用户名: 密码: 验证码:
基于肠道菌群结构与功能分析的支气管哮喘维、西医研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探究支气管哮喘及维医不同异常体液分型支气管哮喘患者肠道菌群多样性及结构组成特征,研究肠道菌群与支气管哮喘的相互关系,及其参与支气管哮喘发病的可能机制,寻找参与支气管哮喘发生发展的重要功能类群;阐明维医异常体液分型,尤其是异常黑胆质体液的生物学基础,肠道菌群与支气管哮喘维吾尔医异常体液分型间的相互关系。
     方法:采用病例-对照研究方案,运用16SrRNA V3区PCR-DGGE指纹图谱技术、454焦磷酸高通量测序手段及生物信息学统计方法—PCA、PLS-DA、UniFrac及RDA冗余分析分别开展小样本和大样本支气管哮喘人群的比较研究,分析和展示支气管哮喘患者与对照人群及不同维医病症分型支气管哮喘患者的肠道菌群结构组成特征与差异。
     结果:(1) PCR-DGGE分析结果为支气管哮喘患者的肠道菌DNA条带数量(7~31条不等,平均只有17条)少于对照组个体的DNA条带数量(14~36条不等,平均24条),类群多样性显著降低,Shannon–Weaver指数、Simpson_D指数显著低于对照组(P<0.0001)。粪便菌16SrRNA V3区高通量测序数据分析,发现哮喘患者的肠道菌类群数量和丰度都显著降低。多变量方差分析(mannova检验)显示哮喘患者的肠道菌群结构组成有别于对照组(P<0.01)。支气管哮喘状态下,患者肠道菌群的构成发生了改变,两组样本PCA分类具有潜在分离趋势,维汉不同民族哮喘患者的肠道菌群构成存在差异。群落微生态分析手段RDA冗余分析共鉴定出能够解释造成哮喘组与对照组肠道菌群结构组成差异的14个细菌类群(OTUs),经蒙特卡罗检验(MCPP),差异具有统计学意义(P=0.0002),这些具有差异特征的肠道菌类群分属于不同的OTUs,在两组受试人群中的差异表现行为可能与支气管哮喘发生发展有关。(2)异常黑胆质型哮喘患者的肠道菌DNA条带有8~28条,平均16条;非异常黑胆质型哮喘患者的肠道菌DNA条带有7~31条,平均18条;异常黑胆质哮喘组与非异常黑胆质哮喘组间肠道菌群的多样性指数明显低于对照组(P<0.05),但两个分型组间的差异无统计学意义。454测序数据分析发现,异常黑胆质哮喘组(异黑组)的肠道菌群多样性下降,Shannon–Weaver、Simpson_D等多样性指数均低于非异常黑胆质组(P<0.05)。多变量方差分析(mannova检验)显示异黑哮喘组与非黑哮喘组的肠道菌群结构组成有差异(P<0.01),PCA分析显示两组分离趋势明显。为了明确对两组间肠道菌组成差异贡献较大的具体肠道菌关键类群,经RDA冗余分析共鉴定出了23个细菌类群(OTUs)(MCPP,P=0.0002),是两组间菌群构成差异的最主要体现,属于Bacteroides的OTUs在异黑组中的构成比例显著升高。
     结论:研究表明:(1)支气管哮喘患者的肠道菌群在分子水平上发生明显改变,多样性显著降低,肠道菌群的结构改变参与支气管哮喘发生发展,可以反映支气管哮喘的疾病状态,具有预测和监测支气管哮喘发生发展的潜质。(2)支气管哮喘不同维吾尔医学异常体液分型组患者的肠道菌群构成不同,肠道菌群结构改变是支气管哮喘维医异常体液分型理论内涵的表现之一。(3)被鉴定出的分属于不同分类水平的OTUs很可能与异常黑胆质的形成与转归有关,是支气管哮喘异常黑胆质证的具体生物学基础,此研究结果为维医的辨证分型及其理论基础的科学阐述提供了可靠的实验依据。
Objective: To analyze the diversity and structure characteristics of gut microbiotain patients with asthma and find the possible relationship between gut microbiota andasthma disease and to identify the key functional members which participate theasthma;to clarify the foundation of abnormal Hilit differentiation of traditional Uyghurmedicine (TUM). Especially to make further comprehension of the biologic basis forabnormal Savda syndrome of TUM theory.
     Methods: In this case-control study project, we recruited control asthma patientswith and without abnormal savda syndrome, and comparatively examined the structureof the gut microbiota in these asthma patients by using PCR-DGGE profile and454pyrosequencing based on the16SrRNA V3region of bacteria to provide an in-depthanalysis of status-related differences of gut microbiota between different statusaccording to two medicine systems within small and large population.
     Results:(1) Based on the DGGE profile, the bands (7to31, averagely17) observedin asthma patients were less than that in controls (the value is from14to36, averagely24). The Shannon-Wiener diversity index is markedly lower in asthma patients thancontrols (P<0.0001). Using454pyrosequencing, it shows that the number and richnessof bacteria in the gut were significantly reduced. Combined with multivariate statisticalmethods analysis, it shows that two groups of sample were classified obviously by thestructure of gut microbiota. And the different within two nationalities has a statisticalsignificance.14operational taxonomic units (OTUs) were identified by redundancyanalysis as key variables significantly associated with the structural difference(MCPP,P=0.0002). This different distribution of these OTUs in the two groups ofsubjects may be associated with asthma onset.(2) Based on the DGGE profile,8to28bands (averagely16) were observed in the abnormal savda type asthma, while the value is from7to31, averagely18in the other abnormal hilit type asthma. The diversityindex is markedly lower in abnormal hilit type asthma patients than controls with thenumber of groups and richness decreased notably (P<0.0001), but no statisticalsignificance between the abnormal hilit type asthma groups. By using sequencing, thediversity of gut bacteria in abnormal hilit type asthma patients is decreased and thediversity index (Shannon–Weaver、Simpson_D) are lower than other groups (P<0.05).Combined with multivariate statistical methods analysis, it shows that2groups ofsamples with different syndrome were classified obviously by the structure of gutmicrobiota. Twenty-three operational taxonomic units (OTUs) were identified byredundancy analysis as key variables significantly associated with the structuraldifference (MCPP,P=0.0002). OTUs closely related to Bacteroides was markedlyenrich in the gut microbiota of abnormal savda syndrome patients.
     Conclusion: Using16SrRNA V3DNA fingerprinting and high-throughputsequencing technologies, the structure of gut microbiota were analyzed completely. Theresult shows that (1) The gut microbiota of asthma patient proceed remarkably changesat the molecular level to be associated with the gut micobiota diversity decreases andstructure changes notably. It may be related to asthma disease status. It indicates that thegut microbiota has the potential ability to forecast and monitoring the development ofasthma.(2) Our overall findings provides comprehensive data and improved methodsfor studying the theory of syndrome differentiation of TUM. Gut microbiota analysishave greater weight in TUM syndrome classification.(3) The variables (OTUs)belonged to different level might related to the formation and prognosis and one of theSpecific biological performance of abnormal Hilit savda. The gut microbiota analysisbased study could be an potential evidence-based tool for standardization of TUMsyndrome differentiation. This study provide sufficient evidence for study the theory ofTUM syndrome differentiation.
引文
[1] Eder W, Ege MJ, von Mutius E. The asthma epidemic[J]. New England Journal ofMedicine,2006,355(21):2226-35.
    [2]钟南山.支气管哮喘:基础与临床[M].北京:人民卫生出版社;2006.
    [3]钟南山.我国支气管哮喘防治研究重点及努力方向[J].中华结核和呼吸杂志,2005,28(12):809-11.
    [4] Merletti F, Richiardi L, Boffetta P.[Health effects of passive smoking][J]. LaMedicina del lavoro,1998,89(2):149.
    [5] Withers NJ, Low L, Holgate ST, et al. The natural history of respiratory symptomsin a cohort of adolescents[J]. American journal of respiratory and critical caremedicine,1998,158(2):352-7.
    [6] Tatum AJ, Shapiro GG. The effects of outdoor air pollution and tobacco smoke onasthma[J]. Immunology and allergy clinics of North America,2005,25(1):15.
    [7] Lau S, Illi S, Sommerfeld C, et al. Early exposure to house-dust mite and catallergens and development of childhood asthma: a cohort study. MulticentreAllergy Study Group[J]. Lancet,2000,356(9239):1392.
    [8] Cullinan P, MacNeill S, Harris J, et al. Early allergen exposure, skin prick responses,and atopic wheeze at age5in English children: a cohort study[J]. Thorax,2004,59(10):855-61.
    [9] Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year oflife and risk of allergic sensitization at6to7years of age[J]. JAMA: the journal ofthe American Medical Association,2002,288(8):963-72.
    [10] Schaub B, von Mutius E. Obesity and asthma, what are the links?[J]. CurrentOpinion in Allergy and Clinical Immunology,2005,5(2):185-93.
    [11] Chinn S, Rona R. Can the increase in body mass index explain the rising trend inasthma in children?[J]. Thorax,2001,56(11):845-50.
    [12] Ellwood P, Asher M, Bj rkstén B, et al. Diet and asthma, allergicrhinoconjunctivitis and atopic eczema symptom prevalence: an ecological analysisof the International Study of Asthma and Allergies in Childhood (ISAAC) data[J].European Respiratory Journal,2001,17(3):436-43.
    [13] Karmaus W, Botezan C. Does a higher number of siblings protect against thedevelopment of allergy and asthma? A review[J]. Journal of epidemiology andcommunity health,2002,56(3):209-17.
    [14] Corne JM, Marshall C, Smith S, et al. Frequency, severity, and duration ofrhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinalcohort study[J]. The Lancet,2002,359(9309):831-4.
    [15] Yazdanbakhsh M, Wahyuni S. The role of helminth infections in protection fromatopic disorders[J]. Current Opinion in Allergy and Clinical Immunology,2005,5(5):386-91.
    [16] Braun‐Fahrl nder C, Lauener R. Farming and protective agents against allergyand asthma[J]. Clinical&Experimental Allergy,2003,33(4):409-11.
    [17] Eder W, von Mutius E. Hygiene hypothesis and endotoxin: what is the evidence?[J].Current Opinion in Allergy and Clinical Immunology,2004,4(2):113-7.
    [18] Riccioni G, D'Orazio N, Di Ilio C, et al. Quality of Life and clinical symptoms inasthmatic subjects[J]. Journal of Asthma,2004,41(1):85-9.
    [19] Mancuso CA, Rincon M, McCulloch CE, et al.Self-efficacy, depressive symptoms,and patients' expectations predict outcomes in asthma[J]. Medical Care,2001,39(12):1326-38.
    [20]王宁群,姜良铎,李宗信.支气管哮喘相关生存质量研究进展[J].中西医结合学报,2008,6(1):93.
    [21] Pont L, Van der Molen T, Denig P, et al. Haaijer-Ruskamp F. Relationship betweenguideline treatment and health-related quality of life in asthma[J]. EuropeanRespiratory Journal,2004,23(5):718-22.
    [22] van Schayck CP, Dompeling E, Rutten MP, et al.The influence of an inhaledsteroid on quality of life in patients with asthma or COPD[J]. CHEST Journal,1995,107(5):1199-205.
    [23] Bonala SB, Pina D, Silverman BA, et al. Asthma severity, psychiatric morbidity,and quality of life: correlation with inhaled corticosteroid dose[J]. Journal ofAsthma,2003,40(6):691-9.
    [24] Lewis L, Cochrane G. Psychosis in a child inhaling budesonide[J]. Lancet,1983,2(8350):634.
    [25] Brasier AR, Victor S, Boetticher G, et al. Molecular phenotyping of severe asthmausing pattern recognition of bronchoalveolar lavage–derived cytokines[J]. Journalof allergy and clinical immunology,2008,121(1):30-7. e6.
    [26] Bhavnani SK, Victor S, Calhoun WJ, et al. How cytokines co-occur across asthmapatients: From bipartite network analysis to a molecular-based classification[J].Journal of Biomedical Informatics,2011,44: S24-S30.
    [27] Liang Q, Guo L, Gogate S, et al. IL-2and IL-4Stimulate MEK1Expression andContribute to T Cell Resistance against Suppression by TGF-β and IL-10inAsthma[J]. The Journal of Immunology,2010,185(10):5704-13.
    [28] O'Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. EMBO reports,2006,7(7):688-93.
    [29]李旻.人体肠道菌群结构与宿主代谢的相关性研究[D].上海:上海交通大学;2009.
    [30] Lederberg J. Infectious history[J]. Science,2000,288(5464):287-93.
    [31] Bengmark S. Ecological control of the gastrointestinal tract. The role of probioticflora[J]. Gut,1998,42(1):2-7.
    [32] Guarner F, Malagelada J-R. Gut flora in health and disease[J]. Lancet (London,England),2003,361(9356):512-9.
    [33] Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut[J].Science,2001,292(5519):1115-8.
    [34] Simon G, Gorbach S. Intestinal flora in health and disease[J]. Gastroenterology,1983,86(1):174-93.
    [35] Jia W, Li H, Zhao L, et al. Gut microbiota: a potential new territory for drugtargeting[J]. Nature Reviews Drug Discovery,2008,7(2):123-9.
    [36] Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factorthat regulates fat storage[J]. Science Signaling,2004,101(44):15718.
    [37] Kelly D, Conway S, Aminov R. Commensal gut bacteria: mechanisms of immunemodulation[J]. Trends in immunology,2005,26(6):326-33.
    [38] Pryde SE, Duncan SH, Hold GL, et al. The microbiology of butyrate formation inthe human colon[J]. FEMS microbiology letters,2002,217(2):133-9.
    [39] Xu J, Bjursell MK, Himrod J, et al. A genomic view of the human-Bacteroidesthetaiotaomicron symbiosis[J]. Science,2003,299(5615):2074-6.
    [40] Sepp E, Julge K, Mikelsaar M, et al. Intestinal microbiota and immunoglobulin Eresponses in5‐year‐old Estonian children[J]. Clinical&Experimental Allergy,2005,35(9):1141-6.
    [41] Dumas M-E, Barton RH, Toye A, et al. Metabolic profiling reveals a contributionof gut microbiota to fatty liver phenotype in insulin-resistant mice[J]. Proceedingsof the National Academy of Sciences,2006,103(33):12511-6.
    [42] Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota inthe development of Type1diabetes[J]. Nature,2008,455(7216):1109-13.
    [43] Dulek DE, Peebles RS. Bacteria and asthma: more there than we thought[J]. ExpertReview of Respiratory Medicine,2011,5(3):329-32.
    [44] Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbesassociated with obesity[J]. Nature,2006,444(7122):1022-3.
    [45] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gutmicrobiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027-131.
    [46] Ege MJ, Mayer M, Normand A-C, et al. Exposure to environmentalmicroorganisms and childhood asthma[J]. New England Journal of Medicine,2011,364(8):701-9.
    [47] McLoughlin RM, Mills KH. Influence of gastrointestinal commensal bacteria onthe immune responses that mediate allergy and asthma[J]. Journal of allergy andclinical immunology,2011,127(5):1097-107.
    [48] Hollams EM, Hales B, Bachert C, et al. Th2-associated immunity to bacteria inteenagers and susceptibility to asthma[J]. European Respiratory Journal,2010,36(3):509-16.
    [49] Armann J, von Mutius E. Do bacteria have a role in asthma development?[J].European Respiratory Journal,2010,36(3):469-71.
    [50] Strachan DP. Family size, infection and atopy: the first decade of the'hygienehypothesis'[J]. Thorax,2000,55(Suppl1): S2.
    [51] Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteria attenuateinflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA[J].Nature immunology,2003,5(1):104-12.
    [52] Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolismand personalized health care[J]. Nature Reviews Microbiology,2005,3(5):431-8.
    [53] Sevin C, Peebles R. Infections and asthma: new insights into old ideas[J]. Clinical&Experimental Allergy,2010,40(8):1142-54.
    [54] Bj rkstén B. Effects of intestinal microflora and the environment on thedevelopment of asthma and allergy. Springer seminars in immunopathology;2004:Springer;2004. p.257-70.
    [55] Penders J, Stobberingh EE, Brandt Pv, et al. The role of the intestinal microbiota inthe development of atopic disorders[J]. Allergy,2007,62(11):1223-36.
    [56] Noverr MC, Huffnagle GB. Does the microbiota regulate immune responsesoutside the gut?[J]. Trends in microbiology,2004,12(12):562-8.
    [57] Sly PD, Holt PG. Role of innate immunity in the development of allergy andasthma[J]. Current Opinion in Allergy and Clinical Immunology,2011,11(2):127-31.
    [58] Watanabe S, Narisawa Y, Arase S, et al. Differences in fecal microflora betweenpatients with atopic dermatitis and healthy control subjects[J]. Journal of allergyand clinical immunology,2003,111(3):587-91.
    [59] Jang S-O, Kim H-J, Kim Y-J, et al. Asthma prevention by Lactobacillus rhamnosusin a mouse model is associated with CD4+CD25+Foxp3+T Cells[J]. Allergy,asthma&immunology research,2012,4(3):150-6.
    [60] Heederik D, von Mutius E. Does diversity of environmental microbial exposurematter for the occurrence of allergy and asthma?[J]. Journal of allergy and clinicalimmunology,2012.
    [61] Vael C, Nelen V, Verhulst SL, et al. Early intestinal Bacteroides fragiliscolonisation and development of asthma[J]. BMC pulmonary medicine,2008,8(1):19.
    [62] Prescott SL, Bj rkstén B. Probiotics for the prevention or treatment of allergicdiseases[J]. Journal of allergy and clinical immunology,2007,120(2):255-62.
    [63] Smits HH, Engering A, van der Kleij D, et al. Selective probiotic bacteria induceIL-10–producing regulatory T cells in vitro by modulating dendritic cellfunction through dendritic cell–specific intercellular adhesion molecule3–grabbingnonintegrin[J]. Journal of allergy and clinical immunology,2005,115(6):1260-7.
    [64] Van íková Z, Lodinová-adníková R, Radl J, et al. The early postnataldevelopment of salivary antibody and immunoglobulin response in children orallycolonized with a nonpathogenic, probiotic strain ofE. coli[J]. Folia microbiologica,2003,48(2):281-7.
    [65] Bjorksten B. Evidence of probiotics in prevention of allergy and asthma[J]. CurrentDrug Targets-Inflammation&Allergy,2005,4(5):599-604.
    [66] Von Hertzen L, Haahtela T. Asthma and atopy–the price of affluence?[J]. Allergy,2004,59(2):124-37.
    [67] Sheikh A, Strachan DP. The hygiene theory: fact or fiction?[J]. Current opinion inotolaryngology&head and neck surgery,2004,12(3):232-6.
    [68]Renz H. Asthma protection with bacteria-science or fiction?[J]. Thorax,2011,66(9):744-5.
    [69] Blaser M. Antibiotic overuse: Stop the killing of beneficial bacteria[J]. Nature,2011,476(7361):393-4.
    [70] B ckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the humanintestine[J]. Science,2005,307(5717):1915-20.
    [71] Che C, Pang X, Hua X, et al. Effects of Human Fecal Flora on IntestinalMorphology and Mucosal Immunity in Human Flora‐associated Piglet[J].Scandinavian journal of immunology,2009,69(3):223-33.
    [72] Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolicphenotypes[J]. Proceedings of the National Academy of Sciences,2008,105(6):2117-22.
    [73] Vera JC, Wheat CW, Fescemyer HW, et al. Rapid transcriptome characterizationfor a nonmodel organism using454pyrosequencing[J]. Molecular ecology,2008,17(7):1636-47.
    [74] Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerasechain reaction-amplified genes coding for16S rRNA[J]. Applied andEnvironmental Microbiology,1993,59(3):695-700.
    [75] Margulies M, Egholm M, Altman WE, et al. Genome sequencing inmicrofabricated high-density picolitre reactors[J]. Nature,2005,437(7057):376-80.
    [76] Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obeseand lean twins[J]. Nature,2008.
    [77] Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea andthe underexplored "rare biosphere"[J]. Proc Natl Acad Sci U S A,2006,103(32):12115-20.
    [78] Binladen J, Gilbert MT, Bollback JP, et al. The use of coded PCR primers enableshigh-throughput sequencing of multiple homolog amplification products by454parallel sequencing[J]. PLoS ONE,2007,2(2): e197.
    [79] Pérez-Losada M, Cabezas P, Castro-Nallar E, et al. Pathogen typing in thegenomics era: MLST and the future of molecular epidemiology[J]. Infection,Genetics and Evolution,2013.
    [80] Cooper JE, Feil EJ. Multilocus sequence typing–what is resolved?[J]. Trends inmicrobiology,2004,12(8):373-7.
    [81] Haas BJ, Gevers D, Earl AM, et al. Chimeric16S rRNA sequence formation anddetection in Sanger and454-pyrosequenced PCR amplicons[J]. Genome research,2011,21(3):494-504.
    [82]哈木拉提·吾甫尔,阿不都热依木·玉素甫.维吾尔医气质,体液论及其现代研究.乌鲁木齐:新疆科学技术出版社;2003.
    [83]哈木拉提,庞辉群.夜间哮喘发病的自由基机理研究[J].中华结核和呼吸杂志,1998,21(3):141-.
    [84]王雯,伊力,哈木江,沙比提.新疆维吾尔族哮喘患者的β2-肾上腺素能受体基因多态性[J].中华内科杂志,2004,43(12):934-5.
    [85]克丽别娜·吐尔逊,热娜古丽·艾则孜,沙吉旦·阿不都热衣木,等.支气管哮喘患者血栓前状态的相关指标及其意义[J].中华结核和呼吸杂志,2008,31(12):940-1.
    [86]李风森,哈木拉提,杨剑,等.哮喘中医分型及其淋巴细胞亚群与介质,内源性皮质醇变化的研究[J].中国中医药信息杂志,2008,15(10):19-22.
    [87]沙吉旦·阿不都热衣木,哈木拉提·吾甫尔,丁剑冰.维药纳气平喘颗粒对哮喘大鼠ICAM-1和HO-1表达的影响[J][J].新疆医科大学学报,2005,28(2):122-5.
    [88] Yin P, Mohemaiti P, Chen J, et al. Serum metabolic profiling of abnormal savda byliquid chromatography/mass spectrometry[J]. Journal of Chromatography B,2008,871(2):322-7.
    [89]哈木拉提·吾甫尔,杨剑,朱玉龙,等.支气管哮喘患者淋巴细胞亚群及其介质与内源性皮质醇的变化[J].中华结核和呼吸杂志,2008,31(11):847-8.
    [90] Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease:revisiting the hygiene hypothesis[J]. Nature Reviews Immunology,2001,1(1):69-75.
    [91] Larché M, Robinson DS, Kay AB. The role of T lymphocytes in the pathogenesisof asthma[J]. Journal of allergy and clinical immunology,2003,111(3):450-63.
    [92] Huffnagle GB. The microbiota and allergies/asthma[J]. PLoS pathogens,2010,6(5):e1000549.
    [93] Vanhoutte T, Huys G, Brandt E, et al. Temporal stability analysis of the microbiotain human feces by denaturing gradient gel electrophoresis using universal andgroup‐specific16S rRNA gene primers[J]. FEMS microbiology ecology,2004,48(3):437-46.
    [94] Gaskins HR, Croix JA, Nakamura N, et al. Impact of the intestinal microbiota onthe development of mucosal defense[J]. Clinical infectious diseases,2008,46(Supplement2): S80-S6.
    [95] Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerasechain reaction-amplified genes coding for16S rRNA[J]. Appl Environ Microbiol,1993,59(3):695-700.
    [96] Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolicphenotypes[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2008,105(6):2117-22.
    [97] Wei G, Lu H, Zhou Z, et al. The microbial community in the feces of the giantpanda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clonelibrary analysis[J]. Microb Ecol,2007,54(1):194-202.
    [98] Zhao Y, Li W, Zhou ZH, et al. Dynamics of microbial community structure andcellulolytic activity in agricultural soil amended with two biofertilizers[J]. Eur JSoil Biol,2005,41(1-2):21-9.
    [99] Liu BB, Zhang F, Feng XX, et al. Thauera and Azoarcus as functionally importantgenera in a denitrifying quinoline-removal bioreactor as revealed by microbialcommunity structure comparison[J]. FEMS microbiology ecology,2006,55(2):274-86.
    [100] Mao YJ, Zhang XJ, Yan X, et al. Development of group-specific PCR-DGGEfingerprinting for monitoring structural changes of Thauera spp. in an industrialwastewater treatment plant responding to operational perturbations[J]. J MicrobiolMeth,2008,75(2):231-6.
    [101]魏华.不同外源扰动因素对肠道菌群组成结构影响的研究[D].上海:上海交通大学生命科学技术学院;2008.
    [102] Favier CF, Vaughan EE, De Vos WM, et al. Molecular monitoring of successionof bacterial communities in human neonates[J]. Applied and EnvironmentalMicrobiology,2002,68(1):219-26.
    [103] Vael C, Vanheirstraeten L, Desager K, et al. Denaturing gradient gelelectrophoresis of neonatal intestinal microbiota in relation to the development ofasthma[J]. BMC microbiology,2011,11(1):68.
    [104]林燕萍.支气管哮喘防治指南(支气管哮喘的定义,诊断,治疗和管理方案).第四届中国中西医结合变态反应学术会议论文汇编;2009;2009.
    [105]买买提依明·沙比尔.维吾尔医诊断学(维吾尔文).乌鲁木齐:新疆科技卫生出版社;1993.
    [106] Thompson JR, Marcelino LA, Polz MF. Heteroduplexes in mixed-templateamplifications: formation, consequence and elimination by 'reconditioning PCR'[J].Nucleic Acids Res,2002,30(9):2083-8.
    [107] Zhang X, Yan X, Gao P, et al. Optimized sequence retrieval from single bands oftemperature gradient gel electrophoresis profiles of the amplified16S rDNAfragments from an activated sludge system[J]. J Microbiol Methods,2005,60(1):1-11.
    [108] Pearson K. On lines and planes of closest fit to systems of points in space[J].Philosophical Magazine,1901,2:559-72.
    [109] Wold S, Ruhe A, Wold H, et al. The collinearity problem in linear regression. Thepartial least squares (PLS) approach to generalized inverses[J]. SIAM Journal onScientific and Statistical Computing,1984,5(3):735-43.
    [110] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation andmodel selection. International joint Conference on artificial intelligence;1995:Lawrence Erlbaum Associates Ltd;1995. p.1137-45.
    [111] Odamaki T, Xiao J, Iwabuchi N, et al. Fluctuation of fecal microbiota inindividuals with Japanese cedar pollinosis during the pollen season and influenceof probiotic intake[J]. JOURNAL OF INVESTIGATIONAL ALLERGOLOGYAND CLINICAL IMMUNOLOGY,2007,17(2):92.
    [112] Bijlsma S, Bobeldijk I, Verheij ER, et al. Large-scale human metabolomicsstudies: a strategy for data (pre-) processing and validation[J]. AnalyticalChemistry,2006,78(2):567-74.
    [113] Zhao L, Shen J. Whole-body systems approaches for gut microbiota-targeted,preventive healthcare[J]. Journal of biotechnology,2010,149(3):183-90.
    [114] Beasley R, Crane J, Lai CK, Pearce N. Prevalence and etiology of asthma[J].Journal of allergy and clinical immunology,2000,105(2): S466-S72.
    [115] Beasley R. Worldwide variation in prevalence of symptoms of asthma, allergicrhinoconjunctivitis, and atopic eczema: ISAAC[J]. The Lancet,1998,351(9111):1225-32.
    [116] Waite D, Eyles E, Tonkin S, O'DONNELL T. Asthma prevalence in Tokelauanchildren in two environments[J]. Clinical&Experimental Allergy,1980,10(1):71-5.
    [117] Odhiambo J, Mungai M, Gicheha C, et al. Urban-rural differences inquestionnaire-derived markers of asthma in Kenyan school children[J]. EuropeanRespiratory Journal,1998,12(5):1105-12.
    [118] McKenna P, Hoffmann C, Minkah N, et al. The macaque gut microbiome inhealth, lentiviral infection, and chronic enterocolitis[J]. PLoS Pathog,2008,4(2):e20.
    [119] DeSantis TZ, Jr., Hugenholtz P, Keller K, et al. NAST: a multiple sequencealignment server for comparative analysis of16S rRNA genes[J]. Nucleic AcidsRes,2006,34(Web Server issue): W394-9.
    [120] Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets ofprotein or nucleotide sequences[J]. Bioinformatics,2006,22(13):1658-9.
    [121] Ludwig W, Strunk O, Westram R, et al. ARB: a software environment forsequence data[J]. Nucleic Acids Res,2004,32(4):1363-71.
    [122] Schloss PD, Handelsman J. Introducing DOTUR, a computer program fordefining operational taxonomic units and estimating species richness[J]. ApplEnviron Microbiol,2005,71(3):1501-6.
    [123] Huse SM, Huber JA, Morrison HG, et al. Accuracy and quality of massivelyparallel DNA pyrosequencing[J]. Genome biology,2007,8(7): R143.
    [124] Perez-Enciso M, Tenenhaus M. Prediction of clinical outcome with microarraydata: a partial least squares discriminant analysis (PLS-DA) approach[J]. Humangenetics,2003,112(5-6):581-92.
    [125] Lozupone C, Hamady M, Knight R. UniFrac--an online tool for comparingmicrobial community diversity in a phylogenetic context[J]. BMC bioinformatics,2006,7:371.
    [126] Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparingmicrobial communities[J]. Appl Environ Microbiol,2005,71(12):8228-35.
    [127] McKenna P, Hoffmann C, Minkah N, et al. The macaque gut microbiome inhealth, lentiviral infection, and chronic enterocolitis[J]. PLoS pathogens,2008,4(2): e20.
    [128] Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obeseand lean twins[J]. Nature,2008,457(7228):480-4.
    [129] Gill SR, Pop M, DeBoy RT, et al. Metagenomic analysis of the human distal gutmicrobiome[J]. Science,2006,312(5778):1355-9.
    [130] Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of thehuman microbiota changes with age[J]. BMC microbiology,2009,9(1):123.
    [131] Salonen A, de Vos WM, Palva A. Gastrointestinal microbiota in irritable bowelsyndrome: present state and perspectives[J]. Microbiology,2010,156(11):3205-15.
    [132] Wu X, Ma C, Han L, et al. Molecular characterisation of the faecal microbiota inpatients with type II diabetes[J]. Current microbiology,2010,61(1):69-78.
    [133] Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition anddevelopment of atopic manifestations in infancy: the KOALA Birth CohortStudy[J]. Gut,2007,56(5):661-7.
    [134] Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinalmicrobiota during infancy is associated with increased risk of allergic disease atschool age[J]. Journal of allergy and clinical immunology,2011,128(3):646-52.e5.
    [135] Salminen S, Isolauri E. Opportunities for improving the health and nutrition of thehuman infant by probiotics[J].2008.
    [136] Sj gren YM, Tomicic S, Lundberg A, et al. Influence of early gut microbiota onthe maturation of childhood mucosal and systemic immune responses[J]. Clinical&Experimental Allergy,2009,39(12):1842-51.
    [137] Rinne M, Kalliom ki M, Salminen S, et al. Probiotic intervention in the firstmonths of life: short-term effects on gastrointestinal symptoms and long-termeffects on gut microbiota[J]. Journal of pediatric gastroenterology and nutrition,2006,43(2):200-5.
    [138] Bezirtzoglou E, Stavropoulou E. Immunology and probiotic impact of thenewborn and young children intestinal microflora[J]. Anaerobe,2011,17(6):369-74.
    [139] Cunningham-Rundles S, Ahrné S, Johann-Liang R, et al. Effect of probioticbacteria on microbial host defense, growth, and immune function in humanimmunodeficiency virus type-1infection[J]. Nutrients,2011,3(12):1042-70.
    [140] Gueimonde M, Sakata S, Kalliom ki M, et al. Effect of maternal consumption oflactobacillus GG on transfer and establishment of fecal bifidobacterial microbiotain neonates[J]. Journal of pediatric gastroenterology and nutrition,2006,42(2):166-70.
    [141] Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with16S rRNA-gene-targeted species-specific primers for analysis of human intestinalbifidobacteria[J]. Applied and Environmental Microbiology,2004,70(1):167-73.
    [142] Sidorenko A, Novik G, Akimov V. Application of the methods of molecularsystematics to classification and identification of bacteria of the genusBifidobacterium][J]. Mikrobiologiia,2008,77(3):293.
    [143] Matsuki T, Watanabe K, Tanaka R. Genus-and Species-specific PCR Primers forthe Detection[J]. Probiotics and Prebiotics: Where Are We Going?,2002:85.
    [144] Mullié C, Odou MF, Singer E, et al. Multiplex PCR using16S rRNA gene‐targeted primers for the identification of bifidobacteria from human origin[J].FEMS microbiology letters,2003,222(1):129-36.
    [145] Frey D, Jacobson R, Poland G, et al. Assessment of the association betweenpediatric asthma and Streptococcus pyogenes upper respiratory infection. Allergyand Asthma Proceedings;2009: OceanSide Publications, Inc;2009. p.540-5.
    [146] Preston J, Thorburn A, Starkey M, et al. Streptococcus pneumoniae infectionsuppresses allergic airways disease by inducing regulatory T-cells[J]. EuropeanRespiratory Journal,2011,37(1):53-64.
    [147] Mazzoleni S, Stellini E, Cavaleri E, et al. Dental caries in children with asthmaundergoing treatment with short-acting beta2-agonists[J]. European journal ofpaediatric dentistry: official journal of European Academy of Paediatric Dentistry,2008,9(3):132.
    [148] Latella G, Fiocchi C, Caprili R. News from the “5th international meeting oninflammatory bowel diseases” CAPRI2010[J]. Journal of Crohn's and Colitis,2010,4(6):690-702.
    [149] Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis[J].Pharmacological Research,2012.
    [150] Gutkowski P, Madaliński K, Grek M, et al. Effect of orally administered probioticstrains Lactobacillus and Bifidobacterium in children with atopic asthma[J]. CentrEur J Immunol,2010,35(4):233-8.
    [151] Kim JY, Kwon JH, Ahn SH, et al. Effect of probiotic mix (Bifidobacteriumbifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primaryprevention of eczema: a double‐blind, randomized, placebo‐controlled trial[J].Pediatric allergy and immunology,2010,21(2p2): e386-e93.
    [152] HongLing M, HePing W, Ying Z, et al. The effects of Bifidobacterium on theexpression of CD86and HLA-DR in dendritic cells from the children with allergicasthma[J]. Zhongguo Weishengtaxixue Zazhi/Chinese Journal of Microecology,2009,21(4):304-7.
    [153] Duncan S, Lobley G, Holtrop G, et al. Human colonic microbiota associated withdiet, obesity and weight loss[J]. International journal of obesity,2008,32(11):1720-4.
    [154] Noverr MC, Huffnagle G. The ‘microflora hypothesis’ of allergic diseases[J].Clinical&Experimental Allergy,2005,35(12):1511-20.
    [155] Vael C, Desager K. The importance of the development of the intestinalmicrobiota in infancy[J]. Current opinion in pediatrics,2009,21(6):794-800.
    [156] Wang M, Karlsson C, Olsson C, et al. Reduced diversity in the early fecalmicrobiota of infants with atopic eczema[J]. Journal of allergy and clinicalimmunology,2008,121(1):129-34.
    [157] Riedler J, Braun-Fahrlander C, Eder W, et al. Exposure to farming in early lifeand development of asthma and allergy: a cross-sectional survey[J]. Lancet,2001,358(9288):1129-33.
    [158] Braun-Fahrl nder C, Riedler J, Herz U, et al. Environmental exposure toendotoxin and its relation to asthma in school-age children[J]. New EnglandJournal of Medicine,2002,347(12):869-77.
    [159] Matricardi PM, Rosmini F, Riondino S, et al. Exposure to foodborne and orofecalmicrobes versus airborne viruses in relation to atopy and allergic asthma:epidemiological study[J]. Bmj,2000,320(7232):412-7.
    [160] Halmerbauer G, Gartner C, Schierl M, et al. Study on the Prevention of Allergy inChildren in Europe (SPACE): allergic sensitization at1year of age in a controlledtrial of allergen avoidance from birth[J]. Pediatric allergy and immunology,2003,14(1):10-7.
    [161] Blaser MJ, Falkow S. What are the consequences of the disappearing humanmicrobiota?[J]. Nature Reviews Microbiology,2009,7(12):887-94.
    [162] Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infantintestinal microbiota[J]. PLoS biology,2007,5(7): e177.
    [163] Fanaro S, Chierici R, Guerrini P, et al. Intestinal microflora in early infancy:composition and development[J]. Acta paediatrica,2003,92(s441):48-55.
    [164] Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, et al. Analysis of intestinal floradevelopment in breast-fed and formula-fed infants by using molecularidentification and detection methods[J]. Journal of pediatric gastroenterology andnutrition,2000,30(1):61-7.
    [165] Wang M, Ahrne S, Antonsson M, et al. T-RFLP combined with principalcomponent analysis and16S rRNA gene sequencing: an effective strategy forcomparison of fecal microbiota in infants of different ages[J]. Journal ofmicrobiological methods,2004,59(1):53-69.
    [166] WenTso L, Stahl D, Hurst C, et al. Molecular approaches for the measurement ofdensity, diversity, and phylogeny[J]. Manual of environmental microbiology,2007,(Ed.3):139-56.
    [167] Orihara K, Dil N, Anaparti V, et al. What's new in asthma pathophysiology andimmunopathology?[J]. Expert Review of Respiratory Medicine,2010,4(5):605-29.
    [168] Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, hostgenetics and diet relevant to development of metabolic syndromes in mice[J]. TheISME journal,2009,4(2):232-41.
    [1] Bjorksten B. Evidence of probiotics in prevention of allergy and asthma[J]. CurrentDrug Targets-Inflammation&Allergy,2005,4(5):599-604.
    [2] Yoo J, Tcheurekdjian H, Lynch SV, et al. Microbial manipulation of immunefunction for asthma prevention inferences from clinical trials[J]. Proceedings of theAmerican Thoracic Society,2007,4(3):277-82.
    [3] Peat J, Bj rkstén B. Primary and secondary prevention of allergic asthma[J]. TheEuropean respiratory journal Supplement,1998,27:28s.
    [4] Halmerbauer G, Gartner C, Schierl M, et al. Study on the Prevention of Allergy inChildren in Europe (SPACE): allergic sensitization at1year of age in a controlledtrial of allergen avoidance from birth[J]. Pediatric allergy and immunology,2003,14(1):10-7.
    [5] Beasley R, Crane J, Lai CK, et al. Prevalence and etiology of asthma[J]. Journal ofallergy and clinical immunology,2000,105(2): S466-S72.
    [6] Yamada E, Vanna AT, Naspitz CK, et al. International Study of Asthma andAllergies in childhood (ISAAC)[J]. J Invest Allergol Clin Immunol,2002,12:34-41.
    [7] Waite D, Eyles E, Tonkin S, et al. Asthma prevalence in Tokelauan children in twoenvironments[J]. Clinical&Experimental Allergy,1980,10(1):71-5.
    [8] Odhiambo J, Mungai M, Gicheha C, et al. Urban-rural differences in questionnaire-derived markers of asthma in Kenyan school children[J]. European RespiratoryJournal,1998,12(5):1105-12.
    [9] Peat JK, Tovey E, Toelle BG, et al. House dust mite allergens. A major risk factorfor childhood asthma in Australia[J]. American journal of respiratory and criticalcare medicine,1996,153(1):141-6.
    [10] Custovic A, Simpson A, Woodcock A. Importance of indoor allergens in theinduction of allergy and elicitation of[J]. Allergy,1998,53(s48):115-20.
    [11] Von Mutius E. The environmental predictors of allergic disease[J]. Journal ofallergy and clinical immunology,2000,105(1):9-19.
    [12] Strachan DP. Hay fever, hygiene, and household size[J]. BMJ: British MedicalJournal,1989,299(6710):1259.
    [13] Julge K, Vasar M, Bj rkstén B. Development of allergy and IgE antibodies duringthe first five years of life in Estonian children[J]. Clinical&Experimental Allergy,2001,31(12):1854-61.
    [14] Lau S, Illi S, Sommerfeld C, et al. Early exposure to house-dust mite and catallergens and development of childhood asthma: a cohort study. Multicentre AllergyStudy Group[J]. Lancet,2000,356(9239):1392.
    [15] Savage DC. Microbial ecology of the gastrointestinal tract[J]. Annual Reviews inMicrobiology,1977,31(1):107-33.
    [16] Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shapingmicrobial diversity in the human intestine[J]. Cell,2006,124(4):837-48.
    [17] Xu J, Gordon JI. Honor thy symbionts[J]. Proceedings of the National Academy ofSciences,2003,100(18):10452-9.
    [18] Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation inNOD2gene and Crohn's disease in German and British populations[J]. The Lancet,2001,357(9272):1925-8.
    [19] Inoue N, Tamura K, Kinouchi Y, et al. Lack of common NOD2variants inJapanese patients with Crohn's disease[J]. Gastroenterology,2002,123(1):86-91.
    [20] Guo QS, Xia B, Jiang Y, et al. NOD23020insC frameshift mutation is notassociated with inflammatory bowel disease in Chinese patients of Han national[J].2004.
    [21] Ott S, Musfeldt M, Wenderoth D, et al. Reduction in diversity of the colonicmucosa associated bacterial microflora in patients with active inflammatory boweldisease[J]. Gut,2004,53(5):685-93.
    [22] Thayer Jr WR, Coutu JA, Van Kruiningen HJ. Possible role of mycobacteria ininflammatory bowel disease[J]. Digestive diseases and sciences,1984,29(12):1080-5.
    [23] Bullock NR, Booth JC, Gibson GR. Comparative composition of bacteria in thehuman intestinal microflora during remission and active ulcerative colitis[J]. Currentissues in intestinal microbiology,2004,5(2):59-64.
    [24] Darfeuille-Michaud A, Neut C, Barnich N, et al. Presence of adherentEscherichia coli strains in ileal mucosa of patients with Crohn's disease[J].Gastroenterology,1998,115(6):1405-13.
    [25] Sokol H, Seksik P, Rigottier‐Gois L, et al. Specificities of the fecal microbiota ininflammatory bowel disease[J]. Inflammatory bowel diseases,2006,12(2):106-11.
    [26] Onderdonk A, Franklin M, Cisneros R. Production of experimental ulcerativecolitis in gnotobiotic guinea pigs with simplified microflora[J]. Infection andimmunity,1981,32(1):225-31.
    [27] Bull TJ, McMinn EJ, Sidi-Boumedine K, et al. Detection and verification ofMycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsyspecimens from individuals with and without Crohn's disease[J]. Journal of ClinicalMicrobiology,2003,41(7):2915-23.
    [28] Loubinoux J, Bronowicki JP, Pereira IA, et al. Sulfate‐reducing bacteria in humanfeces and their association with inflammatory bowel diseases[J]. FEMSmicrobiology ecology,2002,40(2):107-12.
    [29] Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape thenutrient environment of the mammalian intestine[J]. Annual review of nutrition,2002,22(1):283-307.
    [30] Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteria attenuateinflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA[J].Nature immunology,2003,5(1):104-12.
    [31] Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from humanfeces, that produce butyrate as a major fermentation product[J]. Applied andEnvironmental Microbiology,2004,70(10):5810-7.
    [32]庞小燕,张宝让,魏桂芳,等.应用TGGE技术分析人肠道中双歧杆菌的组成[J].微生物学报,2005,45(5):738-44.
    [33] Rajili‐Stojanovi M, Smidt H, De Vos WM. Diversity of the humangastrointestinal tract microbiota revisited[J]. Environmental microbiology,2007,9(9):2125-36.
    [34] B ckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the humanintestine[J]. Science,2005,307(5717):1915-20.
    [35] Saavedra JM, Bauman N, Perman J, et al. Feeding of Bifidobacterium bifidum andStreptococcus thermophilus to infants in hospital for prevention of diarrhoea andshedding of rotavirus[J]. The Lancet,1994,344(8929):1046-9.
    [36] Takahashí T, Nakagawa E, Nara T, et al. Effects of orally ingested Bifidobacteriumlongum on the mucosal IgA response of mice to dietary antigens[J]. Bioscience,biotechnology, and biochemistry,1998,62(1):10-5.
    [37] Fujiwara M, Kaneko T, Iwana H, et al. Inhibitory effects of Bifidobacteriumlongum on experimental ulcerative colitis induced in mice by synthetic dextransulfate sodium[J]. Digestion,2003,67(1-2):90-5.
    [38] Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy (Bifidobacteriumlongum/Synergy1) initiates resolution of inflammation in patients with activeulcerative colitis: a randomised controlled pilot trial[J]. Gut,2005,54(2):242-9.
    [39] Zoetendal EG, Vaughan EE, De Vos WM. A microbial world within us[J].Molecular microbiology,2006,59(6):1639-50.
    [40] Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut[J].Science,2001,292(5519):1115-8.
    [41] Forchielli ML, Walker WA. The role of gut-associated lymphoid tissues andmucosal defence[J]. Br J Nutr,2005,93Suppl1: S41-8.
    [42] Forchielli ML, Walker WA. The role of gut-associated lymphoid tissues andmucosal defence[J]. British Journal of Nutrition,2005,93(1):41-8.
    [43] Brandtzaeg P. Development of the mucosal immune system in humans. Recentdevelopments in infant nutrition: Springer;1996. p.349-76.
    [44] Sudo N, Sawamura S-a, Tanaka K, et al. The requirement of intestinal bacterialflora for the development of an IgE production system fully susceptible to oraltolerance induction[J]. The Journal of Immunology,1997,159(4):1739-45.
    [45] Holt PG, Sly PD. Allergic respiratory disease: strategic targets for primaryprevention during childhood[J]. Thorax,1997,52(1):1.
    [46] Baldini M, Lohman IC, Halonen M, et al. A Polymorphism*in the5'flankingregion of the CD14gene is associated with circulating soluble CD14levels and withtotal serum immunoglobulin E[J]. American journal of respiratory cell andmolecular biology,1999,20(5):976.
    [47] Rook GA, Stanford JL. Give us this day our daily germs[J]. Immunology today,1998,19(3):113-6.
    [48] Stene LC, Nafstad P. Relation between occurrence of type1diabetes and asthma[J].The Lancet,2001,357(9256):607-8.
    [49] Nagler-Anderson C. Man the barrier! strategic defences in the intestinalmucosa[J]. Nature Reviews Immunology,2001,1(1):59-67.
    [50] A zuara V, Grigoriadou K, Lembezat MP, et al. Strain‐specific TCR repertoireselection of IL‐4‐producing Thy‐1dull γ δ thymocytes[J]. European journalof immunology,2001,31(1):205-14.
    [51] Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease:revisiting the hygiene hypothesis[J]. Nature Reviews Immunology,2001,1(1):69-75.
    [52] Matricardi PM, Rosmini F, Riondino S, et al. Exposure to foodborne and orofecalmicrobes versus airborne viruses in relation to atopy and allergic asthma:epidemiological study[J]. Bmj,2000,320(7232):412-7.
    [53] Sepp E, Julge K, Vasar M, et al. Intestinal microflora of Estonian and Swedishinfants[J]. Acta paediatrica,1997,86(9):956-61.
    [54] Bj rkstén B, Naaber P, Sepp E, et al. The intestinal microflora in allergic Estonianand Swedish2-year-old children[J]. Clinical and Experimental Allergy,1999,29:342-6.
    [55] Kalliom ki M, Kirjavainen P, Eerola E, et al. Distinct patterns of neonatal gutmicroflora in infants in whom atopy was and was not developing[J]. Journal ofallergy and clinical immunology,2001,107(1):129-34.
    [56] Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition anddevelopment of atopic manifestations in infancy: the KOALA Birth Cohort Study[J].Gut,2007,56(5):661-7.
    [57] Wang M, Karlsson C, Olsson C, et al. Reduced diversity in the early fecalmicrobiota of infants with atopic eczema[J]. Journal of allergy and clinicalimmunology,2008,121(1):129-34.
    [58] Sepp E, t epetova J, Smidt I, et al. Intestinal lactoflora in Estonian and Norwegianpatients with antibiotic associated diarrhea[J]. Anaerobe,2011,17(6):407-9.
    [59] Bj rkstén B, Sepp E, Julge K, et al. Allergy development and the intestinalmicroflora during the first year of life[J]. Journal of allergy and clinical immunology,2001,108(4):516-20.
    [60] Rousseau C, Levenez F, Fouqueray C, et al. Clostridium difficile colonization inearly infancy is accompanied by changes in intestinal microbiota composition[J].Journal of Clinical Microbiology,2011,49(3):858-65.
    [61] Kirjavainen P, Kalliom ki M, Salminen S, et al. Postnatal effects of obstetricalepidural anesthesia on allergic sensitization[J]. Allergy,2007,62(1):88-9.
    [62] Noverr MC, Huffnagle G. The ‘microflora hypothesis’ of allergic diseases[J].Clinical&Experimental Allergy,2005,35(12):1511-20.
    [63] Noverr MC, Noggle RM, Toews GB, et al. Role of antibiotics and fungalmicrobiota in driving pulmonary allergic responses[J]. Infection and immunity,2004,72(9):4996-5003.
    [64] Noverr MC, Falkowski NR, McDonald RA, et al. Development of allergic airwaydisease in mice following antibiotic therapy and fungal microbiota increase: role ofhost genetics, antigen, and interleukin-13[J]. Infection and immunity,2005,73(1):30-8.
    [65] B ttcher M, Nordin E, Sandin A, et al. Microflora‐associated characteristics infaeces from allergic and nonallergic infants[J]. Clinical&Experimental Allergy,2000,30(11):1591-6.
    [66] Kirjavainen P, Arvola T, Salminen S, et al. Aberrant composition of gut microbiotaof allergic infants: a target of bifidobacterial therapy at weaning?[J]. Gut,2002,51(1):51-5.
    [67] Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficialeffects[J]. Antonie Van Leeuwenhoek,2002,82(1-4):279-89.
    [68] Kullisaar T, Zilmer M, Mikelsaar M, et al. Two antioxidative lactobacilli strains aspromising probiotics[J]. International journal of food microbiology,2002,72(3):215-24.
    [69]赵立平,张晨虹.肥胖相关的肠道微生物群落结构动力学与功能解析研究[J].生命科学,2010,(12):1247-53.
    [70] Hayashi H, Sakamoto M, Kitahara M, et al. Molecular analysis of fecal microbiotain elderly individuals using16S rDNA library and T-RFLP[J]. Microbiology andimmunology,2003,47(8):557.
    [71] Zhang M, Liu B, Zhang Y, et al. Structural shifts of mucosa-associated lactobacilliand Clostridium leptum subgroup in patients with ulcerative colitis[J]. Journal ofClinical Microbiology,2007,45(2):496-500.
    [72] Furrie E. A molecular revolution in the study of intestinal microflora[J]. Gut,2006,55(2):141-3.
    [73] Sogin ML, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea andthe underexplored “rare biosphere”[J]. Proceedings of the National Academy ofSciences,2006,103(32):12115-20.
    [74] McKenna P, Hoffmann C, Minkah N, et al. The macaque gut microbiome in health,lentiviral infection, and chronic enterocolitis[J]. PLoS pathogens,2008,4(2): e20.
    [75] Zhang M, Zhang M, Zhang C, et al. Pattern extraction of structural responses of gutmicrobiota to rotavirus infection via multivariate statistical analysis of clone librarydata[J]. FEMS microbiology ecology,2009,70(2):177-85.
    [76] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis (TGGE) in microbialecology[J]. Antonie Van Leeuwenhoek,1998,73(1):127-41.
    [77] Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolicphenotypes[J]. Proceedings of the National Academy of Sciences,2008,105(6):2117-22.
    [78] Wei G, Lu H, Zhou Z, et al. The microbial community in the feces of the giantpanda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clonelibrary analysis[J]. Microbial ecology,2007,54(1):194-202.
    [79] Zhao Y, Li W, Zhou Z, Wang L, Pan Y, Zhao L. Dynamics of microbialcommunity structure and cellulolytic activity in agricultural soil amended with twobiofertilizers[J]. European journal of soil biology,2005,41(1):21-9.
    [80] Liu B, Zhang F, Feng X, et al. Thauera and Azoarcus as functionally importantgenera in a denitrifying quinoline‐removal bioreactor as revealed by microbialcommunity structure comparison[J]. FEMS microbiology ecology,2006,55(2):274-86.
    [81] Mao Y, Zhang X, Yan X, et al. Development of group-specific PCR-DGGEfingerprinting for monitoring structural changes of Thauera spp. in anindustrial wastewater treatment plant responding to operational perturbations[J].Journal of microbiological methods,2008,75(2):231-6.
    [82] Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerase chainreaction-amplified genes coding for16S rRNA[J]. Applied and EnvironmentalMicrobiology,1993,59(3):695-700.
    [83] Shen J, Zhang B, Wei G, et al. Molecular profiling of the Clostridium leptumsubgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresisand clone library analysis[J]. Applied and Environmental Microbiology,2006,72(8):5232-8.
    [84] Han R, Lai R, Ding Q, et al. Apolipoprotein AI stimulates AMP-activated proteinkinase and improves glucose metabolism[J]. Diabetologia,2007,50(9):1960-8.
    [85] Wei H, Dong L, Wang T, et al. Structural shifts of gut microbiota as surrogateendpoints for monitoring host health changes induced by carcinogen exposure[J].FEMS microbiology ecology,2010,73(3):577-86.
    [86] Zhang X, Yan X, Gao P, et al. Optimized sequence retrieval from single bands oftemperature gradient gel electrophoresis profiles of the amplified16S rDNAfragments from an activated sludge system[J]. Journal of microbiological methods,2005,60(1):1-11.
    [87] Marsh TL. Terminal restriction fragment length polymorphism (T-RFLP): anemerging method for characterizing diversity among homologous populations ofamplification products[J]. Current opinion in microbiology,1999,2(3):323-7.
    [88] Osborn AM, Moore ER, Timmis KN. An evaluation of terminal‐restrictionfragment length polymorphism (T‐RFLP) analysis for the study of microbialcommunity structure and dynamics[J]. Environmental microbiology,2000,2(1):39-50.
    [89] Mummey DL, Stahl PD. Spatial and temporal variability of bacterial16S rDNA‐based T‐RFLP patterns derived from soil of two Wyoming grasslandecosystems[J]. FEMS microbiology ecology,2003,46(1):113-20.
    [90] Horz H-P, Rich V, Avrahami S, et al. Methane-oxidizing bacteria in a Californiaupland grassland soil: diversity and response to simulated global change[J]. Appliedand Environmental Microbiology,2005,71(5):2642-52.
    [91] Bernhard AE, Donn T, Giblin AE, et al. Loss of diversity of ammonia‐oxidizingbacteria correlates with increasing salinity in an estuary system[J]. Environmentalmicrobiology,2005,7(9):1289-97.
    [92] Braker G, Ayala-del-R o HL, Devol AH, et al. Community structure of denitrifiers,Bacteria, and Archaea along redox gradients in Pacific Northwest marine sedimentsby terminal restriction fragment length polymorphism analysis of amplified nitritereductase (nirS) and16S rRNA genes[J]. Applied and Environmental Microbiology,2001,67(4):1893-901.
    [93] Scala DJ, Kerkhof LJ. Horizontal heterogeneity of denitrifying bacterialcommunities in marine sediments by terminal restriction fragment lengthpolymorphism analysis[J]. Applied and Environmental Microbiology,2000,66(5):1980-6.
    [94] Fedi S, Tremaroli V, Scala D, et al. T-RFLP analysis of bacterial communities incyclodextrin-amended bioreactors developed for biodegradation of polychlorinatedbiphenyls[J]. Research in microbiology,2005,156(2):201-10.
    [95] Friedrich MW, Schmitt-Wagner D, Lueders T, et al. Axial Differences inCommunity Structure ofCrenarchaeota and Euryarchaeota in the HighlyCompartmentalized Gut of the Soil-Feeding TermiteCubitermes orthognathus[J].Applied and Environmental Microbiology,2001,67(10):4880-90.
    [96] Kibe R, Sakamoto M, Yokota H, et al. Movement and fixation of intestinalmicrobiota after administration of human feces to germfree mice[J]. Applied andEnvironmental Microbiology,2005,71(6):3171-8.
    [97] Margulies M, Egholm M, Altman WE, et al. Genome sequencing inmicrofabricated high-density picolitre reactors[J]. Nature,2005,437(7057):376-80.
    [98] Binladen J, Gilbert MTP, Bollback JP, et al. The use of coded PCR primers enableshigh-throughput sequencing of multiple homolog amplification products by454parallel sequencing[J]. PLoS One,2007,2(2): e197.
    [99] Handelsman J. Metagenomics: application of genomics to unculturedmicroorganisms[J]. Microbiology and Molecular Biology Reviews,2004,68(4):669-85.
    [100] Béjà O, Suzuki MT, Koonin EV, et al. Construction and analysis of bacterialartificial chromosome libraries from a marine microbial assemblage[J].Environmental microbiology,2000,2(5):516-29.
    [101] Quaiser A, Ochsenreiter T, Klenk HP, et al. First insight into the genome of anuncultivated crenarchaeote from soil[J]. Environmental microbiology,2002,4(10):603-11.
    [102] Gill SR, Pop M, DeBoy RT, et al. Metagenomic analysis of the human distal gutmicrobiome[J]. Science,2006,312(5778):1355-9.
    [103] Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbesassociated with obesity[J]. Nature,2006,444(7122):1022-3.
    [104] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established bymetagenomic sequencing[J]. Nature,2010,464(7285):59-65.
    [1]阿不都热依木·玉素甫,李林,哈木拉提·吾甫尔,等.维医异常体液分型及其与氧化-抗氧化系统关系的研究[J].中国中医基础医学杂志,2004,10(8):61-62.
    [2]阿不都热依木·玉苏甫,哈木拉提·吾甫尔,伊里亚斯·阿期亚.冠心病的维医异常体液分型及其自由基代谢变化探讨[J].中国民族医药杂志,2004,2:1-3.
    [3]哈木拉提,阿布都艾尼,阿不都热衣木等.哮喘的维吾尔医异常体液分型及其与氧化抗氧化系统关系的研究[J].中国民族医药杂志,1999,5(4):5-7.
    [4]周志东,赵伟康.机体抗氧化系统研究进展[J].国外医学·老年医学分册,1999,20(4):172–1761.
    [5] Yusup A, Upur H, Tursun X, et al, Moore N. The effect of abnormal Savda Munziqtotal flavonoids on the proliferation, apoptosis and correlative gene expression inhuman hepatoma (HepG2) cells[J]. Toxicology Letters,2006,164: S250.
    [6]阿不都热依木·玉素甫,李林,哈木拉提·吾甫尔,等.体液分型及其与氧化—抗氧化系统[J].医学杂志,2004,10(8):61–621.
    [7]潘华珍,冯立明,许彩民,等.丙二醛对红细胞的作用.生物化学与生物物理学进展[J].1984,2:341.
    [8]哈木拉提·吾甫尔,艾斯卡尔·依米提,伊力哈木江·沙比提,等.维吾尔族异常黑胆质型患者基因多态性研究[J].中华医学遗传学杂志,2003,20(1):77–781.
    [9]哈木拉提·吾甫尔,艾斯卡尔·依米提,伊力哈木江·沙比,等.血管紧张素转移酶Ace基因多态性与维医异常黑胆质的关系[J].第四军医大学学报,2003,24(11):1022–10231.
    [10]哈木拉提·吾甫尔,艾斯卡尔·依米提. apoE基因多态性与异常黑胆质型疾病的关系[J].中华医学遗传学杂志,2003,20(6):549-550.
    [11]王雯,哈木拉提·吾甫尔,伊力哈木江·沙比提. β2肾上腺素能受体基因多态性与新疆维吾尔族患者支气管哮喘间的关系研究[J].心肺血管病杂志,2004,23(3):147-152.
    [12]阿不都热依木,哈木拉提,斯拉甫·努尔买买提,肖开提.异常黑胆质清除剂对线粒体氧化损伤的保护作用[J].中国中医基础医学杂志,2002,8(7):38-40.
    [13]阿布都艾尼,阿不都热依木,哈木拉提.异常黑胆质成熟剂和清除剂对OH·引发的DNA损伤的保护作用〔J〕中药药理与临床,2000,16(3):33-35.
    [14]哈木拉提·吾甫尔.异常黑胆质成熟剂和清除剂对DNA辐射损伤的保护作用研究[M]维吾尔医气质、体液论及其现代研究.乌鲁木齐:新疆科学技术出版社,2003:100-115.
    [15]张莉,哈木拉提·吾甫尔,张仑.异常黑胆质成熟剂提取物对小鼠辐射的防护作用[J].中南大学学报,2007,32(1):69-73.
    [16]哈木拉提·吾甫尔,艾斯卡尔·依米提,伊力哈木江·沙比提.异常黑胆质成熟剂与清除剂对人Hela细胞凋亡基因表达的影响[J].细胞与分子免疫学杂志,2001,17(2);109-111.
    [17]艾斯卡尔·伊米提,哈木拉提·吾甫尔,布再娜甫·伊力哈木.维吾尔医成熟剂和清除剂诱导T淋巴瘤细胞凋亡的研究[J].中国药理与临床,2000,16(2):33-34.
    [18]哈木拉提·吾甫尔.异常黑胆质成熟剂有效部位的提取极其抗癌活性研究.157-161[M]维吾尔医气质、体液论及其现代研究.乌鲁木齐:新疆科学技术出版社,2003:
    [19] Yin P, Mohemaiti P, Chen J, et al. Serum metabolic profiling of abnormal savda byliquid chromatography/mass spectrometry[J]. Journal of Chromatography B,2008,871(2):322-7.
    [20]买买提明巴吐尔,吾甫尔哈木拉提,豪富华,等. Correlative analysis of neoplasmpatients with phlegm-stasis (痰瘀) or abnormal savda (异常黑胆质) syndrome,based on metabonomics[J].中医杂志:英文版,2012,32(001):119-24.
    [21]吴泽明,赵春霞,许国旺,等.基于液相色谱质谱联用系统的异常黑胆质证哮喘病的血清代谢组学研究[J].中医药现代化,2009,11(1):134-140.
    [22]李春燕,杨娜,严兴海.维吾尔医异常体液分型支气管哮喘患者肠道菌群多样性变化研究[J].新疆医科大学学报,2012,35(10):1323-1327.
    [23]哈木拉提·吾甫尔.异常黑胆质与肾虚痰淤的关系研究.157-161[M]维吾尔医气质、体液论及其现代研究.乌鲁木齐:新疆科学技术出版社,2003:88-99.
    [24]哈木拉提·吾甫尔,阿依努尔·买提斯迪克.异常黑胆质证载体动物模型的建立及其自然恢复反证[J].新疆医科大学学报,2006,29(10):910-914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700