用户名: 密码: 验证码:
可视化光热治疗用微纳米近红外吸收剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光热治疗是近年来发展的一种微创肿瘤治疗技术,通过激光将肿瘤局部温度升高来杀死肿瘤细胞,能够实现定点杀伤,大大降低了全身系统毒性,因此光热治疗被看作是非常有潜力替代手术的治疗肿瘤的技术之一。然而,有效的光热治疗一般需要光热治疗剂的辅助。目前的无机光热治疗剂具有较高的光热转换效率,但是由于表面修饰困难,导致其靶向性差、携载药物困难,同时无机光热治疗剂的不可降解性也令人担忧;有机光热治疗剂一般具有良好的生物相容性,但是其较低的光热转换效率及光热稳定性、复杂的合成方法限制了其进一步应用。此外,成功的光热治疗还需要借助于合适的成像技术。所以开发具有成像功能、高靶向性和载药能力、高的光热转换效率和光热稳定性、制备方法简单的新型光热治疗剂具有重要的研究意义。
     针对目前硫化铜纳米粒子光热治疗剂靶向性差、携载药物困难等问题,本研究通过将硫化铜纳米粒子与微泡超声造影剂结合,实现了在超声诊断辅助下的靶向递送硫化铜纳米粒子至肿瘤部位进行有效的肿瘤光热治疗,大大提高了光热治疗的精准度与疗效。进一步根据肿瘤部位含有大量的明胶水解酶的特性,通过高碘酸盐氧化法合成了键连有化疗药物阿霉素的明胶-阿霉素共聚物,并将其作为稳定剂制备了集酶响应药物释放、光声成像与光热治疗于一体的酶响应硫化铜纳米粒子,实现了光热治疗与化疗对肿瘤组织的协同治疗,大大提高了治疗效果。
     为了避免无机光热治疗剂在体内长期存留所引起的潜在毒性,本研究开发了生物相容的有机聚吡咯纳米粒子作为新型具有光声成像功能的光热治疗剂。通过一步液相分散聚合法制备了形貌均一,平均粒径为~46nm的聚吡咯纳米粒子。聚吡咯纳米粒子在水溶液及生物介质中具有优良的分散性能及稳定性,与传统的光热治疗剂金纳米棒相比,具有更高的光热转换效率及光热稳定性。由于其显著的近红外光吸收特性,聚吡咯纳米粒子能够很好地对深部组织进行光声成像,体外光声成像深度达到了4.3cm,并且体内外肿瘤的光热消融实验证实了聚吡咯纳米粒子用于肿瘤光热治疗的巨大潜力。
     由于有机聚吡咯材料的溶解性极差,严重限制了聚吡咯材料的进一步加工应用。为了克服这一缺陷,本研究合成了可溶性的聚吡咯复合物,并通过简单的水包油乳液法制备了包裹有液态氟碳的聚吡咯微/纳米胶囊。其内部包裹的液态氟碳能够显著增强体内外超声回声信号,而聚吡咯壳层则保证了其优良的光热转换性能。制备得到的聚吡咯微/纳米胶囊在水溶液及生物介质中具有良好的分散性及升温性能,体内外的肿瘤光热消融实验证实了包裹有液态氟碳的聚吡咯微/纳米胶囊是一种新型的具有超声成像功能的多功能光热治疗剂,在肿瘤的光热治疗方面具有很大的潜力。
     针对简单功能模块组合得到的多功能光热治疗剂可能会增加患者在治疗时使用的药物剂量,从而加重了患者的代谢负担及潜在的全身毒副作用。本研究利用可溶性有机聚吡咯复合物与聚乙烯吡咯烷酮高分子之间的π-π共轭作用,通过一步水包油微乳液法制备了组成单一,具有超声成像功能的多功能聚吡咯空心微球光热治疗剂。聚吡咯空心微球在水溶液及生物介质中具有良好的分散性,内部的空腔使得其具有良好的超声造影增强的能力。体内外的肿瘤光热消融实验证实了在近红外激光的照射下,聚吡咯空心微球能够有效的杀死肿瘤细胞,在超声成像监测下的肿瘤光热治疗方面具有非常广阔的应用前景。
     综上所述,本研究通过将无机光热治疗剂硫化铜纳米粒子与微泡超声造影剂结合,实现了超声成像及靶向递送硫化铜纳米粒子至肿瘤部位进行有效的光热治疗;进一步根据肿瘤部位高含量的明胶水解酶特性,成功制备了集酶响应释放药物、光声成像与光热治疗功能于一体的酶响应硫化铜纳米粒子,并实现了光热治疗与化疗的协同作用,提高了肿瘤治疗的疗效;为了避免无机光热治疗剂在体内长期存留引起的潜在毒性,论文开发了生物相容的有机聚吡咯纳米粒子作为具有高光热转换效率及光热稳定性的多功能光热治疗剂用于光声成像与肿瘤的光热治疗;通过合成可溶性的聚吡咯复合物克服了传统聚吡咯材料溶解性差的缺陷,成功制备了集超声诊断与光热治疗功能于一体的聚吡咯微/纳米胶囊及聚吡咯空心微球,在肿瘤的可视化治疗中具有非常好的应用前景。
Photothermal therapy (PTT) has gained popularity as a promising minimallyinvasive alternative to surgery by delivering photoenergy directly into tumor tissueswithout causing systemic effects. However, PTT agents are required for realizingeffective PTT. Currently, inorganic PTT agents with high photothermal conversionefficiency, have difficulties in surface modification, targeting and carrying drugs.And their non-biodegradability is still worrying. Organic PTT agents have goodbiocompatibility but the low photo-thermal conversion efficiency, photothermalstability and complicated synthesis process limit their further use. On the other hand,appropriate imaging techniques are essential to realize successful PTT treatment.Thus, introducing imaging modalities to PTT agents with high targeting and drugloading ability, high photothermal conversion efficiency and photothermal stabilityas well as simple preparation method, is of great importance.
     CuS nanoparticles (NPs) have difficulties in targeting and drug loading. In thisstudy, a novel microbubble system was developed for both ultrasound imaging andtargeted CuS NPs delivery using ultrasound-targeted microbubble destruction to killtumor cells by PTT. Futhermore, multifunctional CuS NPs stabilized with DOX-conjugated gelatin (CuS@Gel/DOX NPs) were developed to combine thephotoacoustic tomography (PAT), enzyme-responsive drug delivery and PTT forcancer treatments. CuS@Gel/DOX NPs could selectively release drug due to theenzymatic degradation of gelatin-DOX conjugates. Moreover, a synergistic effect inkilling cancer cells was found by the combined photothermal therapy andchemotherapy with minimal side effects.
     In order to avoid the potential long-term toxicity of inorganic photothermalagents, uniform biocompatible polypyrrole (PPy) NPs with a average diameter of~46nm were constructed from a facile one-step aqueous dispersion polymerizationmethod. The as-prepared PPy NPs exhibited good colloidal stability, significantphotothermal conversion efficiency due to strong NIR absorption and goodphotostability, higher than the well known Au nanorods. Moreover, the strong NIRabsorption allowed visualization of PPy NPs-containing agar gel embeded in chickenbreast muscle at a depth of~4.3cm by PAT. Our results indicate that PPy NPs arepromising agents both for PAT and PTT, with good biocompatibility.
     To overcome the inferior solubility of polypyrrole materials in common solvents,soluble PPy complex were synthesized and used for developing PPymicro/nanocapsules with encapsulated perfluorooctylbromide (PPyPFOBMC/PPyPFOBNC) from a facile one-step emulsion method. Owing to the encapsulated liquid PFOB and strong NIR absorption of PPy shell, the resulted PPyPFOBMC/PPyPFOBNC not only provided excellent contrast enhancement for ultrasoundimaging, but also served as efficient photoabsorbers for NIR photothermal tumorablation using a rather lower laser power density at0.64W/cm2. In vitro and in vivostudies both showed no side effects of PPyPFOBMC/PPyPFOBNC was observed atour tested doses. Thus, this simple and highly efficient theranostic agent based onpolypyrrole-composites would remarkably improve the methodologies for cancerdiagnosis and therapy.
     Simple physical combination of different dianostic and therapeutic elementwould give a relatively high onetime dose which may cause systemic toxicity andimpose an extra burden for the patients to excrete the theranostic agents. Thus,organic polypyrrole hollow microspheres (PPyHM) with good dispersity weredeveloped for the first time as an photothermal agent with US-responsive capabilityvia a facile oil-in-water (O/W) micro-emulsion method by employing soluble PPycomplex. Due to the π-π interaction of PPy complex and polyvinylpyrrolidone, thegenerated PPyHM not only provided excellent contrast enhancement for ultrasoundimaging, but also served as efficient photoabsorbers for NIR photothermal tumorablation both in vitro and in vivo.
     In conclusion, novel microbubble with CuS NPs could be used for bothultrasound imaging and targeted CuS nanoparticles (NPs) delivery through UTMD tokill tumor cells by PTT; CuS@Gel/DOX NPs could selectively release drug due tothe enzymatic degradation of gelatin-DOX conjugates as well as strong NIRabsorption for PAT and PTT; Organic PPy NPs are promising agents both for PAT andPTT, with good biocompatibility; PPy composites fabricated from soluble PPycomplex not only provided excellent contrast enhancement for ultrasound imaging,but also served as efficient photoabsorbers for NIR photothermal tumor ablation bothin vitro and in vivo.
引文
[1] Yong K T, Roy I, Swihart M T, et al. Multifunctional Nanoparticles asBiocompatible Targeted Probes for Human Cancer Diagnosis and Therapy[J].Journal of Materials Chemistry,2009,19(27):4655-4672.
    [2] Fiedler V U, Schwarzmaier H J, Eickmeyer F, et al. Laser-Induced InterstitialThermotherapy of Liver Metastases in An Interventional0.5Tesla MRI System:Technique and First Clinical Experiences[J]. Journal of Magnetic ResonanceImaging,2001,13(5):729-737.
    [3] Weissleder R. A Clearer Vision for in Vivo Imaging[J]. Nature Biotechnology,2001,19(4):316-317.
    [4] Melancon M P, Zhou M, Li C. Cancer Theranostics with Near-Infrared Light-Activatable Multimodal Nanoparticles[J]. Accounts of Chemical Research,2011,44(10):947-956.
    [5] Skrabalak S E, Au L, Lu X, et al. Gold Nanocages for Cancer Detection andTreatment[J]. Nanomedicine (Lond),2007,2(5):657-668.
    [6] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-Mediated Near-InfraredThermal Therapy of Tumors Under Magnetic Resonance Guidance[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2003,100(23):13549-13554.
    [7] Huang X H, El-Sayed I H, Qian W, et al. Cancer Cell Imaging and PhotothermalTherapy in the Near-Infrared Region by Using Gold Nanorods[J]. Journal of theAmerican Chemical Society,2006,128(6):2115-2120.
    [8] Lee K S, El-Sayed M A. Dependence of the Enhanced Optical ScatteringEfficiency Relative to that of Absorption for Gold Metal Nanorods on AspectRatio, Size, End-Cap Shape, and Medium Refractive Index[J]. Journal ofPhysical Chemistry B,2005,109(43):20331-20338.
    [9] Lai M J, Wen S H, Lin Y H, et al. Distributions of Human Leukocyte Antigen-A,-B, and-DRB1Alleles and Haplotypes Based on46,915Taiwanese Donors[J].Human Immunology,2010,71(8):777-782.
    [10] Sharifi S, Behzadi S, Laurent S, et al. Toxicity of Nanomaterials[J]. ChemicalSociety Reviews,2012,41(6):2323-2343.
    [11] Ghosh P, Han G, De M, et al. Gold Nanoparticles in Delivery Applications[J].Advanced Drug Delivery Reviews,2008,60(11):1307-1315.
    [12] Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles[J]. Small,2008,4(1):26-49.
    [13] Nel A, Xia T, Madler L, et al. Toxic Potential of Materials at the Nanolevel[J].Science,2006,311(5761):622-627.
    [14] Peer D, Karp J M, Hong S, et al. Nanocarriers as An Emerging Platform forCancer Therapy[J]. Nature Nanotechnology,2007,2(12):751-760.
    [15] Chen W R, Adams R L, Higgins A K, et al. Photothermal Effects on MurineMammary Tumors Using Indocyanine Green and an808-nm Diode Laser: An invivo Efficacy Study[J]. Cancer Letters,1996,98(2):169-173.
    [16] Yu J, Javier D, Yaseen M A, et al. Self-Assembly Synthesis, Tumor CellTargeting, and Photothermal Capabilities of Antibody-Coated IndocyanineGreen Nanocapsules[J]. Journal of the American Chemical Society,2010,132(6):1929-1938.
    [17] Lovell J F, Jin C S, Huynh E, et al. Porphysome Nanovesicles Generated byPorphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents[J].Nature Materials,2011,10(4):324-332.
    [18] Tian Q W, Jiang F R, Zou R J, et al. Hydrophilic Cu9S5Nanocrystals: APhotothermal Agent with a25.7%Heat Conversion Efficiency for PhotothermalAblation of Cancer Cells in Vivo[J]. ACS Nano,2011,5(12):9761-9771.
    [19]姜鹏,生梦飞,王义善等.热疗治疗食管癌研究进展[J].中国肿瘤临床与康复,2005,12(5):463-465.
    [20] Castrenpersons M, Schroder T, Ramo O J, et al. Contact Nd-Yag LaserPotentiates the Tumor-Cell Killing Effect of Hyperthermia[J]. Lasers in Surgeryand Medicine,1991,11(6):595-600.
    [21] Jolesz F A, Hynynen K. Magnetic Resonance Image-Guided FocusedUltrasound Surgery[J]. Cancer Journal,2002,8: S100-S112.
    [22] Seki T, Wakabayashi M, Nakagawa T, et al. Percutaneous MicrowaveCoagulation Therapy for Patients with Small Hepatocellular Carcinoma-Comparison with Percutaneous Ethanol Injection Therapy[J]. Cancer,1999,85(8):1694-1702.
    [23]康艳霞,张贺龙.肿瘤热疗机制的研究进展[J].现代肿瘤医学,2008,16(3):473-475.
    [24]王化宁,包国强,赖大年.肿瘤热疗的临床应用及研究进展[J].现代肿瘤医学,2006,14(2):231-233.
    [25] Ito A, Shinkai M, Honda H, et al. Heat Shock Protein70Expression InducesAntitumor Immunity During Intracellular Hyperthermia Using MagnetiteNanoparticles[J]. Cancer Immunology Immunotherapy,2003,52(2):80-88.
    [26] Hildebrandt B, Wust P, Ahlers O, et al. The Cellular and Molecular Basis ofHyperthermia[J]. Critical Reviews in Oncology Hematology,2002,43(1):33-56.
    [27]梁寒,郝希山.热疗的生物学机制[J].国外医学肿瘤学分册,2001,6(28):438-440.
    [28] Rong Y, Mack P. Apoptosis Induced by Hyperthermia in Dunn OsteosarcomaCell Line in Vitro[J]. International Journal of Hyperthermia,2000,16(1):19-27.
    [29] El-Sayed M A. Some Interesting Properties of Metals Confined in Time andNanometer Space of Different Shapes[J]. Accounts of Chemical Research,2001,34(4):257-264.
    [30]马占芳,田乐,邸静等.基于金纳米棒的生物检测、细胞成像和癌症的光热治疗[J].化学进展,2009,21(1):134-142.
    [31]陆耀红,傅深.金纳米微粒的光热治疗及放疗增敏研究[J].天津医药,2011,39(11):1080-1083.
    [32] Link S, El-Sayed M A. Shape and Size Dependence of Radiative, Non-Radiativeand Photothermal Properties of Gold Nanocrystals[J]. International Reviews inPhysical Chemistry,2000,19(3):409-453.
    [33] Tang H Y, Shen S, Guo J, et al. Gold Nanorods@mSiO(2) with a Smart PolymerShell Responsive to Heat/Near-Infrared Light for Chemo-PhotothermalTherapy[J]. Journal of Materials Chemistry,2012,22(31):16095-16103.
    [34] Hu B, Zhang L P, Chen X W, et al. Gold Nanorod-Covered Kanamycin-LoadedHollow SiO2(HSKAurod) Nanocapsules for Drug Delivery and PhotothermalTherapy on Bacteria[J]. Nanoscale,2013,5(1):246-252.
    [35] Black K C L, Yi J, Rivera J G, et al. Polydopamine-Enabled SurfaceFunctionalization of Gold Nanorods for Cancer Cell-Targeted Imaging andPhotothermal Therapy[J]. Nanomedicine,2013,8(1):17-28.
    [36] Wu C Y, Yu C, Chu M Q. A Gold Nanoshell with a Silica Inner ShellSynthesized Using Liposome Templates for Doxorubicin Loading and Near-Infrared Photothermal Therapy[J]. International Journal of Nanomedicine,2011,6:807-813.
    [37] Bear A S, Kennedy L C, Young J K, et al. Elimination of Metastatic TumorsUsing Gold Nanoshell-Enabeled Photothermal Therapy Pretreatment Followedby Adoptive T Cell Therapy[J]. Molecular Therapy,2012,20: S180-S180.
    [38] Gao L, Fei J B, Zhao J, et al. Hypocrellin-Loaded Gold Nanocages with HighTwo-Photon Efficiency for Photothermal/Photodynamic Cancer Therapy inVitro[J]. ACS Nano,2012,6(9):8030-8040.
    [39] Grzincic E, Wallen R, Li B Q, et al. Synthesis of Gold Nanoshell by in situGeneration of Gold Seeds on Silica Core[J]. Abstracts of Papers of theAmerican Chemical Society,2010,240.
    [40] Kim C B, Yi D K, Kim P S S, et al. Rapid Photothermal Lysis of the PathogenicBacteria, Escherichia Coli Using Synthesis of Gold Nanorods[J]. Journal ofNanoscience and Nanotechnology,2009,9(5):2841-2845.
    [41] Nikoobakht B, El-Sayed M A. Preparation and Growth Mechanism of GoldNanorods (NRs) Using Seed-Mediated Growth Method[J]. Chemistry ofMaterials,2003,15(10):1957-1962.
    [42] Niidome T, Yamagata M, Okamoto Y, et al. PEG-Modified Gold Nanorods witha Stealth Character for in Vivo Applications[J]. Journal of Controlled Release,2006,114(3):343-347.
    [43] Dickerson E B, Dreaden E C, Huang X H, et al. Gold Nanorod Assisted Near-Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinomain Mice[J]. Cancer Letters,2008,269(1):57-66.
    [44] von Maltzahn G, Park J H, Agrawal A, et al. Computationally GuidedPhotothermal Tumor Therapy Using Long-Circulating Gold NanorodAntennas[J]. Cancer Research,2009,69(9):3892-3900.
    [45] Dreaden E C, Alkilany A M, Huang X, et al. The Golden Age: GoldNanoparticles for Biomedicine[J]. Chemical Society Revivews,2011,41(7):2740-2779.
    [46] Akiyama Y, Mori T, Katayama Y, et al. The Effects of PEG Grafting Level andInjection Dose on Gold Nanorod Biodistribution in the Tumor-Bearing Mice[J].Journal of Controlled Release,2009,139(1):81-84.
    [47] Niidome T, Akiyama Y, Yamagata M, et al. Poly(ethylene glycol)-ModifiedGold Nanorods as a Photothermal Nanodevice for Hyperthermia[J]. Journal ofBiomaterials Science-Polymer Edition,2009,20(9):1203-1215.
    [48] Zhang G D, Yang Z, Lu W, et al. Influence of Anchoring Ligands and ParticleSize on the Colloidal Stability and in vivo Biodistribution of PolyethyleneGlycol-Coated Gold Nanoparticles in Tumor-Xenografted Mice[J]. Biomaterials,2009,30(10):1928-1936.
    [49] Goodrich G P, Bao L L, Gill-Sharp K, et al. Photothermal Therapy in a MurineColon Cancer Model Using Near-Infrared Absorbing Gold Nanorods[J]. Journalof Biomedical Optics,2010,15(1):018001.
    [50] You J, Zhang G D, Li C. Exceptionally High Payload of Doxorubicin in HollowGold Nanospheres for Near-Infrared Light-Triggered Drug Release[J]. ACSNano,2010,4(2):1033-1041.
    [51] Shen P, Hawksworth J, Lovato J, et al. Cytoreductive Surgery andIntraperitoneal Hyperthermic Chemotherapy with Mitomycin C for PeritonealCarcinomatosis from Nonappendiceal Colorectal Carcinoma[J]. Annals ofSurgical Oncology,2004,11(2):178-186.
    [52]吴学勇,李进.热疗联合放疗和化疗治疗恶性肿瘤研究进展[J].中国肿瘤临床与康复,2011,18(4):362-364.
    [53] Huang H C, Yang Y, Nanda A, et al. Synergistic Administration of PhotothermalTherapy and Chemotherapy to Cancer Cells Using Polypeptide-BasedDegradable Plasmonic Matrices[J]. Nanomedicine,2011,6(3):459-473.
    [54] Liu H Y, Chen D, Li L L, et al. Multifunctional Gold Nanoshells on SilicaNanorattles: A Platform for the Combination of Photothermal Therapy andChemotherapy with Low Systemic Toxicity[J]. Angewandte Chemie-International Edition,2011,50(4):891-895.
    [55] Park J H, von Maltzahn G, Ong L L, et al. Cooperative Nanoparticles for TumorDetection and Photothermally Triggered Drug Delivery[J]. Advanced Materials,2010,22(8):880-885.
    [56] Averitt R D, Westcott S L, Halas N J. Linear Optical Properties of GoldNanoshells[J]. Journal of the Optical Society of America B-Optical Physics,1999,16(10):1824-1832.
    [57] O'Neal D P, Hirsch L R, Halas N J, et al. Photo-Thermal Tumor Ablation inMice Using Near Infrared-Absorbing Nanoparticles[J]. Cancer Letters,2004,209(2):171-176.
    [58] Stern J M, Stanfield J, Kabbani W, et al. Selective Prostate Cancer ThermalAblation with Laser Activated Gold Nanoshells[J]. Journal of Urology,2008,179(2):748-753.
    [59] Moon G D, Choi S W, Cai X, et al. A New Theranostic System Based on GoldNanocages and Phase-Change Materials with Unique Features for PhotoacousticImaging and Controlled Release[J]. Journal of the American Chemical Society,2011,133(13):4762-4765.
    [60] Sun Y G, Mayers B T, Xia Y N. Template-Engaged Replacement Reaction: AOne-Step Approach to the Large-Scale Synthesis of Metal Nanostructures withHollow Interiors[J]. Nano Letters,2002,2(5):481-485.
    [61] Sun Y G, Xia Y N. Mechanistic study on the replacement reaction betweensilver nanostructures and chloroauric acid in aqueous medium[J]. Journal of theAmerican Chemical Society,2004,126(12):3892-3901.
    [62] Chen J Y, Wang D L, Xi J F, et al. Immuno Gold Nanocages with TailoredOptical Properties for Targeted Photothermal Destruction of Cancer Cells[J].Nano Letters,2007,7(5):1318-1322.
    [63] Au L, Zheng D S, Zhou F, et al. A Quantitative Study on the PhotothermalEffect of Immuno Gold Nanocages Targeted to Breast Cancer Cells[J]. ACSNano,2008,2(8):1645-1652.
    [64] Chen J Y, Glaus C, Laforest R, et al. Gold Nanocages as PhotothermalTransducers for Cancer Treatment[J]. Small,2010,6(7):811-817.
    [65] Chen J Y, Yang M X, Zhang Q A, et al. Gold Nanocages: A Novel Class ofMultifunctional Nanomaterials for Theranostic Applications[J]. AdvancedFunctional Materials,2010,20(21):3684-3694.
    [66] Xia Y, Li W, Cobley C M, et al. Gold Nanocages: From Synthesis toTheranostic Applications[J]. Accounts of Chemical Research,2011,44(10):914-924.
    [67] Kim C, Cho E C, Chen J Y, et al. In Vivo Molecular Photoacoustic Tomographyof Melanomas Targeted by Bioconjugated Gold Nanocages[J]. ACS Nano,2010,4(8):4559-4564.
    [68] Yavuz M S, Cheng Y Y, Chen J Y, et al. Gold Nanocages Covered by SmartPolymers for Controlled Release with Near-Infrared Light[J]. Nature Materials,2009,8(12):935-939.
    [69] Li W Y, Cai X, Kim C H, et al. Gold Nanocages Covered with Thermally-Responsive Polymers for Controlled Release by High-Intensity FocusedUltrasound[J]. Nanoscale,2011,3(4):1724-1730.
    [70] Terrones M, Grobert N, Olivares J, et al. Controlled Production of Aligned-Nanotube Bundles[J]. Nature,1997,388(6637):52-55.
    [71]刘小文,单壁碳纳米管表面修饰的优化及用于肿瘤光热治疗的研究. Vol.硕士,苏州大学,苏州,2012.
    [72] Wang L, Shi J J, Zhang H L, et al. Synergistic Anticancer Effect of RNAi andPhotothermal Therapy Mediated by Functionalized Single-Walled CarbonNanotubes[J]. Biomaterials,2013,34(1):262-274.
    [73] Wang X J, Wang C, Cheng L, et al. Noble Metal Coated Single-Walled CarbonNanotubes for Applications in Surface Enhanced Raman Scattering Imaging andPhotothermal Therapy[J]. Journal of the American Chemical Society,2012,134(17):7414-7422.
    [74] Meng L J, Niu L Y, Li L, et al. Gold Nanoparticles Grown on Ionic Liquid-Functionalized Single-Walled Carbon Nanotubes: New Materials forPhotothermal Therapy[J]. Chemistry-a European Journal,2012,18(42):13314-13319.
    [75] Zhou F F, Wu S N, Wu B Y, et al. Mitochondria-Targeting Single-WalledCarbon Nanotubes for Cancer Photothermal Therapy[J]. Small,2011,7(19):2727-2735.
    [76] Moon H K, Lee S H, Choi H C. In Vivo Near-Infrared Mediated TumorDestruction by Photothermal Effect of Carbon Nanotubes[J]. ACS Nano,2009,3(11):3707-3713.
    [77] Atala A. Long-Term Survival Following a Single Treatment of Kidney TumorsWith Multiwalled Carbon Nanotubes and Near-Infrared Radiation EditorialComment[J]. Journal of Urology,2010,183(4):1644-1644.
    [78] Liu Z, Chen K, Davis C, et al. Drug Delivery With Carbon Nanotubes for inVivo Cancer Treatment[J]. Cancer Research,2008,68(16):6652-6660.
    [79] Mehdipoor E, Adeli M, Bavadi M, et al. A Possible Anticancer Drug DeliverySystem Based on Carbon Nanotube-Dendrimer Hybrid Nanomaterials[J].Journal of Materials Chemistry,2011,21(39):15456-15463.
    [80] Huang H, Yuan Q, Shah J S, et al. A New Family of Folate-Decorated andCarbon Nanotube-Mediated Drug Delivery System: Synthesis and DrugDelivery Response[J]. Advanced Drug Delivery Reviews,2011,63(14-15):1332-1339.
    [81] Wu J, Paudel K S, Strasinger C, et al. Programmable Transdermal DrugDelivery of Nicotine Using Carbon Nanotube Membranes[J]. Proceedings ofthe National Academy of Sciences of the United States of America,2010,107(26):11698-11702.
    [82] Bhirde A A, Patel S, Sousa A A, et al. Distribution and Clearance of PEG-Single-Walled Carbon Nanotube Cancer Drug Delivery Vehicles in Mice[J].Nanomedicine,2010,5(10):1535-1546.
    [83] Liu Z, Fan A C, Rakhra K, et al. Supramolecular Stacking of Doxorubicin onCarbon Nanotubes for In Vivo Cancer Therapy[J]. Angewandte Chemie-International Edition,2009,48(41):7668-7672.
    [84] Bartholomeusz G, Cherukuri P, Kingston J, et al. In Vivo Therapeutic Silencingof Hypoxia-Inducible Factor1Alpha (HIF-1alpha) Using Single-WalledCarbon Nanotubes Noncovalently Coated with siRNA[J]. Nano Research,2009,2(4):279-291.
    [85] Podesta J E, Al-Jamal K T, Herrero M A, et al. Antitumor Activity andProlonged Survival by Carbon-Nanotube-Mediated Therapeutic siRNASilencing in a Human Lung Xenograft Model[J]. Small,2009,5(10):1176-1185.
    [86] McDevitt M R, Chattopadhyay D, Kappel B J, et al. Tumor Targeting withAntibody-Functionalized, Radiolabeled Carbon Nanotubes[J]. Journal ofNuclear Medicine,2007,48(7):1180-1189.
    [87] Zhou F F, Xing D, Ou Z M, et al. Cancer Photothermal Therapy in the Near-Infrared Region by Using Single-Walled Carbon Nanotubes[J]. Journal ofBiomedical Optics,2009,14(2):021009.
    [88] Liu Z, Cai W B, He L N, et al. In Vivo Biodistribution and Highly EfficientTumour Targeting of Carbon Nanotubes in Mice[J]. Nature Nanotechnology,2007,2(1):47-52.
    [89] Xiang L Z, Yuan Y, Xing D, et al. Photoacoustic Molecular Imaging withAntibody-Functionalized Single-Walled Carbon Nanotubes for Early Diagnosisof Tumor[J]. Journal of Biomedical Optics,2009,14(2):021008.
    [90] Bhirde A A, Patel V, Gavard J, et al. Targeted Killing of Cancer Cells in Vivoand in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery[J]. ACSNano,2009,3(2):307-316.
    [91] Eda G, Lin Y Y, Mattevi C, et al. Blue Photoluminescence from ChemicallyDerived Graphene Oxide[J]. Advanced Materials,2010,22(4):505-509.
    [92] Yang K, Zhang S, Zhang G, et al. Graphene in Mice: Ultrahigh in Vivo TumorUptake and Efficient Photothermal Therapy[J]. Nano Letters,2010,10(9):3318-3323.
    [93] Li M, Yang X, Ren J, et al. Using Graphene Oxide High Near-InfraredAbsorbance for Photothermal Treatment of Alzheimer's Disease[J]. AdvancedMaterials,2012,24(13):1722-1728.
    [94] Yang K, Zhang S A, Zhang G X, et al. Graphene in Mice: Ultrahigh In VivoTumor Uptake and Efficient Photothermal Therapy[J]. Nano Letters,2010,10(9):3318-3323.
    [95] Markovic Z M, Ristic B Z, Arsikin K M, et al. Graphene Quantum Dots asAutophagy-Inducing Photodynamic Agents[J]. Biomaterials,2012,33(29):7084-7092.
    [96] Robinson J T, Tabakman S M, Liang Y, et al. Ultrasmall Reduced GrapheneOxide with High Near-Infrared Absorbance for Photothermal Therapy[J].Journal of the American Chemical Society,2011,133(17):6825-6831.
    [97] Yang K, Wan J, Zhang S, et al. The Influence of Surface Chemistry and Size ofNanoscale Graphene Oxide on Photothermal Therapy of Cancer Using Ultra-Low Laser Power[J]. Biomaterials,2012,33(7):2206-2214.
    [98] Armelao L, Camozzo D, Gross S, et al. Synthesis of Copper SulphideNanoparticles in Carboxylic Acids as Solvent[J]. Journal of Nanoscience andNanotechnology,2006,6(2):401-408.
    [99] Balaz P, Takacs L, Jiang J Z, et al. Preparation of cu/fes Nanoparticles byMechanochemical Reduction of Copper Sulphide[J]. Kovove Materialy-Metallic Materials,2002,40(4):268-280.
    [100]Haram S K, Mahadeshwar A R, Dixit S G. Synthesis and Characterization ofCopper Sulphide Nanoparticles in Aqueous Surfactant Solutions[J]. AdsorptionScience&Technology,1998,16(8):667-677.
    [101]Solanki J N, Sengupta R, Murthy Z V P. Synthesis of Copper Sulphide andCopper Nanoparticles with Microemulsion Method[J]. Solid State Sciences,2010,12(9):1560-1566.
    [102]Zhou M, Zhang R, Huang M A, et al. A Chelator-Free Multifunctional [Cu-64]CuS Nanoparticle Platform for Simultaneous Micro-PET/CT Imaging andPhotothermal Ablation Therapy[J]. Journal of the American Chemical Society,2010,132(43):15351-15358.
    [103]Homan K, Kim S, Chen Y S, et al. Prospects of Molecular PhotoacousticImaging at1064nm Wavelength[J]. Optics Letters,2010,35(15):2663-2665.
    [104]Huang X Q, Tang S H, Mu X L, et al. Freestanding Palladium Nanosheets withPlasmonic and Catalytic Properties[J]. Nature Nanotechnology,2011,6(1):28-32.
    [105]Lambert T N, Andrews N L, Gerung H, et al. Water-Soluble Germanium(0)Nanocrystals: Cell Recognition and Near-Infrared Photothermal ConversionProperties[J]. Small,2007,3(4):691-699.
    [106]Szeimies R M, Lorenzen T, Karrer S, et al. Photochemotherapy of CutaneousAIDS-Related Kaposi Sarcoma with Indocyanine Green and Laser Light[J].Hautarzt,2001,52(4):322-326.
    [107]Shafirstein G, Baumler W, Hennings L J, et al. Indocyanine Green EnhancedNear-Infrared Laser Treatment of Murine Mammary Carcinoma[J]. InternationalJournal of Cancer,2012,130(5):1208-1215.
    [108]Abels C, Karrer S, Baumler W, et al. Indocyanine Green and Laser Light for theTreatment of AIDS Associated Cutaneous Kaposi's Sarcoma[J]. British Journalof Cancer,1998,77(6):1021-1024.
    [109]Huang X H, Jain P K, El-Sayed I H, et al. Plasmonic Photothermal Therapy(PPTT) Using Gold Nanoparticles[J]. Lasers in Medical Science,2008,23(3):217-228.
    [110]Kirchherr A K, Briel A, Mader K. Stabilization of Indocyanine Green byEncapsulation within Micellar Systems[J]. Molecular Pharmaceutics,2009,6(2):480-491.
    [111]Zhang C, Liu T, Su Y P, et al. A Near-Infrared Fluorescent HeptamethineIndocyanine Dye with Preferential Tumor Accumulation for in vivo Imaging[J].Biomaterials,2010,31(25):6612-6617.
    [112]Peng C L, Shih Y H, Lee P C, et al. Multimodal Image-Guided PhotothermalTherapy Mediated by Re-188-Labeled Micelles Containing a Cyanine-TypePhotosensitizer[J]. ACS Nano,2011,5(7):5594-5607.
    [113]Kuo W S, Chang Y T, Cho K C, et al. Gold Nanomaterials Conjugated withIndocyanine Green for Dual-Modality Photodynamic and PhotothermalTherapy[J]. Biomaterials,2012,33(11):3270-3278.
    [114]Zheng X H, Zhou F F. Noncovalent Functionalization of Single-Walled CarbonNanotubes by Indocyanine Green: Potential Nanocomplexes for PhotothermalTherapy[J]. Journal of X-Ray Science and Technology,2011,19(2):275-284.
    [115]Feng Y, Emerson L, Jeong E K, et al. Application of a BiodegradableMacromolecular Contrast Agent in Dynamic Contrast-Enhanced MRI forAssessing the Efficacy of Indocyanine Green-Enhanced Photothermal CancerTherapy[J]. Journal of Magnetic Resonance Imaging,2009,30(2):401-406.
    [116]Zheng X H, Xing D, Zhou F F, et al. Indocyanine Green-ContainingNanostructure as Near Infrared Dual-Functional Targeting Probes for OpticalImaging and Photothermal Therapy[J]. Molecular Pharmaceutics,2011,8(2):447-456.
    [117]Yang J, Choi J, Bang D, et al. Convertible Organic Nanoparticles for Near-Infrared Photothermal Ablation of Cancer Cells[J]. Angewandte Chemie-International Edition,2011,50(2):441-444.
    [118]Cheng L, Yang K, Chen Q, et al. Organic Stealth Nanoparticles for HighlyEffective in Vivo Near-Infrared Photothermal Therapy of Cancer[J]. ACS Nano,2012,6(6):5605-5613.
    [119]Poland C A, Duffin R, Kinloch I, et al. Carbon Nanotubes Introduced into theAbdominal Cavity of Mice Show Asbestos-Like Pathogenicity in a PilotStudy[J]. Nature Nanotechnology,2008,3(7):423-428.
    [120]Takagi A, Hirose A, Nishimura T, et al. Induction of Mesothelioma in p53+/-Mouse by Intraperitoneal Application of Multi-Wall Carbon Nanotube[J].Journal of Toxicological Sciences,2008,33(1):105-116.
    [121]Fraczek A, Menaszek E, Paluszkiewicz C, et al. Comparative in VivoBiocompatibility Study of Single-and Multi-Wall Carbon Nanotubes[J]. ActaBiomaterialia,2008,4(6):1593-1602.
    [122]Jastrzebska A M, Kurtycz P, Olszyna A R. Recent Advances in Graphene FamilyMaterials Toxicity Investigations[J]. Journal of Nanoparticle Research,2012,14(12):1320.
    [123]Zhang X Y, Yin J L, Peng C, et al. Distribution and Biocompatibility Studies ofGraphene Oxide in Mice After Intravenous Administration[J]. Carbon,2011,49(3):986-995.
    [124]Huang Y, He S, Cao W, et al. Biomedical Nanomaterials for Imaging-GuidedCancer Therapy[J]. Nanoscale,2012,4(20):6135-6149.
    [125]Shah J, Aglyamov S R, Sokolov K, et al. Ultrasound Imaging to MonitorPhotothermal Therapy-Feasibility Study[J]. Optics Express,2008,16(6):3776-3785.
    [126]Ke H, Wang J, Dai Z, et al. Gold-Nanoshelled Microcapsules: A TheranosticAgent for Ultrasound Contrast Imaging and Photothermal Therapy[J].Angewandte Chemie-International Edition,2011,50(13):3017-3021.
    [127]Ke H T, Wang J R, Dai Z F, et al. Bifunctional Gold Nanorod-LoadedPolymeric Microcapsules for Both Contrast-Enhanced Ultrasound Imaging andPhotothermal Therapy[J]. Journal of Materials Chemistry,2011,21(15):5561-5564.
    [128]Huang Y R, He S, Cao W P, et al. Biomedical Nanomaterials For Imaging-Guided Cancer Therapy[J]. Nanoscale,2012,4(20):6135-6149.
    [129]Kim J W, Galanzha E I, Shashkov E V, et al. Golden Carbon Nanotubes asMultimodal Photoacoustic and Photothermal High-Contrast MolecularAgents[J]. Nature Nanotechnology,2009,4(10):688-694.
    [130]Nikitin S M, Khokhlova T D, Pelivanov I M. Temperature Dependence of theOptoacoustic Transformation Efficiency in Ex Vivo Tissues for Application inMonitoring Thermal Therapies[J]. Journal of Biomedical Optics,2012,17(6):061214.
    [131]De la Zerda A, Zavaleta C, Keren S, et al. Carbon Nanotubes as PhotoacousticMolecular Imaging Agents in Living Mice[J]. Nature Nanotechnology,2008,3(9):557-562.
    [132]Bardhan R, Chen W X, Perez-Torres C, et al. Nanoshells with TargetedSimultaneous Enhancement of Magnetic and Optical Imaging and PhotothermalTherapeutic Response[J]. Advanced Functional Materials,2009,19(24):3901-3909.
    [133]Liu Z, Tabakman S, Sherlock S, et al. Multiplexed Five-Color MolecularImaging of Cancer Cells and Tumor Tissues with Carbon Nanotube Raman Tagsin the Near-Infrared[J]. Nano Research,2010,3(3):222-233.
    [134]Ke H, Xing Z, Zhao B, et al. Quantum-Dot-Modified Microbubbles with Bi-Mode Imaging Capabilities[J]. Nanotechnology,2009,20(42):425105.
    [135]Price R J, Skyba D M, Kaul S, et al. Delivery of Colloidal Particles and RedBlood Cells to Tissue Through Microvessel Ruptures Created by TargetedMicrobubble Destruction with Ultrasound[J]. Circulation,1998,98(13):1264-1267.
    [136]Ferrara K W. Driving Delivery Vehicles with Ultrasound[J]. Advanced DrugDelivery Reviews,2008,60(10):1097-1102.
    [137]Ferrara K, Pollard R, Borden M. Ultrasound Microbubble Contrast Agents:Fundamentals and Application to Gene and Drug Delivery[J]. Annual Review ofBiomedical Engineering,2007,9:415-447.
    [138]Cosgrove D. Ultrasound Contrast Agents: An Overview[J]. European Journal ofRadiology,2006,60(3):324-330.
    [139]Cochran M C, Eisenbrey J, Ouma R O, et al. Doxorubicin and PaclitaxelLoaded Microbubbles for Ultrasound Triggered Drug Delivery[J]. InternationalJournal of Pharmaceutics,2011,414(1-2):161-170.
    [140]Shah J, Park S, Aglyamov S, et al. Photoacoustic imaging and temperaturemeasurement for photothermal cancer therapy[J]. Journal of Biomedical Optics,2008,13(3):034024.
    [141]Ku G, Zhou M, Song S, et al. Copper Sulfide Nanoparticles as A New Class ofPhotoacoustic Contrast Agent for Deep Tissue Imaging at1064nm[J]. ACSNano,2012,6(8):7489-7496.
    [142]Gaihre B, Aryal S, Barakat N A M, et al. Gelatin stabilized iron oxidenanoparticles as a three dimensional template for the hydroxyapatite crystalnucleation and growth[J]. Materials Science&Engineering C-Biomimetic andSupramolecular Systems,2008,28(8):1297-1303.
    [143]Emonard H, Grimaud J A. Matrix Metalloproteinases-a Review[J]. Cellularand Molecular Biology,1990,36(2):131-153.
    [144]Jang J, Yoon H. Multigram-Scale Fabrication of Monodisperse ConductingPolymer and Magnetic Carbon Nanoparticles[J]. Small,2005,1(12):1195-1199.
    [145]Chattopadhyay I, Bandyopadhyay U, Biswas K, et al. Indomethacin InactivatesGastric Peroxidase to Induce Reactive-Oxygen-Mediated Gastric MucosalInjury and Curcumin Protects It by Preventing Peroxidase Inactivation andScavenging Reactive Oxygen[J]. Free Radical Biology and Medicine,2006,40(8):1397-1408.
    [146]Hong J Y, Yoon H, Jang J. Kinetic Study of the Formation of PolypyrroleNanoparticles in Water-Soluble Polymer/metal Cation Systems: A Light-Scattering Analysis[J]. Small,2010,6(5):679-686.
    [147]Oh W K, Yoon H, Jang J. Size Control of Magnetic Carbon Nanoparticles forDrug Delivery[J]. Biomaterials,2010,31(6):1342-1348.
    [148]Ramanaviciene A, Kausaite A, Tautkus S, et al. Biocompatibility of PolypyrroleParticles: An in vivo Study in Mice[J]. Journal of Pharmacy and Pharmacology,2007,59(2):311-315.
    [149]Au K M, Lu Z, Matcher S J, et al. Polypyrrole Nanoparticles: A PotentialOptical Coherence Tomography Contrast Agent for Cancer Imaging[J].Advanced Materials,2011,23(48):5792-5795.
    [150]Ku G, Zhou M, Song S L, et al. Copper Sulfide Nanoparticles As a New Classof Photoacoustic Contrast Agent for Deep Tissue Imaging at1064nm[J]. ACSNano,2012,6(8):7489-7496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700