用户名: 密码: 验证码:
滤波技术在高超声速大机动飞行器末制导中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来世界局势的发展状况,大体上可概括为“总体和平,局部战争”。作为一种新型作战方式,导弹武器得到了世界各国的普遍关注。以下一代战区弹道导弹(Theatre Ballistic Missile, TBM)为代表的攻击导弹飞行速度快,并具有大机动能力,对现有的拦截制导系统构成了巨大挑战。深入研究如何对这类飞行器进行有效末制导,有利于我军掌握未来战争的战略制高点,并进一步保障国家领土完整和人民生命安全。
     几乎所有先进末制导律在设计时,都需使用目标运动信息;然而很多情况下该信息不能通过测量元件直接获取,必须从被噪声污染的信号中进行在线估计,这就需要滤波技术的支持。滤波技术一直都是信号处理领域的研究热点之一。对于一般的非线性、非高斯系统,最优滤波问题没有递推显式解。高超声速飞行器末制导问题的弹目相对运动关系数学模型,很多情况下存在本质非线性和非高斯特征,且整个末制导过程具有很高的实时性要求;因而对这类问题,有必要研究估计精度高计算量适中的非线性制导滤波器。
     论文以下一代高超声速TBM飞行器的末制导为课题背景,研究了存在未知信息的离散系统的建模和滤波问题;并针对此类目标的末制导中,确定性等价定理的失效问题,给出了一种解决方案并设计了基于Matlab的改进型软件工具包进行了仿真验证。具体来讲,研究主要包括以下内容:
     首先,从贝叶斯最优估计理论出发,研究了非线性和非高斯离散随机系统的高斯逼近滤波技术。在线性高斯随机系统的最优滤波器—卡尔曼滤波算法(Kalman Filter,KF)的基础上,对非线性随机函数的次优高斯逼近方法进行了讨论;根据噪声混入系统的不同类型,针对带有加性和隐含噪声的非线性随机系统,分别推导了两类扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)和无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF);引入辅助函数技术重构采样点,增强了UKF算法在高维系统中实现上的数值鲁棒性;对一类存在多种工作模式的混杂系统进行了研究,根据混杂系统的贝叶斯估计理论进行推导,研究了两类多模型算法原理和实现,较好解决了这类系统的状态估计问题。
     然后,研究了高超声速大机动飞行器的跟踪问题。针对此类问题在系统建模过程中通常存在的本质非线性和非高斯特征,采用成型滤波器模拟验前未知信息;并采用中央差分算法逼近非线性函数,针对带有加性和隐含噪声的非线性随机系统,分别推导了两类中央差分滤波算法(Central Difference Kalman Filter,CDKF);在CDKF的第二步滤波计算过程中引入迭代更新步骤,推导了极大后验估计意义下的一种改进型迭代中央差分滤波算法(ICDKF)。通过高超声速大机动飞行器拦截中两个典型的非线性估计问题,验证了ICDKF算法同主流的EKF和UKF算法相比,具有更高的估计精度和更快的收敛速度并且计算量适中,因而更适于在实战环境中处理这两类跟踪问题。
     接着,通过一个仿真算例,讨论了非线性滤波器按照噪声混入系统的不同方式进行分类设计的必要性;进而提出了高斯次优非线性滤波器的一种改进型结构设计方法。采用这种设计方法,按照项目要求,研究了一种能够解决部分高斯次优非线性滤波器的一致性检验难题、并便于在仿真开始前修改模型参数和替换滤波算法、在仿真结束后执行大量数据的统计处理的改进型滤波制导工具箱的设计方案。为科学评价两种滤波器的估计效果,提出了一种滤波器改进型初始估方法和一种能够从统计学角度比较两种滤波器估计效果的假设检验判别法,并基于上述滤波制导工具箱进行了仿真验证。
     最后,以具有大机动能力的下一代高超声速TBM为例,研究了如何对此类飞行器进行有效拦截末制导,并给出了一种滤波制导一体化设计方案。将CDKF融入多模型算法(Multiple Model Adaptive Estimation, MMAE),提出了一种多模型/中央差分算法(MMAE/CDKF)用于解决建模过程中存在未知信息的末制导系统的目标加速度检测和估计问题;接着针对高超声速飞行器末制导问题较高的实时性要求,考虑到传统多模型滤波器过大的计算量在工控机上实现较为困难,在被拦截飞行器指令加速度为Bang-Bang类型时,引入聚合、尺寸裁剪等技术手段对MMAE/CDKF算法进行简化,提出了一种快速多模型/中央差分算法(fast MMAE/CDKF),在保障估计精度的同时降低了计算量;大量的仿真实验证实了这两种算法的有效性。为有效利用上述两种算法对于目标加速度信息和弹目视线角信息估计性能的改善,更好地解决高超声速大机动飞行器末制导中确定性等价定理的失效问题,分别采用上述两种估计算法作为制导滤波器,提出了一种基于逻辑判断的切换微分对策制导律DGL/N。这种滤波制导一体化设计方案充分考虑了制导滤波器的估计精度和拦截弹有限的机动能力对于末制导律设计的影响,取得了比传统制导律和基本微分对策制导律更好的拦截效果。
     综上,论文给出了高超声速大机动飞行器末制导问题中,制导滤波器和拦截制导律的一些新型设计和评价方法,为下一代反导拦截系统的研发,奠定了一定理论基础,并给出了部分可能的设计思路。
The developing trend of the world for the past several decades can generally bedescribed as “overall peace marred by local wars”. In light of this very importantnotation, missile weapons have increasingly become the core focus as a new mean ofattack in the battlefield. Fast attack missile of the next generation such as the TBM(Theatre Ballistic Missile) can execute large maneuvering at super high speed,posing great challenges to the existing interception guidance systems; thus, anin-depth study of some key technique of terminal guidance laws for interception ofmissile weapons will be very helpful for the People’s Liberation Army to takecontrol of the strategic high ground in future wars, and of great significance for thedefense of the territorial integrity and the security of people’s lives and property.
     Almost all advanced guidance laws used for interception require target motioninformation. While in many cases this information cannot be measured directly, itmust be obtained through online estimation from noise polluted measurements,which requires the support of filtering technique. Filtering technique has always beena hot issue in the domain of signal processing. For the general non-linear andnon-Gaussian systems, there are no recursive explicit solutions for optimal filtering.However, under many circumstances, many kinetic models of missile-targetengagement in terminal guidance problems of hypersonic aircraft are characterizedby non-linear and non-Gaussian in nature; for such problems, it is a more meaningfulpractice to develop suboptimal filtering methods.
     Based on the background of terminal guidance of aircraft like TBM of the nextgeneration, the modeling and filtering problems of discrete systems in the presenceof unknown information are studied,and for the ineffectiveness of certaintyequivalence theorem in the interception of hypersonic speed target with largemaneuvering ability, a possible solution is given and multiple simulations are carriedout on improved software toolkit based on Matlab. Specifically, the followingdomains are included in the research:
     First, the Gaussian approximation filtering technique for general non-linear andnon-Gaussian stochastic discrete system is studied based on optimal Bayesianestimation theory. After the derivation of the optimal filter for linear discrete Gaussian system–the KF (Kalman Filter), suboptimal Gaussian approximations ofnon-linear stochastic systems are derived based on the analogy of KF. According todifferent types of system noise, suboptimal non-linear filters with additive andhidden noise are derived respectively, namely the EKF (Extended Kalman Filter) andUKF (Unscented Kalman Filter) algorithms; To improve the numerical robustness ofUKF for systems with high dimension, an auxiliary function method is introducedwhich recalculated the sample points of UKF; A class of hybrid system with manyworking modes is investigated, and the principle and realization method of twoclasses of multiple model algorithms are studied based on Bayesian estimationtheories for hybrid systems. The algorithms provide a fine solution for stateestimation problems for the hybrid systems.
     Then, the tracking problems for hypersonic aircraft with large maneuvering abilityare discussed. Shaping filters are introduced to imitate the unknown non-Gaussianvariables in systems characterized by non-linearity in nature. Central differencetheory is used to approximate non-linear functions, which lead to the derivation ofcentral difference Kalman Filter (CDKF for short) for non-linear stochastic systemswith additive and hidden noise, respectively. An iterative update step is introduced inthe second step of CDKF, giving an optimal filter named ICDKF under MAP(maximum a posteriori) sense. Two typical non-linear estimation problems from thedomain of terminal guidance in the interception of hypersonic speed demonstrate thatthe proposed ICDKF algorithm effectively improves the estimation accuracy,compared to the mainstream filter of EKF and UKF, thus demonstrate its superiority.
     And then, the necessity of designing non-linear filters in accordance with thedifferent type of noise entering the system is confirmed through a simulationexample, and then a novel structure of the design of non-linear filters is proposed. Inorder to meet the requirements of the project, a improved filtering and guidancetoolbox using such design method is developed which provides a way to performconsistency checking for some non-linear filters based on suboptimal Gaussianapproximations, and makes it easy to modify the simulation parameters and replacefiltering and guidance algorithms at the beginning of the simulation, and processlarge amounts of statistical data after the end of the simulation. In order to givescientific compare between two non-linear Gaussian filters, according to the specialstructure of the Gaussian filter, an improved initialization method for general non-linear system and a hypothesis testing comparative method based on hypothesistesting theory are proposed, which guarantee the scientific performance comparisonof two non-linear filters.The effectiveness of the proposed methods are validatedthrough the novel filtering and guidance toolbox metioned above.
     Finally, for the target to be intercepted as TBM of the next generation which hassupersonic speed and can execute large maneuvering how to effectively interceptsuch target is studied and an integration design method of filtering/guidance is given.Integrating CDKF into multiple model algorithms (Multiple Model AdaptiveEstimation, MMAE), a multiple model central difference algorithm (MMAE/CDKF)is used to deal with filtering task in the presence of unknown signal and gives targetacceleration estimation. Considering that the large computation burden of MMAE/CDKF can make it difficult for the implementation of the algorithm on anengineering computer, for target acceleration with the structure type bang-bang, thetechnique of aggregation and pruning are introduced to make simple the MMAE/CDKF algorithm. A fast multiple model central differential algorithm (fast MMAE/CDKF) is developed which retained much of the accuracy as MMAE/CDKF, whilegreatly reduced the amount of computation. Extensive simulation experimentsconfirm the effectiveness of the proposed two algorithms. In order to make better useof the improvement of estimation of acceleration and line-of-sight angel due to theemployment the two proposed algorithms, and solve better the problem of failure ofcertainty equivalence theorem in the interception of hypersonic target with largemaneuvering ability, a switching differential game guidance law named DGL/N isproposed based on basic logic reasoning. Such method takes fully into account theinfluence of the estimation accuracy of the guidance filter and the limited mobility ofthe interceptor, thus gives better homing performance compared to the conventionalguidance law for terminal interception.
     In summary, several novel design and evaluation methods of terminal guidancelaws and guidance filters for the terminal guidance problems in the interception ofhypersonic speed target with large maneuvering ability are studied in this dissertation,thus lay some theoretical foundation and give some possible methods for thedevelopment of the next-generation missile interception system.
引文
[1]孙未蒙.空地制导武器多约束条件下的制导律设计[D].国防科技大学博士学位论文,2008:1~12.
    [2] Paul Zarchan. Tactical and Strategic Missile Guidance (Sixth Edition)[M].AIAA,2012:31~66.
    [3]贝茨.攻击机动目标的最优制导规律[M].宇航出版社,1989:15~37.
    [4] J. Alpert. Normalized Analysis of Interceptor Missiles Using the Four-StateOptimal Guidance System[J]. Journal of Guidance, Control, and Dynamics,2003,26(6):838~845.
    [5] G.P.Kennedy. Rockets, Missiles amd Spacecraft of the National Air andSpace Museum[M]. Smithsonian Institution Press, Washington, DC,1983:77~89.
    [6] C.F. Lin. Mordorn Navigation, Guidance and Control Processing[M].Prentice Hall, Englewood Cliffs, New Jersey.1991:3~26.
    [7]伊永鑫.气动力/直接力复合控制拦截弹制导与控制方法研究[D].哈尔滨工业大学博士学位论文,2008:3~6.
    [8]周锐.基于模糊逻辑的导弹复合控制系统优化设计[J].控制与决策,2006,21(7):825~828.
    [9]程凤舟.拦截战术弹道导弹末段制导和复合控制研究[D].西北工业大学博士学位论文,2002:12~35.
    [10]温德义.美国部署导弹防御计划新动向[J].国防科技工业,2006,148(4):59~60.
    [11] D. Hughes. Next Arrow Test This Summer after Scoring Direct Hit[J].Aviation Week and Space Technology,1997,146(12):34.
    [12]张友安,胡云安.导弹控制和制导的非线性设计方法[M].国防工业出版社,2009:17~39.
    [13]毕开波,王晓东,刘智平.飞行器制导与控制及其MATLAB仿真技术
    [M].国防工业出版社,2008:15~87.
    [14]刘兴堂,戴革林.精确制导武器与精确制导控制技术[M].西北工业大学出版社,2009:26~44.
    [15]张红梅.高超声速飞行器的建模与控制[D].天津大学博士学位论文,2011:3~6.
    [16] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applicationsto Tracking and Navigation: Theory, Algorithms and Software[M]. JohnWiley&Sons, New York,2005:344~382.
    [17]付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用(第2版)[M].科学出版社,2010:168~198.
    [18]何友,修建鹃,张晶炜等.雷达数据处理及应用(第2版)[M].电子工业出版社,2009:16~32.
    [19] S. Josef, T. Vladimir. On Improved Estimator for Interceptor Guidance. Proc.of the American Control Conference[C]. Anchorage, AK,2002:203~208.
    [20] J. Shinar, Y. Oshman, and V. Turetsky. Optimal Integration of Estimationand Guidance for Interceptors. Technical Report, Department of AerospaceEngineering, Israel Institute of Technology.2005.
    [21] Tal Shima, Josef Shinar, and Haim Weiss. New Interceptor Guidance LawIntegrating Time-Varying and Estimation-Delay Models. Journal ofGuidance, Control and Dynamics[J],2003,26(2):295~303.
    [22] Ronen Atir, Gyorgy Hexner, and Haim Weiss. Target Maneuver AdaptiveGuidance Law for a Bounded Acceleration Missile. Journal of Guidance,Control and Dynamics[J],2010,33(3):695~706.
    [23] Tal Shima. Head Pursuit Guidance[J]. Journal of Guidance, Control, andDynamics,2007,30(5):1437~1444.
    [24] Tal Shima, Yaakov Oshman, Josef Shinar. Efficient Multiple ModelAdaptive Estimation in Ballistic Missile Interception Scenarios[J]. Journalof Guidance, Control and Dynamics,2002,25(4):667~675.
    [25] S. Josef, and V. Turetsky. Three-Dimensional Validation of an IntegratedEstimation/Guidance Algorithm against Randomly Maneuvering Targets[J].Journal of Guidance, Control, and Dynamics,2009,32(3):1034~1039.
    [26] Josef Shinar, Tal Shima. Guidance Law Evaluation in Highly NonlinearScenarios–Comparison to Linear Analysis. Proceedings of the AIAAGuidance Navigation and Control Conference[C]. Portland, Oregon, U.S.A,1999:651~661.
    [27] Y. Lipman, J. Shinar, and Y. Oshman. A Stochastic Analysis of theInterception of Maneuvering Antisurface Missiles[J]. Journal of Guidance,Control, and Dynamics,1997,20(4):707~714.
    [28]王亚飞,方洋旺,周晓滨.比例导引律研究现状及其发展[J].火力与指挥控制,2011,32(10):8~12.
    [29] M. Mehrandezh, M.N. Sela, R.G. Fenton, and B. Benhabib. ProportionalNavigation Guidance for Robotic Interception of Moving Objects[J].Journal of Robotic Systems,2000,17(6):321~340.
    [30] J.M. Borg, M. Mehrandezh, R.G. Fenton, ect. Ideal Proportional NavigationGuidance System for Moving Object Interception–Robotic Experiments[C].Proceedings of the IEEE International Conference on Systems, Man andCybernetics,2000:3247~3252.
    [31] P.J.Yuan, J.S.Chern. Ideal Proportion Navigation[J]. Journal of Guidance,Control and Dynamics,1992,15(5):1160~1165.
    [32] S.K. Jeong, S.J. Cho, E.G. Kim. Angle Constraint Biased PNG[C].5th AsianControl Conference,2004,3:1849~1854.
    [33] Whang, Ick-Ho, and Ra, Won-Sang. Time-to-go Estimator for MissilesGuided by BPNG[C]. International Conference on Control, Automation andSystems,2008:463~467.
    [34] Cho Sungjin, Whang Ick-Ho, Lee Young-In, ect. The Feasible Bias Set ofBPNG Law for Single-lag System[C]. International Conference on Control,Automation and Systems,2011:1256~1258.
    [35] Kim Yongmin, Seo Jin H. Realization of the Three Dimensional GuidanceLaw using Modified Augmented Proportional Navigation[C]. Proceedingsof the IEEE Conference on Decision and Control,1996(3):2355~3592.
    [36]高磊.水下目标被动跟踪及自适应导引律研究[D].西北工业大学博士学位论文,2004:2~16.
    [37]张永安.非线性滤波及其在寻的制导中的应用[D].哈尔滨工业大学博士学位论文,2004:55~71.
    [38]周荻.寻的导弹新型导引规律[M].国防工业出版社,2002:97~188.
    [39]吕永佳,张德才,李挺杉,等.一种飞行器最优末制导律研究及仿真[J].上海航天,2012,29(2):1~6,17.
    [40]徐鸣,吴庆宪,姜长生.空空导弹攻击机动目标的三维最优制导律研究[J].航空兵器,2005,6:7~12.
    [41]李振营,沈毅,胡恒章.反弹道导弹动能拦截器的新型最优制导律[J].系统工程与电子技术,1999,21(12):47~49.
    [42] F.W.Nesline, P.Zarchan. A New look at Classical Versus Modern HomingGuidance. Journal of Guidance, Control, and Dynamics[J],1981,4(1):78~85.
    [43] J. Shinar, Y. Osman, V. Turetsky. On the Need IntegratedEstimation/Guidance Design for Hit-to-Kill Accuracy[C]. American ControlConference,2003,1:402~407.
    [44]沈明辉,陈磊,吴瑞林.大气层内动能拦截弹的变增益鲁棒姿控系统设计研究[J].宇航学报,2007,28(3):562~565.
    [45] S. D. Brierly, R. Longchamp. Application of Sliding Mode Control toAir-Air Interception Problem[J]. IEEE Transactions on Aerospace andElectronic Systems,2011,26(2):306~325.
    [46]司学慧,李小兵,张东洋,等.大气层内拦截机动目标的变结构末制导律设计[J].电光与控制,2012,19(6):66~69,83.
    [47]张一张,张合新,范金锁,等.带末端角约束的三维最优滑模制导律设计[J].科学技术与工程,2010,10(25):6177~6180,6193.
    [48] C. Lin, H. Hung, Y. Chen. Development of an IntegratedFuzzy-Logic-Based Missile Guidance Law against High Speed Target[J].IEEE Transactions on Fuzzy Systems,2004,12(2):157~169.
    [49] W. K. Schroeder, K. Liu. An Appropriate Application of Fuzzy Logic: aMissile Autopilot for Dual Control Implementation[C]. IEEE InternationalSymposium on Intelligent Control-Proceedings,1994:93~98.
    [50]吴振辉,董朝阳.直接力/气动力复合控制导弹自适应模糊滑模控制[J].北京航空航天大学学报,2007,33(9):1051~1055.
    [51] Y. Z. Elhalwagy, M. Tarbouchi. Application of Fuzzy Sliding Mode Controlto a Command Interceptor[C]. IEEE28th Annual Conference of theIndustrial Electronics Society,2002:1836~1841.
    [52] Simon Haykin. Kalman Filter and Neural Network[M]. John Wiley&Sons,New York,2001:12~36.
    [53] R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference inDynamic State-Space Models[D]. Doctor Thesis, OGI School of Science&Engineering,2004:3~36.
    [54] R. E. Kalman. A New Approach to Linear Filtering and PredictionProblems[J]. Transactions of the ASME, Journal of Basic Engineering,1960,82:34~45.
    [55]朱胤.非线性滤波及其在跟踪制导中的应用[D].哈尔滨工业大学博士学位论文,2009:106~109.
    [56] Mohinder S. Grewal, Angus P. Andrews. Kalman Filtering Theory andPractice using MATLAB (Third Edition)[M], John Wiley&Sons, New York,2008:17~62.
    [57] R. S. Bucy, and K. D. Renne. Digital Synthesis of Nonlinear Filter[J].Automatica,1971,7(3):287~289.
    [58] T. D. Powell. Automated Tuning of an Extended Kalman Filter Using theDownhill Simplex Algorithm[J]. Journal of Guidance, Control andDynamics,2002,25(5):901~908.
    [59] A. H. Jazwinski. Stochastic Processes and Filtering Theory[M]. AcademicPress, New York,1970:41~58.
    [60] S. Julier, J. Uhlmann. Reduced Sigma Point Filters for the Propagation ofMeans and Covariances through Nonlinear Transformations[C]. Proceedingsof the American Control Conference,2002,2:887~892.
    [61] S. Julier, J. Uhlmann, H. F. Durrant-Whyte. A New Method for theNonlinear Transformation of Means and Covariances in Filters andEstimators[J]. IEEE Transactions on Automatic Control,2000,45(2):477~482.
    [62] Simon Julier. The Spherical Simplex Unscented Transformations[C].Proceedings of the American Control Conference,2003,3:2430~2434.
    [63] Tine Lefebvre, Herman Bruyninckx, Joris De Schutter, ect. Comment on"A New Method for the Nonlinear Transformation of Means andCovariances in Filters and Estimators"(Multiple Letters)[J]. IEEETransactions on Automatic Control2002,47(8):1406~1409.
    [64] K. Ito, and K. Xiong. Gaussian Filters for Nonlinear Filtering Problems.IEEE Transactions on Automatic Control[J],2000,45(5):910~927.
    [65] M. Norgaard, N. K. Poulsen. New Developments in State Estimation forNonlinear Systems[J]. Automatica,2000,36:1627~1638.
    [66] Ienkaran Arasaratnam, Simon Haykin. Cubature Kalman filters[J]. IEEETrans on Automatic Control,2009,54(6):1254~1269.
    [67] Jonghee Bae, Youdan Kim. Nonlinear Estimation for Spacecraft AttitudeUsing Decentralized Unscented Information Filter[C]. Int Conf on ControlAutomation and Systems. Kintex, Gyeonggi-do,2010:1562~1566.
    [68] Bin Jia, Ming Xin, Yang Cheng. Sparse Gauss-Hermite Quadrature Filterwith Application to Spacecraft Attitude Estimation[J]. Journal of GuidanceControl and Dynamics,2011,34(2):367~379.
    [69] Liu Jiang, Cai Bai-gen, Tang Tao, et al. A CKF based GNSS/INS TrainIntegrated Positioning Method[C]. Int Conf on Mechatronics andAutomation. Xi’an,2010:1686~1689.
    [70] Pesonen H, Piche R. Cubature-based Kalman filters for Positioning[C].Workshop on Positioning Navigation and Communication. Dresden,2010:45~49.
    [71] WeishengWu, Chunlei Song, JunhouWang, et al. Cubature Gaussian ParticleFilter for Initial Alignment of Strapdown Inertial Navigation System[C]. IntConf on Pervasiye Computing Signal Processing and Applications. Harbin,2010:1196~1200.
    [72] Ienkaran Arasaratnam, Simon Haykin, Thomas R Hurd. Cubature KalmanFiltering for Continuous-discrete Systems: Theory and Simulations[J]. IEEETrans on Signal Processing,2010,58(10):4977~4993.
    [73] Jing Mu, Yuan Li Cai, Jun Min Zhang. Square Root Cubature ParticleFilter[J]. Advanced Materials Research,2011,219(1):727~731.
    [74] N. J. Kasdin. A New, Guaranteed Positive Time Update for the Two-StepOptimal Estimator[J]. Journal of Guidance, Control and Dynamics.2000,23(2):215~221.
    [75] N. J. Kasdin, G. T. Haupt. Second-Order Correction and NumericalConsiderations for the Two-Step Optimal Estimator[J]. Journal of Guidance,Control and Dynamics,2005,20(2):362~369.
    [76] D. L. Alspach, and H. W. Sorenson. Nonlinear Bayesian Estimation UsingGaussian Sum Approximation[J]. IEEE Transactions on Automatic Control,2006,17(4):439~448.
    [77] R. van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference inDynamic State-Space Models[D]. Doctor Thesis. OGI School of Science&Engineering,2004:121~166.
    [78]薛锋,刘忠,张晓锐.高斯和粒子滤波器及其在被动跟踪中的应用[J].系统仿真学报,2006,18(增刊2):900~902.
    [79]宁晓菊,梁军利.基于UKF的高斯和滤波算法.计算机仿真[J].2006,23(12):100~103.
    [80] J. Juan Martinez-Marin, Tomas Lopez-Sanchez, Juan M. Martinez-Espla.Using a Grid-based Filter to Solve Unwrapping[J]. IEEE Geoscience andRemote Sensing Letters,2008,5(2):147~151.
    [81] Subrata Bhowmik, Chandrani Roy. Comparison of Estimation TechniquesUsing Kalman Filter and Grid-based Filter for Linear and Non-linearSystem[C]. International Conference on Computing: Theory andApplications,2007:516~520.
    [82] Bin Jia, and Ming Xin. Vision-Based Spacecraft Relative Navigation usingSparse-Grid Quadrature Filter[J]. IEEE Transactions on Control SystemsTechnology,2012:213~219.
    [83] A. Doucet, N. de Freitas, N. Gordon. Sequential Monte-Carlo Methods inPractice[M]. Springer-Verlag,2001:44~87.
    [84] Xinyu Xu, Baoxin Li. Adaptive Rao-Blackwellized Particle Filter and itsEvaluation for Tracking in Surveillance[J]. IEEE Transactions on ImageProcessing,2007,16(3):838~849.
    [85]袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970~973.
    [86] R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan. The UnscentedParticle Filter[R]. Technical Report. Department of Engineering, CambridgeUniversity,2000.
    [87] Straka O, Dunik J, Simandl M. Truncated Unscented Particle Filter[C].American Control Conference,2011:1825~1830.
    [88] Chaochao Chen, Bin Zhang, George Vachtsevanos, Marcos Orchard.Machine Condition Prediction Based on Adaptive Neuro–Fuzzy andHigh-Order Particle Filtering[J]. IEEE Transaction on Industrial Electronics,2011,58(9):4353~4364.
    [89] C Mott, G Dumont, D B. Boivin, D Mollicone. Model-Based HumanCircadian Phase Estimation Using a Particle Filter[J]. IEEE Transaction onBiomedical Engineering,2011,58(5):1325~1336.
    [90] Shahrokh F, Stergios I R, Georgios B G. Set-Membership ConstrainedParticle Filter: Distributed Adaptation for Sensor Networks[J]. IEEETransaction on Signal Processing,2011,59(9):4122~4138.
    [91] Jesús Martínez del Rincón, Dimitrios Makris, Carlos Orrite Uru uela,Jean-Christophe Nebel. Tracking Human Position and Lower Body PartsUsing Kalman and Particle Filters Constrained by Human Biomechanics[J].IEEE Transaction on Systems, Man and Cybernetics-Part B: Cybernetics,2011,41(1):26~37.
    [92] Vaswani, N, Rathi, Y, Yezzi, A, Tannenbaum, A. Deform PF-MT: ParticleFilter With Mode Tracker for Tracking Nonaffine Contour Deformations[J].IEEE Transactions on Image Processing,2010,19(4):841~857.
    [93]刘顺兰,许天园.基于EPF滤波的单站无源定位算法及性能分析.机电工程,2010,21(3):56~59.
    [94]宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法.宇航学报,2006.27(4):648~663.
    [95]王更生,张俊,郭鹏飞,等. CPF算法在GNSS-INS列车组合定位系统中的应用.传感器与微系统,2012,31(11):138~143.
    [96]王成儒,成润.基于UPF-BP神经网络的视频跟踪研究[J].电子技术,2009,(3):81~83.
    [97] GSPF融合的SINS/GPS紧耦合组合导航技术.控制与决策,2013,28(2):303~308,312.
    [98]冯驰,王萌,汲清波.粒子滤波器重采样算法的分析与比较[J].系统仿真学报,2009,21(4):1101~1110.
    [99]杨璐,李明,张鹏.一种新的改进粒子滤波算法[J].西安电子科技大学学报(自然科学版),2010,37(5):862~865.
    [100]赵玲玲,马培军,苏小红.一种快速准蒙特卡罗粒子滤波算法[J].自动化学报,2010,36(9):1351~1356.
    [101] C. Musso, N. Oudjane and F. LeGland. Improving Regularized ParticleFilters. Sequential Monte Carlo Methods in Practice. New York: Springer,2001:247~272.
    [102] Pitt, M.K. and Shephard, N.(2001). Auxiliary Variable Based ParticleFilters[J]. Sequential Monte Carlo Methods in Practice. Doucet A, de FreitasJ F G, Gordon, N J. New York: Springer-Verlag.2001:271~293.
    [103] Johansen A M, Doucet A. A note on auxiliary particle filters[J]. Statisticsand Probability Letters,2008,78(12):1498~1504.
    [104] Johansen A M, Doucet, A. Auxiliary variable sequential Monte Carlomethods[R]. Statistics Group Technical Report,2007
    [105] Liu Jie, Wang Wilson, Ma Fai. A regularized auxiliary particle filteringapproach for system state estimation and battery life prediction[J]. SmartMaterials and Structures,2011,20:1~9.
    [106] Fu Xiaoyan, Jia Yingmin. An Improvement on Resampling Algorithm ofParticle Filters[J]. IEEE Transaction on Sigmal Processing,2011,58(10):5414~5420.
    [107]李翠芸,姬红兵.快速Metropolis-Hastings变异的遗传重采样粒子滤波器[J].系统工程与电子技术,2009,31(8)1968~1972.
    [108] Li Chen, Lixin Ding, Xin Du. Enhancement of Particle Filter Resampling inVehicle Tracking via Genetic Algorithm[C]. The3rd InternationalConference on Computer Research and Development,2011,1:452~457.
    [109]胡振涛,潘泉,梁彦等.基于进化采样的粒子滤波算法[J].控制理论与应用,2009,26(3):269~273.
    [110] Z. Y. Pang, D. R. Liu, N. Jin, et al. Neural Network Strategy for Sampling ofParticle Filters on the Tracking Problem. Proceedings of International JointConference on Neural Networks,2007,254~259.
    [111] Guochuang Fan, Yaping Dai, Hongyan Wang. Gaussian Sum ParticleFiltering Based on RBF Neural Networks. The7th World Congress onIntelligent Control and Automation,2008:3071~3076.
    [112]李小偎,胡振涛,潘泉,等.基于模糊支持度采样的粒子滤波算法[J].计算机测量与控制,2012,20(1):190~192.
    [113]程水英,张剑云.裂变自举粒子滤波[J].电子学报,2008,36(3):500~504.
    [114]方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273~277.
    [115]杜正聪,冯大海,牛高远.粒子群优化人工免疫粒子滤波器[J].四川大学学报(工程科学版),2013,45(1):146~151.
    [116]刘云龙,林宝军.一种基于小生境技术的群智能粒子滤波算法[J].控制与决策,2010,25(2):316~320.
    [117]蒋蔚,伊国兴,曾庆双.一种基于SVM重采样的似然粒子滤波算法[J].控制与决策,2011,26(2):234~247.
    [118] Banerjee A, Burlina P. Efficient Particle Filtering via Sparse Kernel DensityEstimation[J]. IEEE Transaction on Image Processing.2010,19(9):1181~1190.
    [119] Li H W, Wang J, Su H T. Improved Particle Filter Based on DifferentialEvolution[J]. Electronics Letters,2011,47(19):1078~1079.
    [120] M. A. Demetriou. Design of Consensus and Adaptive Consensus Filters forDistributed Parameter Systems[J]. Automatica,2010,46(2):300~311.
    [121]秦伟,苑伟政,常洪龙等.基于自适应UKF算法的MEMS陀螺空中在线标定技术[J].中国惯性技术学报,2011,19(2):170~174.
    [122]赵琳,王小旭,薛红香,等.带噪声统计估值器的Uncented卡尔曼滤波器设计[J].控制与决策,2009,24(10):1483~1488.
    [123]郝刚,叶秀芬.多传感器加权融合自适应UKF滤波器[J].宇航学报,2011,32(6):1400~1408.
    [124]胡振涛,潘泉,金勇等.量测不确定条件下多传感器自适应粒子滤波算法[J].控制与决策,2012,27(4):547~556.
    [125]左军毅,张怡哲,梁彦.自适应不完全重采样粒子滤波器[J].自动化学报,2012,27(4):647~652.
    [126]席峰,刘中.基于状态预测自适应一致滤波器的分布式估计融合算法[J].信息与控制,2010,39(1):59~65.
    [127]周荻,胡振坤,胡恒章.自适应推广Kalman滤波应用于导弹的被动制导问题[J].宇航学报,1997,18(4):31~36.
    [128]周荻,慕春棣.自适应两步滤波器及其在导弹被动制导中的应用.宇航学报,1997,20(3):101~105.
    [129]郝燕玲,牟宏伟.自适应平方根中心差分卡尔曼滤波算法在捷联惯性导航系统大方位失准角初始对准中的应用[J].吉林大学学报(工学版),2013,43(1):261~266.
    [130]傅惠民,吴云章,娄泰山.欠观测条件下的扩展增量Kalman滤波算法[J].航空动力学报,2012,27(4):777~781.
    [131]傅惠民,娄泰山,吴云章.欠观测条件下的增量卡尔曼滤波算法[J].机械强度,2012,34(1):434~437.
    [132]傅惠民,吴云章,娄泰山.自适应无迹增量卡尔曼滤波算法[J].航空动力学报,2013,28(2):259~263.
    [133] JE Sacks, HW. Sorenson. Nonlinear Extensions of the Fading MemoryFilter[J]. IEEE Transactions on Automatic Control,1971,15(5):506~507.
    [134] L. H Brandenburg, H. E. Meadows. Shaping Filter Representation ofNonstationary Colored Noise[J]. IEEE Transactions on Information Theory,1971,17(1):26~31.
    [135] D. T. Magill. Optimal Adaptive Estimation of Sampled StochasticProcesses[J]. IEEE Transactions on Automatic Control,1965,10(4):434~439.
    [136] D. G. Lainiotis Optimal Adaptive Estimation: Structure and ParameterAdaptation[J]. IEEE Transactions on Automatic Control.1971,16(2):160~170
    [137]朱胤,史小平.随机机动目标拦截中的快速有效多模型自适应估计算法[J].吉林大学学报(工学版),2010,40(2):554~559.
    [138]韩崇昭,朱红艳,等.多源信息融合(第二版)[M].北京:清华大学出版社.2010.
    [139]潘泉,梁彦,等.现代目标跟踪与信息融合[M].北京:国防工业出版社.2009.
    [140] H. A. P. Blom. A Sophisticated Tracking Algorithm for ATC SurveillanceData. In Proceedings of the International Radar Conference, Paris, France,1984:151~166.
    [141] H. A. P. Blom. An Efficient Filter for Abruptly Changing Systems. InProceedings of the23rd IEEE Conference on Decision and Control, LasVegas, NV,1984:716~722.
    [142] X. R. Li, and V. P. Jilkov. Survey of Maneuvering Target Tracking. Part V:Multiple-Model Methods. IEEE Transactions on Aerospace and ElectronicSystems.2005,41(4):1255~1321.
    [143] E. Mazor, A. Averbuch, Y. Barshalom, ect. Interacting Multiple ModelMethods in Target Tracking: A Survey. IEEE Transactions on Aerospace andElectronic Systems.1998,34(1):103~123
    [144] Y. Bar-Shalom. Multitarget-Multisensor Tracking: Applications andAdvances, Vol. II. Norwood, MA: Artech House,1992:33~42.
    [145] Y. Bar-Shalom, and X. R. Li. Estimation and Tracking: Principles,Techniques, and Software. Boston, MA: Artech House,1993:211~225.
    [146] X. R. Li, and Y. Bar-Shalom. Mode-Set Adaptation in Multiple-ModelEstimators for Hybrid Systems. In Proceedings of the1992AmericanControl Conference. Chicago, IL,1992:1794~1799
    [147] X. R. Li. Multiple-Model Estimation with Variable Structure: SomeTheoretical Considerations. In Proceedings of the33rd IEEE Conference onDecision and Control. Orlando, FL,1994:1199~1204
    [148] X. R. Li, and Y. Bar-Shalom. Multiple-Model Estimation with VariableStructure. IEEE Transactions on Automatic Control.1996,41(4):478~493
    [149] X. R. Li. Multiple-Model Estimation with Variable Structure–Part II:Model-Set Adaptation. IEEE Transactions on Automatic Control.2000,45(11):2047~2060
    [150] X. R. Li, Z. Zhao, and Y. M. Zhang. Multiple-Model Estimation withVariable Structure–Part III: Model-Group Switching Algorithm. IEEETransactions on Aerospace and Electronic Systems.1999,35(1):225~241.
    [151] X. R. Li, and Y. M. Zhang. Multiple-Model Estimation with VariableStructure–Part V: Likely-Model Set Algorithm. IEEE Transactions onAerospace and Electronic Systems.2000,36(2):448~466.
    [152] X. R. Li. Hybrid Estimation Techniques[M]. In C. T. Leondes (Ed.), Controland Dynamic Systems: Advances in Theory and Applications, Vol.76, NewYork: Academic Press,2008,213~287.
    [153] X. R. Li. Engineer’s Guide to Variable-Structure Multiple-Model Estimationfor Tracking[M]. In Y. Bar-Shalom and W. D. Blair (Eds.),Multitarget-Multisensor Tracking: Applications and Advances, Vol. III,Boston, MA: Artech House,2006, ch.10,499~567.
    [154]鉴福升,徐跃民,阴泽杰.多模型粒子滤波跟踪算法研究[J].电子与信息学报,2010,32(6):1271~1276.
    [155] P. J. Nordlund. Sequential Monte Carlo and Integrated Navigation[D].Doctor Thesis. Division of Automatic Control, Department of ElectricalEngineering, Linkoping University.2011:16~22.
    [156] S. McGinnity, G. W. Irwin. A Multiple Model Bootstrap Filter forManeuvering Target Tracking[J]. IEEE Transactions on Aerospace andElectronic Systems,2012,36(3):1006~1012.
    [157] Y. Boers, J. N. Driessen. Interacting Multiple Model Particle Filter[J]. IEEProceedings-Radar, Sonar&Navigation,2003,150(5):344~349.
    [158] T. Kirubarajan, Y. Bar-Shalom, K. R. Pattipatik, and I. Kadar. Ground TargetTracking with Variable Structure IMM Estimator[J]. IEEE Transactions onAerospace and Electronic Systems.2000,36(1):26~46.
    [159]梁彦,潘泉,贾宇岗.基于模型空间分解的交互式多模型算法西北工业大学学报,2001,19(3):394~397.
    [160] J. Shinar, T. Shima. Non-orthodox Guidance Law Development Approachfor the Interception of Maneuvering Anti-Surface Missiles[J]. Journal ofGuidance, Control, and Dynamics,2002,25(4):658~666.
    [161] J. Shinar, T. Shima. Kill Probability Assessment against ManeuveringTactical Ballistic Missiles[C]. AIAA10th Multinational Conference onTheater Missile Defense, AIAA, Brusile.1997.
    [162] J. Shinar, T. Shima, A. Kebke. On the Validity of Linearized Analysis in theInterception of Reentry Vehicles[C]. Proceedings of the AIAA Guidance,Navigation and Control Conference, AIAA, Reston VA.1998:1050~1060.
    [163] J. Shinar, M. Zarkh. Interception of Maneuvering Tactical Ballistic Missilesin the Atmosphere[C]. Proceedings of the19th International Council of theAeronautical Sciences Congress, AIAA, Washington DC.1994:1354~1363.
    [164]花文华,陈兴林,宋申民.基于多模型自适应估计的混合策略微分对策制导[J],宇航学报,2010,31(6):1582~1588.
    [165] G. Hexner, T. Shima. Stochastic Optimal Control Guidance Law withBounded Acceleration[C]. Proceedings of the43rd IEEE Conference onDecision and Control, Institute of Electrical and Electronics Engineering,New York.2004,3:3021~3026.
    [166] D. Dionne, H. Michalska, Y. Oshman ect. Novel Adaptive GeneralizedLikelihood Ratio Detector with Application to Maneuvering TargetTracking[J]. Journal of Guidance, Control, and Dynamics,2006,29(2):465~474.
    [167] D. Dionne, H. Michalska, J. Shinar ect. Decision-Directed AdaptiveEstimation and Guidance for an Interception Endgame[J]. Journal ofGuidance, Control, and Dynamics,2006,29(4):970~980.
    [168]周宏仁,敬忠良,王培德.机动目标跟踪[M].国防工业出版社,北京.1991:185~192.
    [169] I. G. Shaviv, T. Shima. Fusion of Estimation and Guidance Using SequentialMonte Carlo Methods[C]. Proceedings of IEEE Conference on ControlApplications, Institute of Electrical and Electronics Engineering, New York.2005:1361~1366.
    [170] Josef Shinar, Tal Shima. Robust Missile Guidance Law against HighlyManeuvering Targets[C]. Proceedings of the7th IEEE MediterraneanConference on Control&Automation, Haifa, Israel,1999:1548~1572.
    [171] Tal Shima, Josef Shinar. Time Varying Pursuit Evasion Game Models withBounded Controls[J]. Journal of Guidance, Control, and Dynamics,2002,25(3):425~432.
    [172] J. Shinar. Solution Techniques for Realistic Pursuit-Evasion Games[M].Advances in Control and Dynamic Systems, Vol.17, Academic Press, NewYork,1981:66~85.
    [173] L. A. Petrosjan. Differential Games of Pursuit[M]. Vol.2. Series onOptimization, World Scientific Publishing Co.Inc., Singapore,1993:665~680.
    [174] J. Shinar, and A. Davidovitz. Two-target Game Analysis in Line-of-sightCoordinates[J]. Computers&Mathematics with Applications,1987,13(3):123~140.
    [175] R. Isaacs. Differential Games[M]. John Wiley&Sons, New York,1965:22~67.
    [176] J. Shinar, S. Gutman. Three-Dimensional Optimal Pursuit and Evasion withBounded Control[J]. IEEE Transaction on Automatic Control,1980,25(3):492~496.
    [177] Y. C. Ioho, A. E. Bryson, S. Baron. Differential Games and OptimalPursuit-Evasion Strategies[J]. IEEE Transactions of Optimal Control,1965,10(4):385~389.
    [178] J.Shinar, S.Gutman. Three-Dimensional Optimal Pursuit and Evasion withBounded Control[J]. IEEE Transactions on Automatic Control,1980,25(3):492~496.
    [179] J. Shinar. Solution Techniques for Realistic Pursuit–Evasion Games[M].Advances in Control and Dynamic Systems, Academic Press, New York,1981:206~211.
    [180] G. M.Anderson. Comparison of Optimal Control and Differential GameIntercept Missile Guidance Laws[J]. Journal of Guidance and Control.2001,24(2):109~115.
    [181] J. Shinar, V. Turetsky, Y. Oshman. Integrated Estimation/Guidance DesignApproach for Improved Homing Against Randomly Maneuvering Targets[J].Journal of Guidance, Control, and Dynamics,2007,30(1):154~161.
    [182] J. Shinar, T. Shima. Game Theoretical Interceptor Guidance Law forBallistic Missile Defence[C]. Proceedings of the IEEE Conference onDecision and Control, Kobe, Japan,2006:855~866.
    [183] R. F. Stengel. Stochastic Optimal Control[M]. New York:John Wiley&Sons,1986:451~460.
    [184] H. S. Witsenhausen. Separation of Estimation and Control for Discrete TimeSystems[C]. Proceedings of the IEEE,1971,59(11):1557~1566.
    [185] J. Shinar, T. Shima. Robust Missile Guidance Law against HighlyManeuvering Targets[C]. Proceedings of the7th IEEE MediterraneanConference on Control and Automation, New York,1999:1548~1572.
    [186] I. Forte, J. Shinar. Improved Guidance Law Design Based on MixedStrategy Concept[J]. Journal of Guidance, Control, and Dynamics,1989,12(2):739~745.
    [187] Y. Lipman, J. Shinar, Y. Oshman. A Stochastic Analysis of theInterception of Maneuvering Antisurface Missiles[J]. Journal of Guidance,Control, and Dynamics,1997,20(4):707~714.
    [188] J.Shinar, V. Glizer. Complete Solution of a Delayed Information LinearPursuit-Evasion Game with Bounded Controls[J]. International GameTheory Review,1999,1(3~4):197~218.
    [189] J. Shinar, T. Shima. Robust Missile Guidance Law against HighlyManeuvering Targets[C]. Proceedings of the7th IEEE MediterraneanConference on Control and Automation, New York,1999:1548~1572.
    [190] F. Yeh, K. Cheng, L. Fu. Variable Structure-Based Nonlinear MissileGuidance/Autopilot Degisn with Highly Maneuverable Actuators[J]. IEEETransactions on Control Systems Technology,2004,12:944~949.
    [191] G. M. Dimirovski, S. M. Deskovski, Z. M. Gacovski. Classical andFuzzy-System Guidance Laws in Homing Missiles Systems[C]. IEEEAerospace Conference Proceedings,2004,5:3032~3047.
    [192]花文华,刘扬,陈兴林等.具有终端约束的线性二次型微分对策制导律[J].兵工学报,2011,32(12):1448~1455.
    [193] Vitaly Shaferman, Tal Shima. Linear Quadratic Differential GamesGuidance Law for Imposing a Terminal Intercept Angle[C]. AIAAGuidance, Navigation and Control Conference and Exhibit, Honolulu,Hawaii,U.S.A.,2008:511~521.
    [194] D. Simon. Optimal State Estimation: Kalman, and NonlinearApproaches[M]. John Wiley&Sons, New Jersey,2006:132~156.
    [195] Brian D. O. Anderson, John B. Moore. Optimal Filtering[M].Prentice-Hall Information and System Sciences Series.London,1999:332~356.
    [196] J. L. Garrison, P. Axelrad, N. J. Kasdin. Ill-Conditioned CovarianceMatrices in the First-Order Two-Step Estimator[J]. Journal of Guidance,Control and Dynamics.1998,21(5):754~760.
    [197] Carlo Novara, Fredy Ruiz, Mario Milanese. Direct Filtering: A NewApproach to Optimal Filter Design for Nonlinear Systems[J]. IEEETransactions on Automatic Control,2013,58(1):86~99.
    [198]西蒙.赫金.自适应滤波原理(第四版)[M].电子工业出版社,2010:66~78.
    [199] Y. Boers, and J. N. Driessen. Hybrid State Estimation: A Target TrackingApplication[J]. Automatica.2001,38(12):2153~2158.
    [200]郭剑辉,赵春霞,石杏喜等.尺度Unscented变换在同时定位与地图创建算法中的应用研究[J].兵工学报,2008,29(7):859~863.
    [201] Lubin Chang, Baiqin Hu, An Li ect. Transformed Unscented KalmanFilter[J]. IEEE Transactions on Automatic Control,2013,58(1):252~257.
    [202] F.W. Nesline, and P. Zarchan. A New look at Classical Versus ModernHoming Guidance[J]. Journal of Guidance, Control, and Dynamics,2009,32(1):78~85.
    [203] G.A. Hewer, R.D. Martin, Judith. Zeh. Robust Preprocessing for KalmanFiltering of Glint Noise[J]. IEEE Transactions on Aerospace and ElectronicSystems,2007,23(1):120~128.
    [204] X. Q. Song, and Z. K. Sun. Maneuvering Target Tracking withNon-Gaussian Noise[C]. Proceedings of the IEEE, Aerospace andElectronics Conference, Naecon.2007,2:890~895.
    [205] Bita Imam, Seyed Alireza, Banani.3-dimensional Maneuvering TargetTracking with Online Observed Colored Glint Noise ParameterEstimation[C]. Proceedings of the13th IASTED International Conferenceon Control and Applications,2011:132~140.
    [206] Josef Shinar, Y. Osman, V. Turetsky. On the Need IntegratedEstimation/Guidance Design for Hit-to-Kill Accuracy[C]. American ControlConference,2003,1:402~407.
    [207] J. Shinar, and V. Turetsky. Three-Dimensional Validation of an IntegratedEstimation/Guidance Algorithm against Randomly Maneuvering Targets[J].Journal of Guidance, Control, and Dynamics,2009,32(3):1034~1039.
    [208] J. Shinar, and V. Turetsky. On Improved Estimation for InterceptorGuidance[C]. Proceedings of the2002American Control Conference,Institute of Electrical and Electronics Engineering, New York,2002:203~208.
    [209] Gerald M. Anderson. Comparison of Optimal Control and Differential GameIntercept Missile Guidance Laws[J]. Journal of Guidance, Control, andDynamics,1981,4(1):109~115.
    [210] Y.Oshman, D.Arad. Enhanced Air-to-Air Missile Tracking Using TargetOrientation Observations[J]. Journal of Guidance,Control and Dynamics,2004,27(4):595~606.
    [211] Gyorgy Hexner, Haim Weiss. Stochastic Approach to Optimal Guidancewith Uncertain Intercept Time. IEEE Transactions on Aerospace andElectronic Systems,2010,46(4):1804~1820.
    [212] Tal Shima, Yaakov Oshman, Josef Shinar. Efficient Multiple ModelAdaptive Estimation in Ballistic Missile Interception Scenarios[J]. Journalof Guidance, Control, and Dynamics,2002,25(4):667~675.
    [213] J. Shinar, M. Guelman, and A. Green, Optimal Guidance Law for a PlanarPursuit-evasion Game of Kind[J]. Computers&Mathematics withApplications,1989,18(3):35~44.
    [214] Y. Oshman, J. Shinar, and S.A. Weizman. Using a Multiple-ModelAdaptive Estimator in a Random Evasion Missile/Aircraft Encounter[J].Journal of Guidance, Control, and Dynamics,2001,24(6):1176~1186.
    [215]李登峰.微分对策及其应用[M].国防工业出版社,北京,2000:106~135.
    [216]刘德铭,黄振高.对策论及其应用[M].国防科技大学出版社,长沙,1995:261~288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700