用户名: 密码: 验证码:
茶树高密度遗传图谱构建及重要性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树是我国的一种重要经济作物。近年来,随着产业技术创新和人们生活水平提高,茶树品质育种日益受到重视。但茶树的重要品质性状大多为复杂的数量性状,受微效多基因和环境的共同作用,对其进行遗传改良十分困难;并且茶树作为多年生异交木本作物,世代周期较长、遗传背景复杂,使用传统育种方法进行新品种选育,效率较低。利用分子标记技术进行遗传图谱构建和数量性状位点(QTL)定位,找到与目标性状紧密连锁或共分离的分子标记,借助标记辅助选择可以极大地缩短育种周期、提高育种效率。本研究以茶树变种间杂交构建的F1分离群体,采用微卫星(SSR)标记技术和简化基因组测序技术,结合“拟测交”策略分别构建双亲遗传图谱以及双亲整合图谱,并对控制茶树新梢咖啡碱和可可碱含量、以及芽叶形态等性状的QTL进行了定位分析。主要研究结果如下:
     1.对dbEST数据库的8008条茶树表达序列标签(EST)序列进行拼接,获得2982个unigene,利用SSRIT软件在462个unigene中搜索到561个SSR位点,检出率为15.5%;包含二、三核苷酸重复基元的SSR出现频率最高,分别占总数的45.5%和19.1%;根据SSR位点两侧保守序列成功设计213对引物,经过筛选后,最终获得104对能够扩增出目的条带的EST-SSR引物。
     2.利用亲本和6个F1群体单株对不同来源的1464对SSR引物进行初筛,共筛选出424对能够检测到多态性的引物,占总数的29%,其中EST-SSR421个,基因组SSR3个;多态性引物中母本信息来源位点70个(16.5%),父本信息来源位点168个(39.6%),双亲信息来源位点186个(43.9%);将多态性引物用于F1群体分析,卡方检验结果显示有130个(30.7%)位点的基因型频率偏离预期的孟德尔频率。
     3.采用特异性长特扩增特段测序(SLAF-seq)技术对亲本和150个F1单株进行简化基因组测序,获得130.35M reads,聚类分析后共形成101091个单核苷酸多态性(SNP)标签,其中25014个具有多态性,占总数的24.7%;对多态性标签进行基因型分析,过滤父母本信息缺失、完整特过低和不适合F1群体作图的多态性标签,最终获得6042个有效的SNP位点;按分离类型,选择800个SNP标记用于F1群体分析,其中母本信息来源位点289个(36.1%),父本信息来源位点276个(34.5%),双亲信息来源位点235个(29.4%),卡方检验结果显示有164个(20.5%)位点的基因型频率偏离预期的孟德尔频率。
     4.采用“拟测交”策略分别构建双亲遗传图谱,其中母本遗传图谱包含15个连锁群,577个标记(SSR,226;SNP,351),总覆盖遗传距离1427.4cM,平均图距2.5cM,连锁群长特范围73.8cM-115.0cM;父本遗传图谱包含739个标记(SSR,313;SNP,426),分属于15个连锁群,图谱总长1488.1cM,平均图距为2.0cM,连锁群长特范围73.2cM-126.7cM;利用同源位点进行双亲图谱整合,最终得到的整合图谱共15个连锁群,与茶树染色体数一致,包含1101个标记(SSR,373;SNP,728),图谱覆盖基因组长特1632.8cM,相邻标记间最大距离19.6cM,最小间距0.1cM,平均图距为1.5cM,连锁群长特范围80.2cM-184.8cM。
     5.对亲本及F1群体的6个重要性状进行连续两年的鉴定,统计分析表明所有性状在亲本间存在显著差异,在F1群体中呈连续变异,近正态分布,且存在明显的双向超亲分离。利用整合双亲整合图谱,结合两年表型数据,采用restricted MQM复合区间作图法共检测到18个控制相关性状的主效QTL,单个QTL贡献率10.7%-23.0%,其中位于第5连锁群上控制咖啡碱含量的QTL位点和位于第7连锁群上控制叶形指数的QTL位点比较稳定,在两年及两年联合分析中都能检测到。
The tea plant is an economically important beverage crop cultivated in tropical and subtropicalregions. Recently, as the innovation of industrial technology and the rise of living standards, qualitytraits are becoming increasingly important in current tea plant breeding. However, improving these traitsgenetically is extremely difficult because most of them are controlled by quantitative traits loci (QTL).Moreover conventional breeding in tea plant is laborious, time-consuming due to its self-incompatibilityand long generation cycles. Genetic map construction and QTL mapping studies provide an abundanceof DNA marker-trait associations, and these trait linked markers have enormous potential to improve theefficiency and precision of conventional plant breeding via marker-assisted selection (MAS). In thisstudy, three genetic maps were constructed based on a F1population of inter-varietal hybrids of tea plant,using SSR markers and specific length amplified fragment sequencing (SLAF-seq), and QTLscontrolling caffeine (CAF) and theobromine (TBR) contents, leaf length (LL), leaf width (LW), leafindex (LL/LW) and length of ‘Two and a bud’(BL) were detected in the parental integrated map byrestricted multiple-QTL model (MQM) method. The results of this dissertation are as follows:
     1. A total of2982unigenes were predicted from8008tea plant ESTs, representing approximately4238kb of putative functional tea plant transcriptome. SSR searching detected561microsatellite lociamong462(15.5%) unigenes. The mined microsatellites were classified by repeat motif and size, andthe result showed that di-and tri-nucleotide repeats were the most common repeat types, accounting for45.5%and18.9%of the total. According to the flanking sequence of SSR,213primers weresuccessfully designed, of which104amplified unambiguous target bands with expected sizes.
     2. A set of1465SSR primers developed from different Camellia species were screened in the twoparents and six F1individuals. Of them,421EST-derived SSR and three genomic SSR yieldedpolymorphic amplicons. Paired comparison of allelic patterns obtained in parents showed that70(16.5%) loci were heterozygous in maternal parent while homozygous in paternal parent,168(39.6%)loci were heterozygous in paternal parent while homozygous in maternal parent, and186(43.9%) lociwere heterozygous in both parents. A chi-square test was performed on marker genotyping data for F1population, resulting in that130(30.7%) markers were distorted from Mendelian segregation ratios.
     3. Solexa sequencing of reduced-representation libraries generated a total of~130.35million readsfrom parents and150F1progenies. Reads were aggregated into101091SLAF tags, of which25014(24.7%) were polymorphic. After SNP genotype calling and removal of tags with incomplete data orunsuitable for CP population (outbreeder full-sib family), a total of6042SNP markers were finallyidentified. Of them,800markers were selected and analyses in F1population, and the result showed that289(36.1%) markers were available to for maternal map construction,276(34.5%) markers for paternalmap, and235(29.4%) markers for both parental maps. Chi-square test showed that164(20.5%)markers were distorted from Mendelian segregation ratios.
     4. Parental genetic maps were constructed separately based on pseudo-testcross theory. Thematernal map consisted of577markers (SSR226, SNP351), spaning a total length of1427.4cM with an average distance of2.5cM. The maternal map consisted of739markers (SSR313, SNP426),spaning a total length of1427.4cM with an average distance of2.5cM. Both maps contained15linkage groups, which corresponds to the basic chromosome number of tea plant. Based on homologousloci in parental maps, the consensus map was constructed, in which1101markers (SSR373, SNP728)were mapped on15linkage groups covering a total map length of1632.8cM with an average distanceof1.5cM.
     5. Significant differences were observed between the parents for all traits. The F1populationdisplayed continuous distribution of phenotypes and transgressive segregation. A total of18QTL with10.7-23.0%of the total phenotypic variance were identified. Of them, two common QTL, one for CAFcontent on LG05linkage group and one for LL/LW on LG07, were detected in different environments.
引文
1.陈亮,虞富莲,童启庆.关于茶组植物分类与演化的讨论.茶叶科学,2000,20(2):89-94
    2.陈尧玉,陈士炎.茶树染色体数目变异的观察.安徽农业科学,1983,3:85-89
    3.陈宗懋,杨亚军.中国茶经.上海文化出版社,2011
    4.陈宗懋.中国茶叶大辞典.中国轻工业出版社,2012
    5.大前英,田中淳一.茶叶の耐冻性に关连ガめられゐDNAアヵ.茶業研究報告,1996,84(别册):52-53
    6.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2000
    7.黄福平,梁月荣,陆建良,陈荣冰.应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱.茶叶科学,2006,26(3):171-176
    8.黄建安,李全贤,黄意欢,罗军武,龚志华,刘仲华.茶树AFLP分子连锁图谱的构建.茶叶科学,2005,25(1):7-15
    9.黄秦军,苏晓华,黄烈健,张志毅.美洲黑杨×青杨木材性状QTLs定位研究.林业科学,2004,40(2):55-60
    10.贾继增.小麦分子标记研究进展.生物技术通报,1997,2:1-5
    11.金基强,崔海瑞,陈文岳,卢美贞,姚艳玲,忻雅,龚晓春.茶树EST-SSR的信息分析与标记建立.茶叶科学,2006,26(1):17-23
    12.黎裕,王建康,邱丽娟,马有志,李新海,万建民.中国作物分子育种现状与发展前景.作物学报,2010,36(9):1425-1430
    13.李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010,36(6):918-931
    14.李建生.玉米分子育种研究进展.中国农业科技导报,2007,9(2):10-13
    15.乔婷婷,马春雷,周炎花,姚明哲,刘饶,陈亮.浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析.作物学报,2010,36(5):744-753
    16.邱丽娟,王昌陵,周国安,陈受宜,常汝镇.大豆分子育种研究进展.中国农业科学,2007,40(11):2418-2436
    17.谭贤杰,吴子恺,程伟东,王天宇,黎裕.关联分析及其在植物遗传学研究中的应用.植物学报,2011,46(1):108-118
    18.田中淳一,渡部育夫.チセの成叶のテアニンの含量のQTL解析.茶業研究報告,1996,84(别册):46-47
    19.田中淳一,涂木裕一郎,山口聪.チセの萌芽の早晚と关连のめられDNAマカとその遗传.茶業研究報告,1996,84(别册):47-49
    20.田中淳一,泽井佑典.チセの成叶のタソニン含量と关连の认められゐDNAマカにつぃて.茶業研究報告,1997,85(别册):24-25
    21.田中淳一. RAPDをべースにしたチャの连锁地图の作成と遗传解析への利用の可能性.茶業研究報告,1996,84(别册):44-45
    22.涂木裕一郎,田中淳一,伊藤阳子.チセ炭そ病抵抗性と关连のめられゐDNAマカ.茶業研究報告,1996,84(别册):50-51
    23.万建民.中国水稻分子育种现状与展望.中国农业科技导报,2007,9(2):1-9
    24.王建康.数量性状基因的完备区间作图方法.作物学报,2009,35(2):239-245
    25.王丽鸳.基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究.中国农业科学院,博士学位论文,2011
    26.王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡.遗传,2007,29(11):1317-1323
    27.王守生,梁国鲁,李晓林,成明昊.自然四倍体“9006”茶树生物生化性状研究.西南农业大学学报,1995,17:45-48
    28.王永军,吴晓雷,贺超英,张劲松,陈受宜,盖钧镒.大豆作图群体检验与调整后构建的遗传图谱.中国农业科学,2003,36(11):1254-1260
    29.徐云壁,朱立煌.分子数量遗传学.中国农业出版社,1994
    30.严建兵,汤华,黄益勤,郑用琏,李建生.玉米F2群体分子标记偏分离的遗传分析.遗传学报,2003,30(10):913-918
    31.周炎花,乔小燕,马春雷,乔婷婷,金基强,姚明哲,陈亮.广西茶树地方品种遗传多样性和遗传结构的EST-SSR分析.林业科学,2011,47(3):59-67
    32. Adams M.D., Kelley J.M., Gocayne J.D., et al. Complementary DNA sequencing: expressedsequence tags and human genome project. Science,1991,252(5013):1651-1656
    33. Aggarwal R.K., Hendre P.S., Varshney R.K., Bhat P.R., Krishnakumar V., Singh L. Identification,characterization and utilization of EST-derived genic microsatellite markers for genome analysesof coffee and related species.Theoretical and Applied Genetics,2007,114(2):359-372
    34. Alheit K.V., Reif J.C., Maurer H.P., Hahn V., Weissmann E.A., Miedaner T., Würschum T.Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on ahigh-density DArT marker consensus genetic linkage map. BMC Genomics,2011,12:380
    35. Andolfatto P., Davison D., Erezyilmaz D., Hu T.T., Mast J., Sunayama-Morita T., Stern D.L.Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Research,2011,21(4):610-617
    36. Ashihara H. and Suzuki T. Distribution and biosynthesis of caffeine in plants. Frontiers inBioscience,2004,9:1864-1876
    37. Ashihara H., Crozier A. Caffeine: a well known but little mentioned compound in plantscience.Trends in Plant Science,2001,6(9):407-413
    38. Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q.,Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309(5735):741-745
    39. Baird N.A., Etter P.D., Atwood T.S., Acquadro A., Valè G., Toppino L., Rotino G.L. Rapid SNPdiscovery and genetic mapping using sequenced RAD marker. PLoS ONE,2008,3(10): e3376
    40. Barchi L., Lanteri S., Portis E., Acquadro A., Valè G., Toppino L., Rotino G.L. Identification ofSNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics,2011,12:304
    41. Baumbach J., Rogers J.P., Slattery R.A., Narayanan N.N., Xu M., Palmer R.G., BhattacharyyaM.K., Sandhu D. Segregation distortion in a region containing a male-sterility, female-sterilitylocus in soybean. Plant Science,2012,195:151-156
    42. Baxter S.W., Davey J.W., Johnston J.S., Shelton A.M., Heckel D.G., Jiggins C.D., Blaxter M.L.Linkage mapping and comparative genomics using next-generation RAD sequencing of anon-model organism. PLoS ONE,2011,6(4): e19315
    43. Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms. The American Journal of Human Genetics,1980,32:314-331
    44. Brenchley R., Spannagl M., Pfeifer M., et al. Analysis of the bread wheat genome usingwhole-genome shotgun sequencing. Nature,2012,491(7426):705-710
    45. Bukowski J.F., Percival S.S. L-theanine intervention enhances human γδ T lymphocyte function.Nutrition Reviews,2008,66(2):96-102
    46. Causse M. A., Fulton T. M., Cho Y. G., et al. Saturated molecular map of the rice genome based onan interspecific backcross population. Genetics,1994,138(4):1251-1274
    47. Chagné D., Crowhurst R.N., Troggio M., et al. Genome-wide SNP detection, validation, anddevelopment of an8K SNP array for apple. PLoS ONE,2012,7(2): e31745
    48. Chakravart A., Lasher L.K., Reefer J.E. A maximum likelihood method for estimating genomelength using genetic linkage data. Genetics,1991,128:175-182
    49. Chang C., Bowman J.L., DeJohn A.W., Lander E.S., Meyerowitz E.M. Restriction fragment lengthpolymorphism linkage map for Arabidopsis thaliana. Proceedings of the National Academy ofSciences USA,1988,85:6856-6860
    50. Chao D.Y., Silva A., Baxter I., Huang Y.S., Nordborg M., Danku J., Lahner B., Yakubova E., SaltD.E.Huang Y.S., Nordborg M., Danku J., Lahner B., Yakubova E., Salt D.E. Genome-wideassociation studies identify heavy metal ATPase3as the primary determinant of natural variation inleaf cadmium in Arabidopsis thaliana. PLoS Genetics,2012,8(9): e1002923
    51. Charlesworth B. Driving genes and chromosomes. Nature,1988,332(6163):394-395
    52. Chen L., Apostolides Z., Chen Z.M. Global Tea Breeding: Achievements, Challenges andPerspectives. Springer-Zhejiang University Press,2012
    53. Chen Z.Y., Jiang Y.S., Wang Z.F., Wei J.Q., Wei X., Tang H., Li Z.C. Development andcharacterization of microsatellite markers for Camellia nitidissima. Conservation Genetics,2010,11:1163-1165
    54. Choi S.R., Teakle G.R., Plaha P., et al. The reference genetic linkage map for the multinationalBrassica rapa genome sequencing project. Theoretical and Applied Genetics,2007,115(6):777-792
    55. Chutimanitsakun Y., Nipper R.W., Cuesta-Marcos A., Cistué L., Corey A., Filichkina T., JohnsonE.A., Hayes P.M. Construction and application for QTL analysis of a Restriction Site AssociatedDNA (RAD) linkage map in barley. BMC Genomics,2011,12:4
    56. Clark R.M., Schweikert G., Toomajian C., et al. Common sequence polymorphisms shapinggenetic diversity in Arabidopsis thaliana. Science,2007,317(5836):338-342
    57. Clark R.M., Wagler T.N., Quijada P., Doebley J. A distant upstream enhancer at the maizedomestication gene tb1has pleiotropic effects on plant and inflorescent architecture. NatureGenetics,2006,38(5):594-597
    58. Collard B.C.Y., Jahufer M.Z.Z., Brouwer J.B., Pang E.C.K. An introduction to markers,quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: Thebasic concepts. Euphytica,2005,142:169-196
    59. Davey J.W., Blaxter M.L. RADSeq: next-generation population genetics. Briefings in FunctionalGenomics,2011,9(5):416-423
    60. Davey J.W., Hohenlohe P.A., Etter P.D. Boone J.Q., Catchen J.M., Blaxter M.L. Genome-widegenetic marker discovery and genotyping using next-generation sequencing. Nature ReviewsGenetics,2011,12(7):499-510
    61. Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: Version II. Plant MolecularBiology Reporter,1983,1(4):19-21
    62. Donis-Keller H., Green P., Helms C., et al. A genetic linkage map of the human genome. Cell,1987,51:319-337
    63. Eduardo I., Arús P., Monforte A.J. Development of a genomic library of near isogenic lines (NILs)in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics,2005,112(1):139-148
    64. Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics,2004,5:435-445
    65. Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. Arobust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE,2011,6(5): e19379
    66. Emerson K.J., Merz C.R., Catchen J.M., Hohenlohe P.A., Cresko W.A., Bradshaw W.E., HolzapfelC.M. Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of theNational Academy of Sciences USA,2010,107(37):16196-16200
    67. Fan J.B., Gunderson K.L., Bibikova M., Yeakley J.M., Chen J., Wickham Garcia E., Lebruska L.L.,Laurent M., Shen R., Barker D. Illumina universal bead arrays. Methods in Enzymology,2006,410:57-73
    68. Fang W.P., Cheng H., Duan Y.S., Jiang X., Li X.H. Genetic diversity and relationship of clonal tea(Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Systematics andEvolution,2012,298(2):469-483
    69. Fernández-Fernández F., Antanaviciute L., Van Dyk M. M. A genetic linkage map of an applerootstock progeny anchored to the Malus genome sequence. Tree Genetics&Genomes,2012,8:991-1002
    70. Flint-Garcia S.A., Thornsberry J.M., Buckler E.S. Structure of linkage disequilibrium in plants.Annual Review of Plant Biology,2003,54:357-374
    71. Flint-Garcia S.A., Thuillet A.C., Yu J., Pressoir G., Romero S.M., Mitchell S.E., Doebley J.,Kresovich S., Goodman M.M., Buckler E.S. Maize association population: a high-resolutionplatform for quantitative trait locus dissection. Plant Journal,2005,44(6):1054-1064
    72. Freeman S., West J., James C., Lea V., Mayes S. Isolation and characterization of highlypolymorphic microsatellites in tea (Camellia sinensis). Molecular Ecology Notes,2004,4:324-326
    73. Gale M.D., Devos K.M. Plant comparative genetics after10years. Science,1998,282:656-659
    74. Gaudet M. Molecular approach to dissect adaptive traits in native European Populus nigra L.:construction of a genetic linkage map based on AFLP, SSR, and SNP markers. Universitàdegli Studi della Tuscia. Ph.D. Thesis,2005
    75. Giovannoni J.J., Wing R.A., Ganal M.W. Isolation of molecular markers from specificchromosomal intervals using DNA pools from existing mapping populations. Nucleic AcidsResearch,1991,19(23):6553-6568
    76. Goff S.A., Ricke D., Lan T.H., et al. A draft sequence of the rice genome (Oryza sativa L. ssp.japonica). Science,2002,296(5565):92-100
    77. Gore M.A., Chia J.M., Elshire R.J., Sun Q., Ersoz E.S., Hurwitz B.L., Peiffer J.A., McMullen M.D.,Grills G.S., Ross-Ibarra J., Ware D.H., Buckler E.S. A first-generation haplotype map of maize.Science,2009,326(5956):1115-1117
    78. Grattapaglia D., Sederoff R. Genetic linkage maps of Eucalyptus Grandis and Eucalyptusurophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics,1994,137(4):1121-1137
    79. Guo S., Yan J., Yang T., Yang X., Bezard E., Zhao B. Protective effects of green tea polyphenols inthe6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. BiologicalPsychiatry,2007,62(12):1353-1362
    80. Gupta P.K., Varshney R.K. The development and use of microsatellite markers for genetic analysisand plant breeding with emphasis on bread wheat. Euphytica,2000,113(3):163-185
    81. Hackett C.A., Wachira F.N., Paul S., Powell W., Waugh R. Construction of a genetic linkagemap for Camellia sinensis (tea). Heredity,2000,85(4):346-355
    82. Harushima Y., Yano M., Shomura A. et al. A high-density rice genetic linkage map with2275markers using a single F2population. Genetics,1998,148(1):479-494
    83. Hazarika L.K., Bhuyan M., Hazarika B.N. Insect pests of tea and their management. AnnualReview of Entomology,2009,54:267-284
    84. Hearnden P.R., Eckermann P.J., McMichael G.L., Hayden M.J., Eglinton J.K., Chalmers K.J. Agenetic map of1,000SSR and DArT markers in a wide barley cross. Theoretical and AppliedGenetics,2007,115(3):383-391
    85. Helentjaris T., Slocum M., Wright S., Jones D.A., Norcott K.A., Chadwick B.P., Jones J.D.Construction of genetic linkage maps in maize and tomato using restriction fragment lengthpolymorphisms. Theoretical and Applied Genetics,1986,72:761-769
    86. Henery M.L., Moran G.F., Wallis I.R. Foley W.J. Identification of quantitative trait loci influencingfoliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens.New Phytologist,2007,176(1):82-95
    87. Huang X.H., Feng Q., Qian Q., Zhao Q., Wang L., Wang A., Guan J., Fan D., Weng Q., Huang T.,Dong G., Sang T., Han B. High-throughput genotyping by whole-genome resequencing. GenomeResearch,2009,19:1068-1076
    88. Huang X.H., Wei X.H., Sang T., et al. Genome-wide association studies of14agronomic traits inrice landraces. Nature Genetics,2010,42(11):961-967
    89. Huang X.H., Zhao Y., Wei X.H., et al. Genome-wide association study of flowering time and grainyield traits in a worldwide collection of rice germplasm. Nature Genetics,2011,44(1):32-39
    90. Hung C.Y., Wang K.H., Huang C.C., Gong X., Ge X.J., Chiang T.Y. Isolation and characterizationof11microsatellite loci from Camellia sinensis in Taiwan using PCR-based isolation ofmicrosatellite arrays (PIMA). Conservation Genetics,2008,9:779-781
    91. Hwang T.Y., Sayama T., Takahashi M., et al. High-density integrated linkage map based on SSRmarkers in soybean. DNA Research,2009,16(4):213-25
    92. International Tea Committee (ITC), Annual Bulletin of Statistics. ITC,2012
    93. Isobe S.N., Hirakawa H., Sato S., et al. Construction of an integrated high density simple sequencerepeat linkage map in cultivated strawberry (Fragaria×ananassa) and its applicability. DNAResearch,2013,20(1):79-92
    94. Jansen R.C. Controlling the type I and II errors in mapping quantitative trait loci. Genetics,1994,138:871-881
    95. Jeffreys A.J., Wilson V., Thein S.L. Hypervariable 'minisatellite' regions in human DNA. Nature,1985,314:67-73
    96. Jiao Y.P., Zhao H.N., Ren L.H., Song W., Zeng B., Guo J., Wang B., Liu Z., Chen J., Li W., ZhangM., Xie S., Lai J. Genome-wide genetic changes during modern breeding of maize. NatureGenetics,2012,44(7):812-815
    97. Kamunya S.M., Wachira F.N., Pathak R.S., Korir R., Sharma V., Kumar R., Bhardwaj P., Chalo R.,Ahuja P. S., Sharma R. K. Genomic mapping and testing for quantitative trait loci in tea (Camelliasinensis(L.) O. Kuntze). Tree Genetics&Genomes,2010,6:915-929
    98. Kantety R.V., La Rota M., Matthews D.E. Sorrells M.E. Data mining for simple sequence repeatsin expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology,2002,48(5-6):501-510
    99. Kao C.H., Zeng Z.B., Teasdale R.D. Multiple interval mapping for quantitative trait loci. Genetics,1999,152:1203-1216
    100. Kato M., Mizuno K., Crozier A., Fujimura T., Ashihara H. Caffeine synthase gene from tea leaves.Nature,2000,406(6799):956-957
    101. Kato M., Mizuno K., Fujimura T., Iwama M., Irie M., Crozier A., Ashihara H. Purification andcharacterization of caffeine synthase from tea leaves. Plant Physiology,1999,120(2):579-586
    102. Katti M.V., Ranjekar P.K., Gupta V.S. Differential distribution of simple sequence repeats ineukaryotic genome sequences. Molecular Biology Evolution,2001,18(7):1161-1167
    103. Keightley P.D., Bulfield G. Detection of quantitative trait loci from frequency changes of markeralleles under selection. Genetics Research,1993,62(3):195-203
    104. Kent W.J. BLAT-The BLAST-Like Alignment Tool. Genome Research,2002,12(4):656-664
    105. Khlestkina E.K., Salina E.A. SNP markers: methods of analysis, ways of development, andcomparison on an example of common wheat. Genetika.2006,42(6):725-736
    106. Kim Y.S., Lim S., Kang K.K., Jung Y.J., Lee Y.H., Choi Y.E., Sano H. Resistance against beetarmyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. PlantBiotechnology,2011,28:393-395
    107. Konieczny A., Ausubel F.M. A procedure for mapping Arabidopsis mutations using co-dominantecotype-specific PCR-based markers. Plant Journal,1993,4(2):403-410
    108. Kopisch-Obuch F.J., Diers B.W. Segregation at the SCN resistance locus rhg1in soybean isdistorted by an association between the resistance allele and reduced field emergence. Theoreticaland Applied Genetics,2006,112(2):199-207
    109. Korol A., Frenkel Z., Cohen L., Lipkin E., Soller M. Fractioned DNA pooling: a new cost-effectivestrategy for fine mapping of quantitative trait. Genetics,176:2611-2623
    110. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nature Genetics,1997,17:21-24
    111. Kumpatla S.P., Mukhopadhyay S. Mining and survey of simple sequence repeats in expressedsequence tags of dicotyledonous species. Genome,2005,48:985-998
    112. Lai E., Riley J., Purvis I., Roses A. A4-Mb high-density single nucleotide polymorphism-basedmap around human APOE. Genomics,1998,54(1):31-38
    113. Lai E. Application of SNP technologies in medicine: lessons learned and future challenges.Genome Research,2001,11(6):927-929
    114. Lam H.M., Xu X., Liu X., Chen W., Yang G., Wong F.L., Li M.W., He W., Qin N., Wang B., Li J.,Jian M., Wang J., Shao G., Wang J., Sun S.S., Zhang G. Resequencing of31wild and cultivatedsoybean genomes identifies patterns of genetic diversity and selection. Nature Genetices,2010,42(12):1053-1059
    115. Lander E.S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLPlinkage maps. Genetics,1988,121:185-199
    116. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newberg L.A.MAPMAKER: an interactive computer package for constructing primary genetic linkage maps ofexperimental and natural populations. Genomics,1987,1(2):174-181
    117. Lander E.S. The new genomics: global views of biology. Science.1996,274(5287):536-539
    118. Landry B.S., Kesseli R.V., Farrara B., Michelmore R.W. A genetic map of lettuce (Lactuca sativaL.) with restriction fragment length polymorphism, isozyme, disease resistance and morphologicalmarkers. Genetics,116:331-337
    119. Lewin H.A., Larkin D.M., Pontius J. O'Brien S.J. Every genome sequence needs a good map.Genome Research,2009,19(11):1925-1928
    120. Li H., Peng Z.Y., Yang X.H., et al. Genome-wide association study dissects the genetic architectureof oil biosynthesis in maize kernels. Nature Genetics,2013,45(1):43-50
    121. Li Y., Fan C., Xing Y., Jiang Y., Luo L., Sun L., Shao D., Xu C., Li X., Xiao J., He Y., Zhang Q.Natural variation in GS5plays an important role in regulating grain size and yield in rice. NatureGenetics,2011,43(12):1266-1269
    122. Lima L.S., Gramacho K.P., Pires J.L., Clement D., Lopes U.V., Carels N., Gesteira A., Gaiotto F.A.,Cascardo J., Micheli F. Development, characterization, validation, and mapping of SSRs derivedfrom Theobroma cacao L.-Moniliophthora perniciosa interaction ESTs. Tree Genetics&Genomes,2010,6:663-676
    123. Ling H.Q., Zhao S., Liu D., et al. Draft genome of the wheat A-genome progenitor Triticum urartu.Nature,2013,496(7443):87-90
    124. Litt M., Luty J. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotiderepeat within the cardiac muscle actin gene. The American Journal of Human Genetics,1989,44(3):397-401
    125. Ma J.Q., Ma C.L., Yao M.Z., Jin J.Q., Wang Z.L., Wang X.C., Chen L. Microsatellite markers fromtea plant expressed sequence tags (ESTs) and their applicability for cross-species/generaamplification and genetic mapping. Scientia Horticulturae,2012,134:167-175
    126. Ma J.Q., Zhou Y.H., Ma C.L., Yao M.Z., Jin J.Q., Wang X.C., Chen L. Identification andcharacterization of74novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis(Theaceae). American Journal Botany,2010,97(12): e153-156
    127. Ma X.F., Jensen E., Alexandrov N., Troukhan M., Zhang L., Thomas-Jones S., Farrar K.,Clifton-Brown J., Donnison I., Swaller T., Flavell R. High resolution genetic mapping by genomesequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthussinesis. PLoS ONE,2012,7(3): e33821
    128. Mackay I., Powell W. Methods for linkage disequilibrium mapping in crops. Trends in PlantScience,2007,12(2):57-63
    129. Mangelsdorf P.C., Jones D.F. The expression of Mendelian factors in the gametophyte of maize.Genetics,1926,11(5):423-455
    130. May P.E., Weber J.L. Abundant class of human DNA polymorphisms which can be typed using thepolymerase chain reaction. The American Journal of Human Genetics,1989,44(3):388-396
    131. Mayer K.F., Waugh R., Brown J.W., et al. A physical, genetic and functional sequence assembly ofthe barley genome. Nature,2012,491(7426):711-716
    132. McCouch S.R., Kochert G., Yu Z.H., Wang Z.Y., Khush G.S., Coffman W.R., Tanksley S.D.Molecular mapping of rice chromosomes. Theoretical and Applied Genetics,1988,76:815-829
    133. McCouch S.R., Teytelman L., Xu Y., et al. Development and mapping of2240new SSR markersfor rice (Oryza sativa L.). DNA Research,2002,9(6):199-207
    134. Mewan K.M., Saha M.C., Konstantin C., et al. Construction of a genomic and EST-SSRbased saturated genetic linkage map of tea (Camellia sinensis L.). Proceedings of the3rdInternational Conference on O-Cha (tea) Culture and Science (ICOS),2007
    135. Michelmore R.W., Paran I., Kesseli R.V. Identification of markers linked to disease-resistancegenes by bulked segregant analysis: a rapid method to detect markers in specific genomic regionsby using segregating populations. Proceedings of the National Academy of Sciences USA,1991,88(21):9828–9832
    136. Miura K., Ashikari M., Matsuoka M. The role of QTLs in the breeding of high-yielding rice.Trends in Plant Science,2011,16(6):319-326
    137. Moon J., Hake S. How a leaf gets its shape. Current Opinion in Plant Biology,2011,14:24-30
    138. Muchero W., Diop N.N., Bhat P.R., Fenton R.D., Wanamaker S., Pottorff M., Hearne S., Cisse N.,Fatokun C., Ehlers J.D., Roberts P.A., Close T.J. A consensus genetic map of cowpea [Vignaunguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proceedings of the NationalAcademy of Sciences USA,2009,106(43):18159-18164
    139. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification ofDNA in vitro: the polymorase chain reaction. Cold Spring Harbor Symposia on QuantitativeBiology,1986,51(1):263-273
    140. Nakamura Y., Leppert M., O'Connell P., et al. Variable number of tandem repeat (VNTR) markersfor human gene mapping. Science,1987,235(4796):1616-1622
    141. Nathanson J.A. Caffeine and related methylxanthines: possible naturally occurring pesticides.Science,1984,226(4671):184-187
    142. Ni S., Yao M.Z., Chen L., Zhao L.P., Wang X.C. Germplasm and breeding research of tea plantbased on DNA marker approaches. Frontiers of Agriculture in China,2008,2(2):200-207
    143. Ota S., Tanaka J. RAPD-based linkage mapping using F1segregating populations derivedfrom crossings between tea cultivar 'Sayamakaori' and strain 'Kana-Ck17'. BreedingResearch,1999,1:16
    144. Panagiotakos D.B., Lionis C., Zeimbekis A., Gelastopoulou K., Papairakleous N., Das U.N.,Polychronopoulos E. Long-term tea intake is associated with reduced prevalence of (type2)diabetes mellitus among elderly people from Mediterranean islands: MEDIS epidemiological study.Yonsei Medical Journal,2009,50(1):31-38
    145. Paterson A.H., Bowers J.E., Bruggmann R., et al. The Sorghum bicolor genome and thediversification of grasses. Nature,2009,457(7229):551-556
    146. Peace C., Bassil N., Main D., Ficklin S., Rosyara U.R., Stegmeir T., Sebolt A., Gilmore B., LawleyC., Mockler T.C., Bryant D.W., Wilhelm L., Iezzoni A. Development and evaluation of agenome-wide6K SNP array for diploid sweet cherry and tetraploid sour cherry.2012, PLoS ONE,7(12): e48305
    147. Pearson C.E., Nichol Edamura K., Cleary J.D. Repeat instability: mechanisms of dynamicmutations. Nature Reviews Genetics,2005,6(10):729-742
    148. Peleg Z., Saranga Y., Suprunova T., Ronin Y., R der M.S., Kilian A., Korol A.B., Fahima T.High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers.Theoretical and Applied Genetics,2008,117(1):103-115
    149. Pfender W.F., Saha M.C., Johnson E.A., Slabaugh M.B. Mapping with RAD (restriction-siteassociated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne.Theoretical and Applied Genetics,2011,122(8):1467-1480
    150. Poland J.A., Brown P.J. Sorrells M.E. Jannink J.L. Development of high-density genetic maps forbarley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE,2012,7(2): e32253
    151. Postlethwait J.H., Johnson S.L., Midson C.N., Talbot W.S., Gates M., Ballinger E.W., Africa D.,Andrews R., Carl T., Eisen J.S. A genetic linkage map for the zebrafish. Science,1994,264(5159):699-703
    152. Ravi M., Chan S.W.L. Haploid plants produced by centromere-mediated genome elimination.Nature,2010,464(25):615-619
    153. Rowe H.C., Renaut S., Guggisberg A. RAD in the realm of next-generation sequencingtechnologies. Molecular Ecology,2011,20,3499-3502
    154. Sachidanandam R., Weissman D., Schmidt S.C., et al. A map of human genome sequence variationcontaining1.42million single nucleotide polymorphisms. Nature,409(6822):928-933
    155. Satagopan J.M., Yandell B.S., Newton M.A., Osborn T.C. A bayesian approach to detectquantitative trait loci using Markov Chain Monte Carlo. Genetics,1996,144:805-816
    156. Schmutz J., Cannon S.B., Schlueter J., et al. Genome sequence of the palaeopolyploid soybean.Nature,2010,463(7278):178-183
    157. Schnable P.S., Ware D., Fulton R.S., et al. The B73maize genome: complexity, diversity, anddynamics. Science,2009,326(5956):1112-1115
    158. Seyfert A.L., Cristescu M.E., Frisse L., Schaack S., Thomas W.K., Lynch M. The rate and spectrumof microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics,2008,178(4):2113-2121
    159. Sharangi A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)-A review.Food Research International,2009,42:529-535
    160. Sharma R.K., Bhardwaj P., Negi R., Mohapatra T., Ahuja P.S. Identification, characterization an dutilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC PlantBiology,2009,9:53
    161. Sharopova N., McMullen M.D., Schultz L., et al. Development and mapping of SSR markers formaize. Plant Molecular Biology,2002,48(5-6):463-481
    162. Sibov S.T., de Souza C.L. Jr, Garcia A.A., Garcia A.F., Silva A.R., Mangolin C.A., Benchimol L.L.,de Souza A.P. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers.1.Map construction and localization of loci showing distorted segregation. Hereditas,2003,139(2):96-106
    163. Soller M., Beckmann J.S. Marker-based mapping of quantitative trait loci using replicatedprogenies. Theoretical and Applied Genetics,1990,80:205-208
    164. Song Q.J., Hyten D.L., Jia G.F., Quigley C.V., Fickus E.W., Nelson R.L., Cregan P.B. Developmentand evaluation of SoySNP50K, a h igh-density genotyping array for Soybean. PLoS ONE,2013,8(1): e54985
    165. Stam P. Construction of integrated genetic linkage maps by means of a new computer package:JoinMap. The Plant Journal,1993,3:739-744
    166. Sturtevant, A. H. The linear arrangement of six sex-linked factors in Drosophila, as shown by theirmode of association. Journal of Experimental Zoology,1913,14:43-59
    167. Sun X.W., Liu D.Y., Zhang X.F., et al. SLAF-seq: an efficient method of large-scale de novo SNPdiscovery and genotyping using high-throughput sequencing. PLoS ONE,2013,8(3): e58700
    168. Syv nen A.C. Accessing genetic variation: genotyping single nucleotide polymorphisms. NatureReviews Genetics,2001,2(12):930-942
    169. Taniguchi F., Fukuoka H., Tanaka J. Expressed sequence tags from organ-specific cDNA librariesof tea (Camellia sinensis) and polymorphisms and transferability of EST-SSRs across Camelliaspecies. Breed Science,2012a,62(2):186-195
    170. Taniguchi F., Furukawa K., Ota-Metoku S., Yamaguchi N., Ujihara T., Kono I., Fukuoka H.,Tanaka J. Construction of a high-density reference linkage map of tea (Camellia sinensis).Breeding Science,2012b,62:263-273
    171. Taniguchi F., Tanaka J., Kono I., et al. Construction of genetic linkage map of tea using SSRmarkers. Proceedings of the3rd International Conference on O-Cha (tea) Culture andScience (ICOS),2007
    172. Tautz D., Trick M., Dover G.A. Cryptic simplicity in DNA is a major source of genetic variation.Nature,322:652-656
    173. Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. Computationaland experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation,transposon associations, and genetic marker potential. Genome Research,2001,11(8):1441-1452
    174. Thornsberry J.M., Goodman M.M., Doebley J., Kresovich S., Nielsen D., Buckler E.S. Dwarf8polymorphisms associate with variation in flowering time. Nature Genetics,2001,28(3):286-289
    175. Van Ooijen J.W., Boer M.P., Jansen R.C., Maliepaard C. MapQTL4.0, software for the calculationof QTL positions of genetic maps. Plant Research International, Wageningen, The Netherlands,2002
    176. Van Ooijen J.W. LOD significance thresholds for QTL analysis in experimental populations ofdiploid species. Heredity,1999,83:613–624
    177. Varshney R.K., Graner A., Sorrells M.E. Genic microsatellite markers in plants: features andapplications. Trends in Biotechnology,2005,23(1):48-55
    178. Varshney R.K., Thiel T., Stein N. In silico analysis on frequency and distribution of microsatellitesin ESTs of some cereal species. Cell Molecular Biology Letter,2002,7(2A):537-546
    179. Verde I., Bassil N., Scalabrin S. et al. Development and evaluation of a9K SNP array for peach byinternationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE,2012,7(4): e35668
    180. Voorrips R.E. MapChart: software for the graphical presentation of linkage maps and QTLs. TheJournal of Heredity,2002,93(1):77-78
    181. Vos P., Hogers R., Bleeker M., et al. AFLP: a new technique for DNA fingerprinting. NucleicAcids Research,1995,23(21):4407-4414
    182. Vuong Q.V., Bowyer M.C., Roach P.D. L-Theanine: properties, synthesis and isolation from tea.Journal of the Science of Food and Agriculture,2011,91:1931-1939
    183. Wang G.L., Paterson A.H. Assessment of DNA pooling strategies for mapping of QTLs.Theoretical and Applied Genetics,1994,88:355-361
    184. Wang H., Zhang Y.M., Li X., Masinde G.L., Mohan S., Baylink D.J., Xu S.Z. Bayesian shrinkageestimation of quantitative trait loci parameters. Genetics,2005,170:465-480
    185. Wang J.K., Wan X.Y., Crossa J., Crouch J., Weng J., Zhai H., Wan J. QTL mapping of grain lengthin rice (Oryza sativa L.) using chromosome segment substitution lines. Genetical Research,2006,88(2):93-104
    186. Wang J.K., Wan X.Y., Li H, Pfeiffer W.H., Crouch J., Wan J. Application of identified QTL-markerassociations in rice quality improvement through a design-breeding approach. Theoretical andApplied Genetics,2007,115(1):87-100
    187. Wang N., Fang L.C., Xin H.P. Wang L., Li S. Construction of a high-density genetic map for grapeusing next generation restriction-site associated DNA sequencing. BMC Plant Biology,2012,12:148
    188. Wang S., Tan Y., Tan X., Zhang Z., Wen J., Kou S. Segregation distortion detected in six rice F2populations generated from reciprocal hybrids at three altitudes. Genetics Research,2009,91(5):345-353
    189. Wei X., Xu J., Guo H., Jiang L., Chen S., Yu C., Zhou Z., Hu P., Zhai H., Wan J. DTH8suppressesflowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology,2010,153(4):1747-1758
    190. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. DNA polymorphisms amplifiedby arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990,18(22):6531-6535
    191. Wu Y.P., Ko P.Y., Lee W.C., Wei F.J., Kuo S.C., Ho S.W., Hour A.L., Hsing Y.I., Lin Y.R.Comparative analyses of linkage maps and segregation distortion of two F2populations derivedfrom japonica crossed with indica rice. Hereditas,2010,147(5):225-236
    192. Xu X., Liu X., Ge S., et al. Resequencing50accessions of cultivated and wild rice yields markersfor identifying agronomically important genes. Nat Biotechnology,2011,30(1):105-111
    193. Xu Y.B., Crouch J.H. Marker-assisted selection in plant breeding: from publications to practice.Crop Science,2008,48(2):391-407
    194. Xue W., Xing Y., Weng X., Zhao Y., Tang W., Wang L., Zhou H., Yu S., Xu C., Li X., Zhang Q.Natural variation in Ghd7is an important regulator of heading date and yield potential in rice.Nature Genetics,2008,40(6):761-767
    195. Yan W.H., Wang P., Chen H.X., Zhou H.J., Li Q.P., Wang C.R., Ding Z.H., Zhang Y.S., Yu.S.B,Xing Y.Z., Zhang Q.F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity,plant height, and heading date in rice. Molecular Plant,2011,4(2):319-330
    196. Yang C.S., Wang X., Lu G., Picinich S.C. Cancer prevention by tea: animal studies, molecularmechanisms and human relevance. Nature Review Cancer,2009,9:429-439
    197. Yang J.B., Yang J., Li H.T., Zhao Y., Yang S.X. Isolation and characterization of15microsatellitemarkers from wild tea plant (Camellia taliensis) using FIASCO method. Conservation Genetics,2009,10:1621-1623
    198. Yao M.Z., Ma C.L., Qiao T.T., Jin J.Q., Chen L. Diversity distribution and population structure oftea germplasms in China revealed by EST-SSR markers. Tree Genetics&Genomes,2012,8:205-220
    199. Yu J., Hu S., Wang J., et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica).Science,2002,296(5565):79-92
    200. Zalapa J.E., Cuevas H., Zhu H., Steffan S., Senalik D., Zeldin E., McCown B., Harbut R., Simon P.Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in theplant sciences. American Journal of Botany,2012,99(2):193-208
    201. Zeng Z.B. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468
    202. Zhang Y.M., Xu S. A penalized maximum likelihood method for estimating epistatic effects ofQTL. Heredity,2005,95:96-104
    203. Zhao B., Deng Q.M., Zhang Q.J., Li J.Q., Ye S.P., Liang Y.S., Peng Y., Li P. Analysis ofsegregation distortion of molecular markers in F2population of rice. Acta Genetica Sinica,2006,33(5):449-457
    204. Zhao L.P., Liu Z., Chen L., Yao M.Z., Wang X.C. Generation and characterization of24novel ESTderived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in itsclosely related species and varieties. Conservation Genetics,2008,9:1327-1331
    205. Zietkiewicz E., Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,20(2):176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700