用户名: 密码: 验证码:
坛紫菜响应失水胁迫的转录组和表达谱特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坛紫菜是我国特有的海洋经济作物,主要在我国的南方海域被大面积栽培,占据我国栽培紫菜总产量的75%。坛紫菜也是研究潮间带藻类生理生态以及逆境胁迫适应机制的代表性模式物种。但是,目前对坛紫菜的研究仍然比较有限,其全基因组信息不够全面,对于其适应潮间带逆境的分子机制也缺乏系统深入的调查。
     本研究利用Illumina高通量测序技术开展了坛紫菜转录组测序以及失水/复水胁迫条件的表达谱特征分析,同时也利用454测序结合Sanger测序方法获得了完整的质体基因组序列。通过全面、系统地了解坛紫菜转录组特性,并深入探索坛紫菜响应失水/复水胁迫环境的分子机制,为了解坛紫菜适应潮间带失水胁迫环境的机制提供新认识,也为未来抗逆育种工作提供新参考。
     主要结果如下:
     (1)利用Illumina高通量测序技术对不同发育时期和不同胁迫处理的坛紫菜混合RNA样品进行转录组测序,共获得47,764,168条干净的短读长序列,碱基总量约为4.5G,拼接后得到28,536条平均长度为584bp的Unigenes。通过与多种数据库进行比对注释,发现坛紫菜转录组中包含大量响应失水胁迫、温度胁迫、光胁迫、营养盐缺乏等逆境胁迫以及抗氧化系统等相关功能基因,也发现许多发育过程相关功能基因。并且首次在红藻中发现Group1类型的晚期胚胎发育富集蛋白(LEA)同源序列,以及红藻中未曾报道过的矾依赖的卤过氧化物酶(vHPO)基因的同源序列。通过KEGG代谢途径分析,发现了坛紫菜中包含284条代谢途径,其中包括与逆境胁迫相关的细胞凋亡途径和MAPK信号途径(包含哺乳动物JNK和p38类型MAPK途径和酵母MAPK途径相关的许多酶类基因)。与数据库比对之后,仍然有10,378条Unigenes(36.4%)没有找到同源序列,说明可能存在大量功能未知的新基因。
     (2)为了研究坛紫菜响应失水胁迫环境的表达谱特征,将坛紫菜配子体在不同失水率和复水胁迫条件处理的8个样品分别建库和Illumina测序(每个处理组设置两个生物学重复),每个处理组样品获得11.83M-15.04M干净的短读长序列,且与坛紫菜转录组比对(map)上的短读长序列数占短读长序列总数的96.78%-97.74%。每个处理组内生物学重复之间表达水平相关性较高(R∧2为0.916~0.941)。通过分析中度失水胁迫条件下基因表达的总体模式(与对照组相比),发现1681个基因显著差异表达。首次发现多种新基序类型的MAPK,其中新的TQA基序类型MAPK参与响应失水胁迫的信号转导过程。10个分子伴侣/共陪伴蛋白基因(包括HSP90和HSP70家族成员、HSP70共陪伴蛋白)在中度失水胁迫下上调表达,而Hsp33和HSP60家族成员呈组成性表达。同时,抗氧化系统中的过氧化物氧化还原酶和Fe-SOD呈现组成性表达来清除活性氧;蛋白质二硫化异构酶上调表达来参与修复中度失水胁迫下的氧化性损伤。细胞凋亡诱导过程也参与到耐受中度失水胁迫,而且线粒体在坛紫菜细胞凋亡诱导过程中起中心调节作用。与中度失水相比,在重度失水胁迫条件下仅18个基因显著差异表达,表明两个处理组之间基因表达模式比较相似。与重度失水胁迫相比,在复水过程中有1199个基因显著差异表达,其中1个参与细胞凋亡诱导的Caspases激活物和HSP70的共陪伴蛋白均显著下调表达,而抗氧化系统中硫氧还蛋白通过上调表达来修复复水过程中的氧化性损伤。
     (3)利用454测序结合Sanger测序技术获得坛紫菜和条斑紫菜完整的质体基因组序列。这两种紫菜的环形质体基因组大小分别为195,597bp和191,975bp,是目前已测序的红色支系中最大的质体基因组。这两个基因组的基因内容相似,包含211-213个蛋白质编码基因、37个tRNA基因和6个rRNA基因,显示了红色支系中最大的编码容量。每个基因组中有14个蛋白质基因重叠,且所有基因均没有内含子,揭示了高度紧凑的质体基因组。Pyropia属的质体基因组保留了古老的基因内容和保守的基因簇,也包含了几乎完整的一套已知光合真核生物的质体基因集。基于整个质体基因组序列的相似性分析显示坛紫菜与条斑紫菜间的遗传距离(0.146)小于Porphyra purpurea与坛紫菜的距离(0.250)以及与条斑紫菜的距离(0.251)。这个结果支持了将坛紫菜和条斑紫菜划分到新属Pyropia中,而保留P. purpure在Porphyra属中的分类修订。系统发生分析显示虽然多细胞红藻与chromists的系统发生关系没有完全解决,但是支持红毛菜纲和真红藻纲之间以及Pyropia和Porphyra之间的姐妹关系。通过结合转录组和表达谱的结果发现核编码的Sigma因子和镁螯合酶活性变化介导了响应失水胁迫下核基因和质体基因的协调表达。
Pyropia haitanensis is an economically important marine crop, which has beencultivated widely along the coasts of South China, accounting for75%of the totaloutput of cultivated Pyropia in China. P. haitanensis is also considered to be researchmodels for studying physiological ecology and the molecular mechanisms for stresstolerance of intertidal seaweed communities. However, for P. haitanensis, limitedstudies have been conducted. So far, the genomic information on Pyropiaremains incomplete, and systematic molecular investigations of the mechanisms foracclimation to intertidal stress environment are very lacking at present.
     Using Illumna high-throughout sequencing technology, the transcriptome andexpression profiles of P. haitanensis were sequenced and analyzed. And using454and Sanger sequencing technology, the complete plastid genomes of P. hatanensis andP. yezoensis were fully sequenced. Comprehensive and systematic study oftranscriptomic characteristics and deep exploration of molecular mechanism forresponse to the dehydration/rehydration stress environment will not only provide newunderstanding of the mechanisms for response to intertidal desiccation stressenvironment, but also provide new reference for stress-resistance breeding in future.
     The major findings are as follows:
     The global transcriptome of P. haitanensis was sequenced using Illuminahigh-throughput sequencing technology. A total of47,764,168clean reads (4.5Gbclean bases) were generated from the cDNA library constructed for a RNA mixture ofP. hatanensis at different development stages and under different stress treatments.These clean reads were assembled into28,536unigenes with a mean length of584bp.Based on sequence similarity searches with known proteins, a large number of genesrelated to stress response were found, including genes related to desiccation stress,temperature stress, light stress, starvation, antioxidant system and other genes relatedto stress processes, and of which group1type LEA and vanadium-dependent haloperoxidase (vHPO) homologous sequences were firstly reported. And Manygenes related to developmental process were also found in P. hatanensis. Searchingagainst the KEGG database indicated that there existed284KEGG pathways intranscriptome of P. hatanensis, including apoptosis pathway and MAPK signalingpathways related to stress environment. The MAPK signaling pathways contain manygenes involved in mammalian JNK and p38type MAPK pathway and yeast MAPKpathway. After annotation, there are still10,378unigenes unannotated (36.4%),indicating that there may be a lot of novel genes with unknown function.
     In order to study the expression profile characteristics in response to desiccationstress environment in P. hatanensis, the cDNA library was constructed for eightsamples from the different dehydration and rehydration stress treatments and thensequenced by Illumina sequencing technology (two biological replicates for eachtreatment). A total of11.83M-15.04M clean reads were abtained for each sample.Moreover, the number of reads mapped to transcriptome is96.78%-97.74%of thetotal reads number. Within each treatment, correlation of gene expression levelsbetween two biological replicates was high (R∧2=0.916-0.941). By analysis of theoverall pattern of gene expression during moderate dehydration (compared with thecontrol group), a total of1681differentially expressed genes were identified. Avariety of new motif type MAPKs were firstly found, and of which the new TQAmotif type MAPK was involved in signal transduction pathway in response to thedehydration stress. A total of10molecular chaperones genes (including the membersof HSP90superfamily, HSP70superfamily and cochaperone proteins of HSP70) weresignificantly up-regulated in response to the moderate dehydration stress,whereas themembers of HSP60superfamily and the Hsp33were expressed constitutively.Additionally, peroxiredoxin and Fe-SOD were expressed constitutively to removereactive oxygen species, the protein disulfide-isomerase genes in antioxidant systemwere up-regulated and involved in repair of oxidative damage during moderatedehydration stress. And the induction of apoptosis was involved in tolerance tomoderate dehydration stress, and in which the mitochondria played a centralregulatory role. Compared with moderate dehydration stress treatment, only18differentially expressed genes were identified during the severe dehydration stresstreatment, indicating that the gene expression patterns were quite similar between thetwo stress treatment groups. Compared with severe dehydration stress treatment,1199 differentially expressed genes were identified during the rehydration stress treatment,and of which one activator of caspases involved in induction of apoptosis andcochaperone proteins of HSP70significantly downregulated, the thioredoxin inantioxidant system upregulated and was involved in repair of oxidative damage duringrehydration stress.
     The complete plastid genomes of P. hatanensis (195,597bp) and P. yezoensis(191,975bp) were fully sequenced using454high-throughout sequencing togetherwith Sanger sequencing, the largest of all the plastid genomes of the red lineagesequenced to date. Organization and gene contents of the two plastids were similar,with211-213protein-coding genes,37tRNA genes, and6ribosomal RNA genes,suggesting a largest coding capacity in the red lineage. In each genome,14proteingenes overlapped and no interrupted genes were found, indicating a high degree ofgenomic condensation. Pyropia maintains an ancient gene content and conserved geneclusters in their plastid genomes, containing nearly complete repertoires of the plastidgenes known in photosynthetic eukaryotes. Similarity analysis based on the wholeplastid genome sequences showed the distance between P. haitanensis and P.yezoensis (0.146) was much smaller than that of Porphyra purpurea and P.haitanensis (0.250), and P. yezoensis (0.251); this supports re-grouping the twospecies in a resurrected genus Pyropia while maintaining P. purpurea in genusPorphyra. Phylogenetic analysis supports a sister relationship betweenBangiophyceae and Florideophyceae, though precise phylogenetic relationshipsbetween multicellular red alage and chromists were not fully resolved. Combiningwith transcriptome and expression profiling results, coordination of plastid andnuclear gene expression was found to be mainly mediated by nuclear-encoded sigmafactors and activity of Mg-chelatase in response to dehydration stress.
引文
[1] Schneider CW, Wynne MJ. A synoptic review of the classification of red algal genera a halfcentury after Kylin's “Die Gattungen der Rhodophyceen”. Botanica Marina,2007,50:197-249.
    [2] Brodie J and Zuccarello GC. Systematics of the species-rich algae: red algal classifcation,phylogeny and speciation, In: T.R. Hodkinson, J. Parnell and S. Waldren (eds.)Towards the Tree of Life: Taxonomy and Systematics of Species-Rich Taxa.Systematic Association Series, CRC Press, Boca Raton, FL,2006,317–330.
    [3] Wiencke C, Clayton M. The life history of Porphyra endiviifolium from the South ShetlandIslands, Antarctica. Polar biology,1998,19:257-263.
    [4]张祐基.紫菜养殖.北京:农业出版社,1988,1-50.
    [5] Yoshida, T. The history and future prospects of systematics of Bangiaceae, Rhodophyta.Nat Hist Res,1997, Special Issue3:1-4
    [6] Kurogi M. Systematics of Porphyra in Japan, In: I.A. Abbott and M. Kurogi (eds.)Contributions to the Systematics of Benthic Marine Algae of the North Pacifc.Japanese Society of Phycology, Japan,1972,167-185.
    [7] Nelson WA, Broom JE, Farr TJ. Four new species of Porphyra (Bangiales, Rhodophyta)from the New Zealand region described using traditional characters and18S rDNAsequence data. Cryptogamie Algologie,2001,22:263-284.
    [8] Zuo Z, Wang C, Cao X, Su Y, Liao L, et al. Isolation and characterization of microsatelliteloci from a commercial cultivar of Porphyra haitanensis. Molecular Ecology Notes,2006,7:522-524.
    [9] Nelson W, Brodie J, Guiry M. Terminology used to describe reproduction and life historystages in the genus Porphyra (Bangiales, Rhodophyta). J Appl Phycol,1999,11:407-410.
    [10] Drew KM. Conchocelis-phase in the life history of Porphyra umbilicales (L.) Kütz. Nature,1949,164:748–749.
    [11] Abe S, Kurashima A, Yokohama Y and Tanaka J. The cellular ability of desiccationtolerance in Japanese intertidal seaweeds. Bot Mar,2001,44:125–131.
    [12] Katz S, Kizner Z, Dubinsky Z, Friedlander M. Responses of Porphyra linearis (Rhodophyta)to environmental factors under controlled culture conditions. J Appl Phycol,2000,12:535-542.
    [13] Yamamoto M., Watanabe Y and Kinoshita H. Effects of water temperature on the growth ofred alga Porphyra yezoensis form narawaensis (nori) cultivated in an outdoor racewaytank. Nippon Suisan gakkaishi,1991,57:2211–2222.
    [14] Herbert SK. Photoinhibition Resistance in the Red Alga Porphyra perforata The Role ofPhotoinhibition Repair. Plant physiology,1990,92:514-519.
    [15] Duarte P, Ferreira J. Seasonal adaptation and short-term metabolic responses of Gelidiumsesquipedale to varying light and temperature. Marine ecology progress seriesOldendorf,1995,121:289-300.
    [16] Talarico L, Maranzana G. Light and adaptive responses in red macroalgae: an overview.Journal of Photochemistry and Photobiology B: Biology,2000,56:1-11.
    [17] Algarra P, de la Vi a G and Niell J. Effects of light quality and irradiance level onshort-term pigment response of the red alga Corallina elongata. Mar Ecol Prog Ser,1991,74:27-32.
    [18] Figueroa FL, Aguilera G and Jimenez C. Growth pigments synthesis and nitrogenassimilation in the red alga Porphyra sp.(Bangiales, Rodophyta) under blue and redlight. Sci Mar,1995,59:9-20.
    [19] Merrill JE, Mimuro M, Aruga Y and Fujita Y. Light harvesting of photosynthesis in fourstrains of red algae Porphyra yezoensis having different phycobilin content. PlantCell Physiol,1983,24:261–266.
    [20] Levitt G, Bolton J. Seasonal patterns of photosynthesis and physiological parameters andthe effects of emersion in littoral seaweeds. Botanica Marina,1991,34:403-410.
    [21] Figueroa FL, Ruiz R, Saez E, Lucena J and Niell FX. Spectral light attenuation andphytoplankton distribution during a daily cycle in the reservoir of La Concepcion,Southern Spain. Arch Hydrobiol,1997,140:71–90.
    [22] Markager S. Light absorption and quantum yield for growth in fve species of marinemacroalgae. J Phycol,1993,29:54-63.
    [23] Israel A, Levy I and Friedlander M. Experimental tank cultivation of Porphyra in Israel. JAppl Phycol,2006,18:235-240.
    [24] Kraemer GP, Carmona R, Chopin T, Neefus C, Tang XR, et al. Evaluation of thebioremediatory potential of several species of the red alga Porphyra using short-termmeasurements of nitrogen uptake as a rapid bioassay. J Appl Phycol,2004,16:489–497.
    [25] Carmona R, Kraemer G, Yarish C. Exploring Northeast American and Asian species ofPorphyra for use in an integrated finfish–algal aquaculture system. Aquaculture,2006,252:54-65.
    [26] Blouin N, Xiugeng F, Peng J, Yarish C, Brawley SH. Seeding nets with neutral spores of thered alga Porphyra umbilicalis (L.) Kützing for use in integrated multi-trophicaquaculture (IMTA). Aquaculture,2007,270:77-91.
    [27]周慧萍,陈琼华.紫菜多糖抗衰老作用的实验研究.中国药科大学学报,1989,20:231-234.
    [28]周慧萍,陈琼华.紫菜多糖的抗凝血和降血脂作用.中国药科大学学报,1990,21:358-360.
    [29]杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望.青岛海洋大学学报,2003,33:53-57.
    [30]汤晓荣,姜红霞.紫菜属生活史和繁殖方式多样性的研究进展.中国海洋大学学报,2005,35:571-574.
    [31]汤晓荣,潘光华,许东海.紫菜分子遗传学研究进展.中国海洋大学学报,2006,36:687-692.
    [32]刘静雯,董双林,马姓.温度和盐度对几种大型海藻生长率和NH4-N吸收的影响.海洋学报,2001,23(2):109-116.
    [33] Li WQ, Li Q, Liao QB, Chen QH. Effect of temperature on the fatty acid composition offour species of marine microalgae. Marine Science Bulletin,2003,5(1):40-44.
    [34] Sies H. Strategies of antioxidant defense. European Journal of Biochemistry,1993,215:213-219.
    [35] Sasaki S, Kobayashi T, Kumagai S, Hiyama T. Enhancement of human fibroblast growthand other dermatological effects induced by cell extract from heat-shocked blue greenalga (Cyanobacteria). Journal of Society Cosmetic Chemists Japan,2004,38(1):34-38.
    [36]王悠,唐学玺.不同海带品系抗氧化系统活性与耐热性的相关性研究.应用生态学报,2005,16(8):1507-1510.
    [37]张元,谢潮添,陈昌生等.高温胁迫下坛紫菜叶状体的生理响应.水产学报,2011,35:379-386.
    [38] Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between afamily of heat shock factors, molecular chaperones, and negative regulators. GenesDevelopment,1998,12:3788-3796.
    [39]陈忠,苏维埃,汤章城.植物热激蛋白.植物生理学通讯,2000,36(4):289-296.
    [40] Schuster G, Even D, Kloppstech K, et al. Evidence for protection by heat-shock proteinsagainst photoinhibition during heat-shock. EMBO Journal,1988,7:126.
    [41] Nitta K, Suzuki N, Honma D, et al. Ultrastructural stability under high temperature orintensive light stress conferred by a small heat shock protein in Cyanobacteria. FEBSLetters,2005,579:1235-1242.
    [42] Choi S, Hwang MS, Im S, Kim N, Jeong W-J. Transcriptome sequencing and comparativeanalysis of the gametophyte thalli of Pyropia tenera under normal and hightemperature conditions. J Appl Phycol,2012, DOI10.1007/s10811-012-9921-2.
    [43] Jiménez C, Berl T, Rivard CJ, et al. Phosphorylation of MAP Kinase-Like Proteins mediatethe response of the halotolerant alga Dunaliella viridis to hypertonic shock. Biochimicaet Biophysica Acta (BBA)-Molecular Cell Research,2004,1644:61-69.
    [44] Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N. Singlet oxygeninhibits the repair of photosystem II by suppressing the translation elongation of the D1protein in Synechocystis sp. PCC6803. Biochemistry,2004,43:11321–11330.
    [45] Funk C, Vermaas W. A cyanobacterial gene family coding for single-helix proteinsresembling part of the light-harvesting proteins from higher plants. Biochemistry,1999,38:9397–9404.
    [46] Teramoto H, Itoh T, Ono TA. High-intensity-light-dependent and transient expression ofnew genes encoding distant relatives of light-harvesting chlorophyll-a/b proteins inChlamydomonas reinhardtii. Plant Cell Physiol,2004,45:1221–1232.
    [47] Kong FN, Mao YX, Yang H, Wang L, Liu LM. Cloning and characterization of the HLIPgene encoding high light-inducible protein from Porphyra yezoensis. J Appl Phycol,2012,24:685–692.
    [48] Sinha RP, Singh SP, H der DP. Database on mycosporines and mycosporine-like aminoacids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J.Photochem Photobiol B,2007,80:29–35.
    [49] J Levitt. Responses of plants to environmental stresses. water, radiation, salt and otherstresses, vol.2, Academic Press, New York,1980.
    [50] Bohnert HJ, Nelson DJ, Jensen RG.. Adaptations to environmental stresses. Plant Cell,1995,7:1099–1111.
    [51] Bartels D. Desiccation tolerance studied in the resurrection plant Craterostigmaplantagineum. Integr Comp Biol,2005,45:696–701.
    [52] Alpert P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare?J Exp Biol,2006,209:1575–1584.
    [53] Farrant JM. Mechanisms of desiccation tolerance in angiosperm resurrection plants, in: A.Jenks, A.J. Wood (Eds.), Plant Desiccation Tolerance, CAB International Press,2007,51–90.
    [54] Gaff DF. Desiccation-tolerant plants in southern Africa, Science,1971,174:1033–1034.
    [55] Oliver MJ. Desiccation tolerance in vegetative plant cells. Physiol Plant,1996,97:779–787.
    [56] Alpert P. The discovery, scope and puzzle of desiccation-tolerance in plants, Plant Ecol.151(2000)5–17.
    [57]杨洪强,接玉玲.植物MAPK及其在病原信号传递中的作用.植物病理学报,2003,33(1):8-13.
    [58]杨洪强,梁小娥.蛋白激酶与植物抗逆信号转导.植物生理学通讯,2001,37(3):185-191.
    [59] Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, at al. Mitogen-activated protein kinasecascades in plants: a new nomenclature. Trends Plant Sci,2002,7:301–308.
    [60] Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C. Different protein kinase familiesare activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvementof the MAP kinases AtMPK3and AtMPK6. FEBS Lett,2002,527:43–50.
    [61] Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses rapidlyactivate Arabidopsis MAP kinases ATMPK4and ATMPK6. Plant J,2000,24:655–665.
    [62] Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, et al. The Chlamydomonasgenome reveals the evolution of key animal and plant functions. Science,2007,318,245–250.
    [63] Berman SA, Wilson NF, Haas NA, Lefebvre PA. A novel MAP kinase regulates flagellarlength in Chlamydomonas. Curr Biol,2003,13:1145–1149.
    [64] Lei G, Qiao D, Bai L, Xu H, Cao Y. Isolation and characterization of a mitogen-activatedprotein kinase gene in the halotolerant alga Dunaliella salina. J Appl Phycol,2008,20:13–17.
    [65]崔菁菁.条斑紫菜基因组Fosmid文库构建以及MAPK基因克隆与表达分析.[硕士学位论文].山东青岛:中国海洋大学,2008.
    [66] M ller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components inplants. Annu Rev Plant Biol,2007,58:459-481.
    [67] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002,7:405–410.
    [68] Pandey V, Ranjan S, Deeba F, Pandey AK, Singh R, et al. Desiccation-inducedphysiological and biochemical changes in resurrection plant, Selaginella bryopteris. JPlant Physiol,2010,167:1351–1359.
    [69] Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW. Revival of a resurrection plantcorrelates with its antioxidant status. Plant J,2002,31:13–24.
    [70] Veljovic-Jovanovic S, Kukavica B, Stevanovic B, Navari-Izzo F. Senescence-anddrought-related changes in peroxidase and superoxide dismutase isoforms in leaves ofRamonda serbica. J Exp Bot,2006,57:1759–1768.
    [71] Tripathi SN, Srivastava P. Presence of stable active oxygen scavenging enzymes superoxidedismutase, ascorbate peroxidase and catalase in a desiccation-tolerant cyanobacteriumLyngbya arboricola under dry state.Current Science,2001,81(2):197-200.
    [72]邵林.条斑紫菜质外体锰超氧化物歧化酶的基因表达分析.[硕士学位论文].山东青岛:中国海洋大学,2008.
    [73] Yang H, Mao YX, Kong FN, Yang GP, Ma F, et al. Profiling of the transcriptome ofPorphyra yezoensis with Solexa sequencing technology. Chinese Science Bulletin,2011,56(20):2119-2130.
    [74] Sales K, Brandt W, Rumbak E, Lindsey G. The LEA-like protein HSP12in Saccharomycescerevisiae has a plasma membrane location and protects membranes againstdesiccation and ethanol-induced stress. Biochim Biophys Acta Biomembr,2000,1463:267-278.
    [75] Jonsson KI, Schill RO. Induction of Hsp70by desiccation, ionizing radiation andheat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol BBiochem Mol Biol,2007,146:456-460.
    [76] Cho EK, Choi YJ. A nuclear-localized HSP70confers thermoprotective activity anddrought-stress tolerance on plants. Biotechnol Lett2009,31:597-606.
    [77] Hu XL, Liu RX, Li YH, Wang W, Tai FJ, et al. Heat shock protein70regulates theabscisic acid-induced antioxidant response of maize to combined drought and heatstress. Plant Growth Regulation,2010,60:225-235.
    [78] Pearson G, Hoarau G, Lago-Leston A, Coyer JA, Kube M, et al. An expressed sequence taganalysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.)(Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotechnol,2010,12:195–213.
    [79] Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW. Cyclophilin: aspecific cytosolic binding protein for cyclosporin A. Science,1984,226:544–547.
    [80] He Z, Li L, Luan S. Immunophilins and parvulins. Superfamily of peptidyl prolylisomerases in Arabidopsis. Plant Physiol,2004,134:1248–1267.
    [81] Romano PGN, Horton P, Gray JE. The Arabidopsis cyclophilin gene family. Plant Physiol,2004,134:1268–1282.
    [82] Ahn JC, Kim DW, You YN, Seok MS, Park JM, et al. Classification of rice (Oryza sativa l.Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns underwater stress. BMC Plant Biol,2010,10:253–275.
    [83] Vallon O. Chlamydomonas immunophilins and parvulins: survey and critical assessmentof gene models. Eukaryot Cell,2005,4:230-241.
    [84] Lee JR, Park SC, Kim JY, Lee SS, Park Y, et al. Molecular and functional characterizationof a cyclophilin with antifungal activity from Chinese cabbage. Biochem Biophys ResCommun,2007,353:672–678.
    [85] Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, et al. A cyclophilin links redoxand light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc NatlAcad Sci USA,2008,105:16386–16391.
    [86] Jia ZJ, Niu JF, Huan L, Wu XJ, Wang GC, et al. Cyclophilin participates in responding tostress situations in Porphyra haitanensis (bangiales, rhodophyta). J Phycol,2012, DOI:10.1111/j.1529-8817.2012.01234.x.
    [87] Llorca O, Martín-Benito J, Ritco-Vonsovici M, et al. Eukaryotic chaperonin CCTstabilizes actin and tubulin folding intermediates in open quasi-native conformations.EMBO J,2000,19:5971-5979.
    [88] Tyson T, Zamora GO, Wong S, Skelton M, Daly B, et al. A molecular analysis ofdesiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimussuperbus using expressed sequenced tags. BMC Research Notes,2012,5:68.
    [89] Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev Physiol,1992,54:579–599.
    [90] Wise MJ, Tunnacliffe A. POPP the question: what do LEA proteins do? Trends Plant Sci,2004,9:1360–1385.
    [91] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress.Curr Opin. Biotechnol,1996,7:161–167.
    [92] Alpert P, Oliver MJ. Drying without dying, in: Black M, Prichard HW (Eds), Desiccationand survival in plants, CAB International Wallingford, UK,2002,3-43.
    [93] Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR. The rehydration transcriptomeof the desiccation-tolerant bryophyte Tortula ruralis: transcript classification andanalysis, BMC Genomics,2004,5:89–107.
    [94] Reynolds TL, Bewley JD. Characterization of protein synthetic changes in adesiccation-tolerant fern, Polypodium virginianum: comparison of the effects of drying,rehydration and abscisic acid. J Exp Bot,1993,44:921–928.
    [95] Tanaka S, Ikeda K, Miyasaka H. Isolation of a new member of group3late embryogenesisabundant protein gene from a halotolerant green alga by a functional expressionscreening with cyanobacterial cells. FEMS Microbiol Lett.2004,236:41-45.
    [96] Stacy RAP, Aalen RB. Identification of sequence homology between the internalhydrophilic repeated motifs of group1late-embryogenesis abundant proteins inplants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis,Planta,1998,206:476–478.
    [97] Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA. Highlyhydrophilic proteins in prokaryotes and eukaryotes are common during conditions ofwater deficit, J Biol Chem,2000,275:5668–5674.
    [98] Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, et al. Dehydration-specificinduction of hydrophilic protein genes in the anhydro-biotic nematode Aphelenchusavenae, Eukaryote Cell,2004,3:966–975.
    [99] Abba S, Ghignone S, Bonfante P. A dehydration-inducible gene in the truffle Tuberborchii identifies a novel group of dehydrins, BMC Genomics,2006,7:39–53.
    [100] Hundertmark M and Hincha DK. LEA (Late Embryogenesis Abundant) proteins and theirencoding genes in Arabidopsis thaliana. BMC Genomics,2008,9:118.
    [101] Meyer G, Kloppstech K. A rapidly light-induced chloroplast protein with a highturnover coded for by pea nuclear DNA. Eur J Biochem,1984,138:201–207.
    [102] Adamska I, Kloppstech K. Low temperature increases the abundance ofmoderate light-inducible transcript under light stress conditions. J BiolChem,1994,269:30221–30226.
    [103] Piatkowski D, Schneider K, Salamini F, Bartels D. Characterization of five abscisicacid-responsive cDNA clones isolated from the desiccation-tolerant plantCraterostigma plantagineum and their relationship to other water-stress genes. PlantPhysiol,1990,94:1682–1688.
    [104] Collén J, Guisle-Marsollier I, Léger JJ, Boyen C. Response of the transcriptome of theintertidal red seaweed Chondrus crispus to controlled and natural stresses. NewPhytologist,2007,176:45–55.
    [105] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. AnnuRev Plant Physiol Plant Mol Biol,1996,47:377–403.
    [106] Liu MS, Chien CT, Lin TP. Constitutive components and induced gene expression areinvolved in the desiccation tolerance of Selaginella tamariscina. Plant Cell Physiol,2008,49:653–663.
    [107] Smirnoff N. The carbohydrates of bryophytes in relation to desiccation tolerance. J Bryol,1992,17:185–191.
    [108] Peters S, Mundree SG., Thomson JA, Farrant JM, Keller F. Protection mechanisms in theresurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose familyoligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot,2007,58:1947–1956.
    [109] Wang GL, Zhao G, Feng YB, Xuan JS, Sun JW, et al. Cloning and comparative studies ofseaweed trehalose-6-phosphate synthase genes. Mar Drugs,2010,8:2065-2079.
    [110] Romero C, Bellés JM., Vayá JL, Serrano R, Culiá ez-Macià FA. Expression of the yeasttrehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropicphenotypes include drought tolerance. Planta,1997,201:293-297.
    [111] Earnshaw WC. Apoptosis: Lessons from in systerms. Trends Cell Biol,1995,5:217-220.
    [112]史刚荣.环境胁迫下的植物细胞程序性死亡及其意义.生物学通报,2003,38(5):3-4.
    [113]樊明寿,张福锁.植物通气组织的形成过程和生理生态学意义.植物生理学通讯,2001,38(6):615~618.
    [114] Katsuhara M. Cell death and growth recovery of barley after transient salt stress. J PlantRes,2000,113:239-243.
    [115] Koukalova B, Kovarik A, FajkusJ, et al. Chromatin fragmentation associated withapoptotic changes in tobacco cells exposed to cold stress.FEBS Lett,1997,414:289-292.
    [116]樊明寿,张福锁.低磷胁迫条件下植物根内通气组织的形成.自然科学进展,2003,13:190-193.
    [117] Patricia RSB, Marcelo M, Renato AJ. Aluminum-induced oxidative stress in maize.Phytochem,2003,62:181-189.
    [118] Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abioticstress responses. Trends Plant Sci,2007,12:301–309.
    [119] Vicre M, Farrant JM, Driouich A. Insights into the mechanisms of desiccation toleranceamong resurrection plants. Plant Cell Environ,2004,27:1329–1340.
    [120] Reyes-Prieto A, Weber APM, Bhattacharya D. The origin and establishment of the plastidin algae and plants. Annu Rev Genet,2007,41:147-168.
    [121] Bhattacharya D, Medlin L. The phylogeny of plastids: a review based on comparisons ofsmall-subunit ribosomal RNA coding regions. J Phycol,2006,31:489-498.
    [122] Martin W. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc.Natl. Acad. Sci. U S A,2003,100:8612–8614.
    [123] Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organellegenomes forge eukaryotic chromosomes. Nat Rev Genet,2004,5:123–135.
    [124] Goldschmidt-Clermont M. Coordination of nuclear and chloroplast gene expression inplant cells. Int Rev Cytol,1998,177:115–180.
    [125] Sugita M, Sugiura M. Regulation of gene expression in chloroplasts of higher plants. PlantMol Biol,1996,32:315–326.
    [126] Minoda A, Nagasawa K, Hanaoka M, Horiuchi M, Takahashi H, et al. Microarray proflingof plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae. PlantMol Biol,2005,59:375–385.
    [127] Mochizuki T, Onda Y, Fujiwara E, Wada M, Toyoshima Y. Two independent light signalscooperate in the activation of the plastid psbD blue light-responsive promoter inArabidopsis. FEBS Lett,2004,571:26–30.
    [128] Nagashima A, Hanaoka M, Shikanai T, Fujiwara M, Kanamaru K, et al. Themultiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbDblue light-responsive promoter (LRP) in Arabidopsis thaliana. Plant Cell Physiol,2004b,45:357–368.
    [129] Tsunoyama Y, Ishizaki Y, Morikawa K, Kobori M, Nakahira Y, et al. Blue light-inducedtranscription of plastid-encoded psbD gene is mediated by a nuclear encodedtranscription initiation factor, AtSig5. Proc Natl Acad Sci U S A,2004,101:3304–3309.
    [130] Susek RE, Ausubel FG, Chory J. Signal transduction mutants of Arabidopsis uncouplenuclear CAB and RBCS gene expression from chloroplast development. Cell,1993,74:787–799.
    [131] Larkin RM, Alonso JM, Ecker JR, Chory J. GUN4, a regulator of chlorophyll synthesisand intracellular signaling. Science,2003,299:902–906.
    [132] Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, et al. Signals fromchloroplasts converge to regulate nuclear gene expression. Science,2007,316:715–719.
    [133] Liu M, Qiao G, Jiang J, Yang H, Xie L, et al. Transcriptome sequencing and de novoanalysis for Ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform.PLoS ONE,2012,7(10): e46766.
    [134] Du H, Bao Z, Hou R, Wang S, Su H, et al. Transcriptome sequencing andcharacterization for the sea cucumber Apostichopus japonicus (Selenka,1867). PLoSONE,2012,7(3): e33311.
    [135] Ogata N, Yokoyama T, Iwabuchi K. Transcriptome responses of insect fat body cells totissue culture environment. PLoS ONE,2012,7(4): e34940.
    [136] Wang L, Yu X, Wang H, Lu Y, Ruiter MD, et al. A novel class of heat-responsive smallRNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMCGenomics,2011,12:289.
    [137] Chan CX, Z uner S, Wheeler G, Grossman AR, Prochnik SE, et al. Analysis of Porphyramembrane transporters demonstrates gene transfer among photosynthetic eukaryotesand numerous sodium-coupled transport systems. Plant Physiol,2012,158:2001-2012.
    [138] Yarish C and Pereira R. Mass production of marine macroalgae, In S.E. J rgensen and B.D.Fath (eds.) Ecological Engineering. Vol.3. Encyclopedia of Ecology. Elsevier, Oxford,2008,2236–2247.
    [139]张学成,马家海,秦松,等.海藻遗传学.北京:中国农业出版社,2005,184-235.
    [140] Fan XL, Fang YJ, Hu SN, Wang GC. Generation and analysis of5318expressed sequencetags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J Phycol,2007,43:1287-1294.
    [141] Xie CT, Li B, Xu Y, Ji DH, Chen CS. Characterization of the global transcriptome forPyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMCGenomics,2013,14:107.
    [142] Mao YX, Kong FN, Zhang BL, Wang L. The complete mitochondrial genome of Pyropiahaitanensis Chang et Zheng. Mitochondrial DNA,2012,23(5):344-346.
    [143] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. NatRev Genet,2009,10:57–63.
    [144] Muers M. Gene expression: Transcriptome to proteome and back to genome. Nat RevGenet,2011,12:518.
    [145] Michael LM. Sequencing technologies-the next generation. Nat Rev Genet,2010,11:31-46.
    [146] Grabherr MG, Haas BJ, Yassour M, Levin JZ, et al. Full-length transcriptome assemblyfrom RNA-Seq data without a reference genome. Nature Biotechnology,2011,29:644-652.
    [147] Bedell J, Korf I, Yandell M. BLAST. O'Reilly. ISBN0-596-00299-8,2003.
    [148] G tz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, et al. High-throughputfunctional annotation and data mining with the Blast2GO suite. Nucleic AcidsResearch,2008,36,3420-3435.
    [149] Doczi R, Okresz L, Romero AE, Paccanaro A, Bogre L. Exploring the evolutionary pathof plant MAPK networks. Trends in Plant Science,2012,17:518-525.
    [150] Li M, Liu J, Zhang C. Evolutionary history of the vertebrate mitogen activated proteinkinases family. PLoS ONE,2011,6, e26999.
    [151] Galau GA, Wang HY, Hughes DW. Cotton Lea4(D19) and LeaA2(D132) group1Leagenes encoding water stress-related proteins containing a20-amino acid motif. PlantPhysiol,1992,99:783–788.
    [152] Baker EH, Bradford KJ, Bryant JA, Rost TL. A comparison of desiccation-related proteins(dehydrin and QP47) in pea (Pisum sativum). Seed Sci Res,1995,5:185–193.
    [153] Honjoh K, Yoshimoto M, Joh T, Kajiwara T, Miyamoto T, et al. Isolation andcharacterization of hardening-induced proteins in Chlorella vulgaris C-27:Identification of Late Embryogenesis Abundant Proteins. Plant Cell Physiol,1995,36:1421-1430.
    [154] Lu B, Gong ZH, Wang J, Zhang JH, Liang JS. Microtubule dynamics in relation toosmotic stress-induced ABA accumulation in Zea mays roots. J Exp Bot,2007,58:2565-2572.
    [155] Bagniewska-Zadworna A. The root microtubule cytoskeleton and cell cycle analysisthrough desiccation of Brassica napus seedlings. Protoplasma,2008,233:177-185.
    [156] Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P. The role of aquaporins incellular and whole plant water balance. Biochimica et Biophysica Acta,2000,1465:324-342.
    [157] Johnson KD, Herman EM, Chrispeels MJ. An abundant, highly conserved tonoplastprotein in seeds, Plant Physiol,1989,91:1006-1013.
    [158] Kammerloher W, Fischer U, Piechottka GP, Schaffner AR. Water channels in the plantplasma membrane cloned by immunoselection from a mammalian expression system.Plant J,1994,6:187-199.
    [159] Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, et al. Two TIP-like genes encodingaquaporins are expressed in sun£ower guard cells. Plant J,1997,12:1103-1111.
    [160] Bray EA.. Plant responses to water deficit. Trends Plant Sci,1997,2:48-56.
    [161] Maurel C, Kado RT, Guern J, Chrispeels MJ. Phosphorylation regulates the water channelactivity of the seed-specific aquaporin α-TIP. EMBO J,1995,14:3028-3035.
    [162] Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, et al. Water transportactivity of the plasma membrane aquaporin PM28A is regulated by phosphorylation.Plant Cell,1998,10:451-459.
    [163] Li Z, Wakao S, Fischer BB, Niyogi KK. Sensing and responding to excess light. Annu RevPlant Biol,2009,60:239–260.
    [164] Oquist G, Fork DC. Effects of desiccation on the excitation energy distribution fromphycoerythrin to the two photosystems in the red alga Porphyra perforata. PhysiolPlant,1982,56:56–62.
    [165] Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, et al. The Ectocarpus genome and theindependent evolution of multicellularity in brown algae. Nature,2010,465:617-621.
    [166] Shui J, Saunders E, Needleman R, Nappi, M, Cooper J, et al. Light-dependent andlight-independent protochlorophyllide oxidoreductases in the chromatically adaptingcyanobacterium Fremyella diplosiphon UTEX481. Plant Cell Physiol,2009,50:1507-1521.
    [167] Yoshitama K. Recent advances in secondary metabolism research: regulation ofbiosynthesis and physiological functions of flavonoids and some phenolics. J PlantRes,2000,113:285.
    [168] Rozema J, Bj rn LO, Bornman JF, et al. The role of UV-B radiation in aquatic andterrestrial ecosystems-an experimental and functional analysis of the evolution ofUV-absorbing compounds. J Photochem Photobiol B,2002,66:2-12.
    [169] Wolfe-Simon F, Grzebyk D, Schofield O, et al. The role and evolution of superoxidedismutases in algae. J Phycol,2005,41:453-465.
    [170] Eitinger T. In vivo production of active nickel superoxide dismutase fromProchlorococcus marinus MIT9313is dependent on its cognate peptidase. JBacteriol,2004,186,7821-7825.
    [171] Kupper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ et al. Iodide accumulationprovides kelp with an inorganic antioxidant impacting atmospheric chemistry. ProcNatl Acad Sci USA,2008,105,6954-6958.
    [172] Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with orwithout a reference genome. BMC Bioinformatics,2011, doi:10.1186/1471-2105-12-323.
    [173] Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifyingmammalian transcriptomes by RNA-Seq. Nature methods,2008,5:621-628.
    [174] Anders S, Huber W. Differential expression analysis for sequence count data. GenomeBiology,2010, doi:10.1186/gb-2010-11-10-r106.
    [175] Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq:accounting for selection bias. Genome Biology,2010,doi:10.1186/gb-2010-11-2-r14.
    [176] Mao X, Cai T, Olyarchuk JG., Wei L. Automated genome annotation and pathwayidentification using the KEGG Orthology (KO) as a controlledvocabulary.bioinformatics,1995,21:3787–3793.
    [177] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_Xwindows interface: flexible strategies for multiple sequence alignment aided byquality analysis tools. Nucleic Acids Res,1997,25:4876–4882.
    [178] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. MEGA5: molecularevolutionary genetics analysis using maximum likelihood, evolutionary distance,and maximum parsimony methods. Mol Biol Evol,2011,28:2731-2739.
    [179] Jones D, Taylor W, Thornton J. The rapid generation of mutation data matrices fromprotein sequences. Comput Appl Biosci,1992,8:275-282.
    [180] t’Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, et al. Deepsequencing-based expression analysis shows major advances in robustness,resolution and inter-lab portability over five microarray platforms. Nucleic AcidsRes,2008,36(21): e141.
    [181] Green DR, Reed JC.1998. Mitochondria and apoptosis. Science,281:1309–1312.
    [182] Wang X. The expanding role of mitochondria in apoptosis. Genes and Development,2001,15:2922–2933.
    [183] Shimizu S, Narita M, Tsujimoto Y. Bcl-2family proteins regulate the release ofapoptogenic cytochrome c by the mitochondrial channel VDAC. Nature,1999,399:483–487.
    [184] Balk J, Chew SK, Leaver CJ, McCabe PF. The intermembrane space of plant mitochondriacontains a DNase activity that may be involved in programmed cell death. The PlantJournal,2003,34,573–583.
    [185] Arpagaus S, Rawyler A, Braendle R. Occurrence and characteristics of the mitochondrialpermeability transition in plants. Journal of Biological Chemistry,2002,277:1780–1787.
    [186] Maxwell DP, Nickels R, McIntosh L. Evidence of mitochondrial involvement in thetransition of signals required for the induction of genes associated with pathogenattack and senescence. The Plant Journal,2002,29:269–279.
    [187] Yu XH, Perdue TD, Heimer YM, Jones AM. Mitochondrial involvement in trachearyelement programmed cell death. Cell Death and Differentiation,2002,9:189–198.
    [188] Yao N, Eisfelder BJ, Marvin J, Greenberg JT. The mitochondrion: an organelle commonlyinvolved in programmed cell death in Arabidopsis thaliana. The Plant Journal,2004,40:1000–1007.
    [189] Bras M, Queenan B, Susin SA. Programmed cell death via mitochondria: different modesof dying. Biochemistry (Moscow),2005,70:231–239.
    [190] Diamond M, McCabe PF. The mitochondrion and plant programmed cell death. In:LoganDC, ed. Annual plant reviews; plant mitochondria. Oxford: Blackwell Publishing,2007,308–329.
    [191] Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerativedisease and aging. Genes Dev,2008,22:1427-1438.
    [192] Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death.Mol Cell,2010,40:253-266.
    [193] Kabani M, Martineau CN. Multiple Hsp70isoforms in the eukaryotic cytosol: Mereredundancy or functional specificity? Curr Genomics,2008,9:338-348.
    [194] Vos MJ, Hageman J, Carra S, Kampinga HH. Structural and functional diversities betweenmembers of the human HSPB, HSPH, HSPA, and DNAJ chaperone families.Biochemistry,2008,47:7001-7011.
    [195] Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controllingoxidative stress in plants. J Exp Bot,2002,53:1331–1341.
    [196] Wood ZA, Schroder E, Harris JR, Poole LB. Structure, mechanism and regulation ofperoxiredoxins. Trends Biochem Sci,2003,28:32-40.
    [197] Winter AD, McCormack G, Page AP. Protein disulfide isomerase activity is essential forviability and extracellular matrix formation in the nematode Caenorhabditis elegans.Dev Biol,2007,308:449-461.
    [198] Karala AR, Psarrakos P, Ruddock LW, Klappa P. Protein disulfide isomerases from C.elegans are equally efficient at thiol-disulfide exchange in simple peptide-basedsystems but show differences in reactivity towards protein substrates. AntioxidRedox Signal,2007,9:1815-1823.
    [199] Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem,1989,264:13963-13966.
    [200] Maria C. Rodriguez S, Edsgard D, Hussain SS, Alquezar D, et al. Transcriptomes of thedesiccation-tolerant resurrection plant Craterostigma plantagineum. The PlantJournal,2010,63:212–228.
    [201] de Nadal E, Alepuz PM, Posas F. Dealing with osmostress through MAP kinase activation.EMBO Rep,2002,3:735-740.
    [202] Cuenda A, Rousseau S. p38MAP-Kinases pathway regulation, function and role in humandiseases. Biochim Biophys Acta, Mol Cell Res,2007,1773:1358-1375.
    [203] Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, et al. Stress signaling in plants:a mitogen-activated protein kinase pathway is activated by cold and drought. ProcNatl Acad Sci USA,1996,93:11274-11279.
    [204] Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family forcontrol of MAP kinase funtion. The FASEB Journal,1999,14:6-16.
    [205] Berman K, McKay J, Avery L, Cobb M. Isolation and characterization of pmk-(1-3): threep38homologs in Caenorhabditis elegans. Molecular Cell Biology ResearchCommunications,2001,4:337-344.
    [206] Gustin MC, Albertyn J, Alexander M, Davenport K. MAP Kinase Pathways in the YeastSaccharomyces cerevisiae. Microbiol Mol Biol Rev,1998,62(4):1264.
    [207] Zeng Q, Chen X, Wood AJ. Two moderate light-inducible protein (ELIP) cDNAs fromthe resurrection plant Tortula ruralis are differentially expressed in response todesiccation, rehydration, salinity, and high light. Journal of Experimental Botany,2002,53:1197–1205.
    [208] Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, et al. Moderate light-inducedproteins protect Arabidopsis from photooxidative stress. Proceedings of the NationalAcademy of Sciences USA,2003,100:4921–4926.
    [209] Lawlor DW, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity inwater-deficient leaf cells: a critical evaluation of mechanisms and integration ofprocesses, Ann Bot,2009,103:561–579.
    [210] Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, et al. Moderate light-inducedproteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA,2003,100:4921–4926.
    [211] Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, whathappens, and why? Plant Physiol,1998,118:9-17.
    [212] Raubeson LA, Jansen RK. Chloroplast genomes of plants. In: Henry RJ, editor. Plantdiversity and evolution: Genotypic and phenotypic variation in higher plants.Wallingford: CAB International,2005,45-68.
    [213] Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. PlantPhysiol,2007,145:1129-1143.
    [214] Daniell H, Kumar S, Dufourmantel N. Breakthrough in chloroplast genetic engineering ofagronomically important crops. Trends Biotechnol,2005,23:238-245.
    [215] Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal.Bioinformatics17:1093-1104.
    [216] Niu BF, Fu LM, Sun SL, Li WZ (2010) Artificial and natural duplicates in pyrosequencingreads of metagenomic data. BMC Bioinformatics11:187.
    [217] Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNAgenes in genomic sequence. Nucleic Acids Res,1997,25:955-964.
    [218] Kimura M. A simple method for estimating evolutionary rates of base substitutionsthrough comparative studies of nucleotide sequences. J Mol Evol,1980,16:111-120.
    [219] Darling ACE, Mau B, Blatter FR, Perna NT. Mauve: multiple alignment of conservedgenomic sequence with rearrangements. Genome Res,2004,14:1394-1403.
    [220] Guindon S, Gascuel O. A simple, fast and accurate algotithm to estimate large phylogeniesby maximum likelihood. Syst Biol,2003,52:696-704.
    [221] Adachi J, Waddell PJ, Martin W, Hasegawa M. Plastid genome phylogeny and a model ofamino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol,2000,50:348-358.
    [222] Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. MrBayes3.2:efficient Bayesian phylogenetic inference and model choice across a large modelspace. Syst Biol,2012,61:539-542.
    [223] Puerta MVS, Bachvaroff TR, Delwiche CF. The complete plastid genome sequence of thehaptophyte Emiliania huxleyi: a comparison to other plastid genomes. DNA Res,2005,12:151-156.
    [224] Moon DA, Goff LJ. Molecular characterization of two large DNA plasmids in the red algaPorphyra pulchra. Curr Genet,1997,32:132-138.
    [225] Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC. Comparative analysisof the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var.liui provides insights into the evolution of rhodoplasts and their relationship to otherplastids. J Mol Evol,2004,59:464-477.
    [226] Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, et al. Complete sequenceand analysis of the plastid genome of the unicellular red alga Cyanidioschyzonmerolae. DNA Res,2003,10:67-77.
    [227] Douglas SE, Penny SL. The plastid genome of the cryptophyte alga, Guillardia theta:complete sequence and conserved synteny groups confirm its common ancestry withred algae. J Mol Evol,1999,48:236-244.
    [228] Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, et al. Plastid genome sequence of thecryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNAreplication machinery and a test of chromist plastid phylogeny. Mol Biol Evol,2007,24:1832-1842.
    [229] Grasser KD, Ritt C, Krieg M, Fernandez S, Alonso JC, et al. The recombinant product ofthe Cryptomonas plastid gene hlpA is an architectural HU-like protein that promotesthe assembly of complex nucleoprotein structures. Eur J Biochem,1997,249:70–76.
    [230] Simpson CL, Stern DB. The treasure trove of algal chloroplast genomes. Surprises inarchitecture and gene content, and their functional implications. Plant Physiol,2002,129:957–966.
    [231] Wang SL, Liu X-Q. The plastid genome of Cryptomonas Φ encodes an hsp70-like protein,a histone-like protein, and an acyl carrier protein. Proc Natl Acad Sci USA,1991,88:10783-10787.
    [232] Gaikwad A, Hop DV, Mukherjee SK. A70-kDa chloroplast DNA polymerase from pea(Pisum sativum) that shows high processivity and displays moderate fidelity. MolGenet Genomics,2002,267:45-56.
    [233] Wattier RA, Prod hl PA, Maggs CA. DNA isolation protocol for red seaweed(Rhodophyta). Plant Mol Biol Rep,2000,18:275-281.
    [234] Huang J, Gogarten JP. Concerted gene recruitment in moderate plant evolution. GenomeBiol,2008,9: R109.
    [235] Rice DW, Palmer JD. An exceptional horizontal gene transfer in plastids: genereplacement by a distant bacterial paralog and evidence that haptophyte andcryptophyte plastids are sisters. BMC Biol,2006,4:31.
    [236] Yoon HS, Muller KM, Sheath RG, Ott FD, Bhattacharya D. Defining the major lineages ofred algae (Rhodophyta). J Phycol,2006,42:482-492.
    [237] Broom J, Jones W, Hill D, Knight G, Nelson W. Species recognition in New ZealandPorphyra using18S rDNA sequencing. J Appl Phycol,1999,11:421-428.
    [238] Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, et al. A new look at anancient order: generic revision of the Bangiales (Rhodophyta). J Phycol,2011,47:1131-1151.
    [239] Oliveira MC, Bhattacharya D. Phylogeny of the Bangiophycidae (Rhodophyta) and thesecondary endosymbiotic origin of algal plastids. Am J Bot,2000,87:482–492.
    [240] Müller KM, Oliveira MC, Sheath RG, Bhattacharya D. Ribosomal DNA phylogeny of theBangiophycidae (Rhodophyta) and the origin of secondary plastids. Am J Bot,2001,88:1390-1400.
    [241] Saunders GW, Hommersand MH. Assessing red algal supraordinal diversity and taxonomyin the context of contemporary systematic data. Am J Bot,2004,91:1494-1507.
    [242] Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, et al. Plastid genomes oftwo brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights onthe evolution of red-algal derived plastids. BMC Evol Biol,2009,9:253.
    [243] Pinto G, Albertano P, Ciniglia C, Cozzolino S, Pollio A, et al. Comparative approaches tothe taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta). Cryptogam.,Algol.,2003,24:13-32.
    [244] Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. A molecular timeline for theorigin of photosynthetic eukaryotes. Mol Biol Evol,2004,21:809-818.
    [245] Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF. Sorting wheat from chaff in multi-geneanalyses of chlorophyll c-containing plastids. Mol Phylogenet Evol,2007,44:885-897.
    [246] Soll J, Schleiff E. Protein import into chloroplasts. Nat Rev Mol Cell Biol,2004,5:198–208.
    [247] Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, et al. Genome sequence ofthe ultra small unicellular red alga Cyanidioschyzon merolae10D. Nature,2004,428:653–657.
    [248] Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, et al. A100%-completesequence reveals unusually simple genomic features in the hot-spring red algaCyanidioschyzon merolae. BMC Biol,2007,5:28.
    [249] Nott A, Jung HS, Koussevitzky S and Chory J. Plastid-to-nucleus retrograde signaling.Annu Rev Plant Biol,2006,57:739–759.
    [250] Pesaresi P, Schneider A, Kleine T and Leister D. Interorganellar communication. CurrOpin Plant Biol,2007,10:600–606.
    [251] Moulin M, McCormac AC, Terry MJ, Smith AG. Tetrapyrrole profiling in Arabidopsisseedlings reveals that retrograde plastid nuclear signaling is not due toMg-protoporphyrin IX accumulation. Proc Natl Acad Sci U S A,2008,105:15178–15183.
    [252] Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A. The steady-state level ofMg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling inArabidopsis. Proc Natl Acad Sci U S A,2008,105:15184–15189.
    [253] Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, et al. Evidence for aSAL1-PAP chloroplast retrograde pathway that functions in drought and high lightsignaling in Arabidopsis. Plant Cell,2011,23:3992–4012.
    [254] Pogson BJ, Woo NS, Forster B, Small ID. Plastid signalling to the nucleus and beyond,Trends Plant Sci,2008,13:602–609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700