013Using Silicon andMagnesium Containing Filler Powders[J]. Materials Science andEngineering A,2006,426(1):250-262
    [115] Liu C, Northwood D O, Bhole S D. Tensile Fracture Behavior in CO2Laser Beam Welds of7075-T6Aluminum Alloy[J]. Materials&design,2004,25(7):573-577
    [116] Knüwer M, Schumacher J, Ribes H, et al.2198-Advanced AluminiumLithium Alloy for A350Skin Sheet Application[R]. Germany: AirbusDeutschland GmbH,2006
    [117] Vaidya W V, Horstmann M, Seib E, et al. Assessment of Fracture andFatigue Crack Propagation of Laser Beam and Friction Stir WeldedAluminium and Magnesium Alloys[J]. Advanced Engineering Materials,2006,8(5):399-406
    [118] Voller V R, Prakash C.A Fixed Grid Numerical Modeling Methodology forConvection-diffusion Mushy Region Phase-change Problems[J]. International Journal of Heat and Mass Transfer,1987,30(8):1709-1919
    [119] Gareth A, Michael H, Nadia S, et al. Finite Volume Methods Applied toComputational Modeling of Welding Phenomena[C]. Second InternationalConference on CFD in the Minerals and Process Industries, CSIRO,Melbourne, Australia.1999:6-8
    [120] Chakroborty S, Dutta P. A Generalized Formulation for Evaluation ofLatent Heat Functions in Enthalpy-Based Macroscopic Model forConvection-Diffusion Phase Change Process[J]. Metallurgical andMaterials Transactions B,2001,32(3):562-564
    [121] Wang H, Shi Y, Gong S. Effect of Pressure Gradient Driven Convection inthe Molten Pool during the Deep Penetration Laser Welding[J]. Journal ofmaterials processing technology,2007,184(1):386-392
    [122] Voller V R, Swaminathan C R. ERAL Source-Based Method forSolidification Phase Change[J]. Numerical Heat Transfer, Part BFundamentals,1991,19(2):175-189
    [123] Kothe D B, Mjolsness R C, Torrey M D. RIPPLE: A Computer Program forIncompressible Flows with Free Surfaces[R]. Los Alamos NationalLaboratory Report, LA-12007-MS,1991
    [124] Wang Y, Tsai H L. Impingement of Filler Droplets and Weld PoolDynamics during Gas Metal Arc Welding Process[J]. International Journalof Heat and Mass Transfer,2001,44(11):2067-2080
    [125] Anisimov S I, Khokhlov V A. Instabilities in Laser-Matter Interaction[M].Boca Raton: FL-CRC,1995:115-128
    [126] Matsunawa A, Semak V. The Simulation of Front Keyhole Wall Dynamicsduring Laser Welding[J]. Journal of Physics D: Applied Physics,1997,30(5):798-809
    [127] Semak V, Matsunawa A. The Role of Recoil Pressure in Energy Balanceduring Laser Materials Processing[J]. Journal of Physics D: AppliedPhysics,1997,30(18):2541-2552
    [128] Kelmax A K. Heat Model for Laser Welding[J]. Journal of Applied Physics.1978,51(2):941-947
    [129] Peueyo A, Dabezies B, Fabbro R. Thermal Coupling Inside the Keyholeduring Welding Process[C]. Laser Materials Processing: Industrial andMicroelectronics Applications, Proceeding of SPIE, Vienna, Austria.1994,2207:175-184
    [130] Ducharme R, Kapadia P, Dowden J. A Mathematical Model of theDefocusing of Laser Light above a Workpiece in Laser MaterialProcessing[M]. In: Farson D, Steen W, Miyamoto I, editors. Proceedings ofICALEO’92, vol.75. LIA, Orlando: Laser Institution of America;1993:187-197
    [131] Zhao H, Debroy T. Macroporosity Free Aluminum Alloy Weldmentsthrough Numerical Simulation of Keyhole Mode Laser Welding[J]. Journalof Applied Physics,2003,93(12):10089-10096
    [132]李力钧编著.现代激光加工及其装备[M].北京:北京理工大学出版社,1993:107-118
    [133]帕坦卡.传热与流体流动的数值计算[M].张政译.北京:科学出版社,1984:65-78
    [134] Rai R, Palmer T A, Elmer J W, et al. Heat Transfer and Fluid Flow duringElectron Beam Welding of304L Stainless Steel Alloy[J]. Welding Journal,2009,88(3):54-61
    [135] Le Guen E, Fabbro R, Carin M, et al. Analysis of Hybrid Nd:YagLaser-MAG Arc Welding Processes[J]. Optics and Laser Technology,2011,43:1155-1166.
    [136] Rai R, Burgardt P, Milewski J O, et al. Heat Transfer and Fluid Flow duringElectron Beam Welding of21Cr-6Ni-9Mn Steel and Ti-6Al-4V Alloy[j].Journal of Physics D: Applied Physics,2009,42(2):025503
    [137] Ribic B, Rai R, DebRoy T. Numerical Simulation of Heat Transfer andFluid Flow in GTA/Laser Hybrid Welding[J]. Science and Technology ofWelding and Joining,2008,13(8):683-693
    [138] Zhang W, Kim C H, DebRoy T. Heat and Fluid Flow in Complex Jointsduring Gas Metal Arc Welding-Part II: Application to Fillet Welding ofMild Steel[J]. Journal of Applied Physics,2004,95(9):5520-5529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700