用户名: 密码: 验证码:
微结构光纤中超连续谱的产生及特性优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作是围绕以下项目展开的:以任晓敏教授为首席科学家的国家重点基础研究发展计划项目(项目编号:2010CB327600);国家自然科学基金项目(项目编号:61077049);新世纪优秀人才支持计划项目(项目编号:NCET-08-0736)和高等学校学科创新引智计划项目(项目编号:B07005)。
     超连续谱光源具有光谱范围宽、稳定性高等优点,在光通信系统、光度量学及生物医学等方面都有重要的应用。本论文主要对光通信用超连续谱的产生及其性能优化进行了理论和实验研究,主要研究内容和创新点如下:
     1.从光场的量子理论出发,推导得出了脉冲在光纤中传输时所遵循的含自发拉曼散射噪声的非线性传输方程。讨论了适用于求解该方程以及广义非线性薛定谔方程的数值方法:与对称分步傅里叶法结合的相互作用绘景中的四阶龙格-库塔法。
     2.基于广义非线性薛定谔方程,理论分析了在正常色散区超连续谱的展宽机制;讨论了光纤参量和泵浦脉冲对超连续谱宽度、平坦度的影响。在此基础上,设计了一种具有近零正色散值、色散平坦的高非线性微结构光纤,利用该光纤可在1550nm波段产生宽带、平坦的超连续谱。
     3.理论分析了泵浦脉冲的散粒噪声对光纤中超连续谱宽带幅度噪声的影响。以相对强度噪声,对正常色散区超连续谱宽带幅度噪声做了定量分析,结果表明:噪声沿光纤传输中有两次显著地放大,第一次噪声放大是由光谱初始展宽过程巾巾心部分的剧烈分裂造成的,是光谱展宽过程中固有的噪声放大;第二次噪声放大是由脉冲内拉曼散射效应带来的非线性能量损耗造成的,是造成超连续谱宽带幅度噪声放大的主要原因。通过合理设计光纤的色散特性可有效抑制脉冲内拉曼散射效应。
     4.利用高阶孤子压缩效应,实现了对微结构光纤中产生的超连续谱的展宽,光谱-10dB宽度由75nm展宽至140nm。对上述超连续谱的低频幅度噪声进行了定量分析,结果表明:当泵浦脉冲功率在压缩光纤中满足整数阶的高阶孤子,且压缩光纤的长度短于孤子发生分裂的长度时,获得的压缩脉冲可在增加超连续谱宽度的同时不引起光谱低频幅度噪声的恶化。
     5.分析了超连续谱的平坦度对泵浦脉冲脉冲沿陡峭程度的敏感性,结果表明:脉冲沿较为陡峭的脉冲产生的超连续谱具有更好的平坦度。与人合作,利用双通道Littman-Metcalf滤波器改变脉冲沿的陡峭度,实现了对超连续谱平坦度的优化。
This work was supported by National Basic Research Program of China (2010CB327600), National Natural Science Foundation of China (61077049), Program for New Century Excellent Talents in University of China (NCET-08-0736) and the111Project of China (B07005).
     The supercontinuum(SC) has the advantages of both broadband and high-stability. These properties should make the SC an ideal tool for important applications including optical communication system, biomedicine, optical measurement, etc.. In this dissertation, the generation and performance optimization of SC used for optical communication systems are studied both theoretically and experimentally. The main contents and achievements are as follows.
     1. According to the quantum theory of light field, the nonlinear propagation equation contains spontaneous Raman scattering was deduced to model pulse propagation in fiber. And the numerical method-the Fourth-order Runge-Kutta in the Interaction Picture combined with split-step Fourier method-is discussed to compute the above equation and the generalized nonlinear Schrodinger equation.
     2. Based on the generalized nonlinear Schrodinger equation, the mechanism of SC generation in normal dispersion regime is demonstrated theoretically. The effect of fiber parameters and pumping conditions on the bandwidth and flatness of SC generation in Microstructured Fiber (MF) are discussed in detail. A dispersion-flattened MF with small normal dispersion and high nonlinear are designed for flat broadband SC generation in1550nm region.
     3. The effect of shot noise of pump pulse on the broadband amplitude noise of SC generated in fiber is investigated numerically. The relative intensity noise is used to analyze the broadband amplitude noise of SC generated in normal dispersion regime quantitatively, the results show that, the noise suffers twice obvious amplifications in the process of SC generation, the first time is caused by the initial spectral severe split and is inherent, the second time is caused by the nonlinear energy loss in the presence of intrapulse Raman scattering (IRS) and is the main reason of the amplification of broadband amplitude noise during SC generation. The IRS effect can be suppressed by using MF with suitable dispersion characteristics.
     4. Using high-order soliton compression effect, enhancement of bandwidth of SC generated in MF by using compressed pulse is demonstrated, the measured-lOdB spectral width is broadened from75nm to more than140nm. The low-frequency noise of SC spectrum generated by compressed pulse is analyzed quantitatively. Numerical analysis shows that using the certain peak power pulse compressed by a certain length fiber can increase the spectral bandwidth without making extra low-frequency amplitude noise.
     5. The dependence of the flatness of SC on the steep degree of pump pulse is discussed in detail. The results show that the flatness of SC spectrum generated by the pulse with more steep pulse is better. The flatness of SC generation in MF is improved by filtered the pump pulse using a double-pass Littman-Metcalf filter before injected into MF.
引文
[1]B. P. Stoicheff. "Characteristics of stimulated Ramanradiation generated by coherent light," Phys. Lett.7(3),1963,186-188.
    [2]W. J. Jones, and B. P. Stoicheff. "Inverse Raman spectra:Induced absorption at optical frequencies," Phys. Rev. Lett.13(22),1964,657-659.
    [3]R. G. Brewer. "Frequency shifts in self-focused light," Phys. Rev. Lett.19(8),1967, 8-10.
    [4]F. Shimizu. "Frequency broadening in liquids by a short light pulse," Phys. Rev. Lett. 19(19),1967,1097-1100.
    [5]R. R. Alfano, and S. L. Shapiro. "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett.,24(11),1970,592-594
    [6]R. L. Fork, C. V. Shank, C. Hirlimann, et al. "Femstosecond white-light continuum pulses," Opt. Lett.,8(1),1983,1-3.
    [7]P. B. Corkum, C. Rolland, and T. Srinivasanrao. "Supercontinuum Generation in Gases," Phys. Rev. Lett.,57(18),1986,2268-2271.
    [8]P. P. Ho, Q. X. Li, T. Jimbo, et al. "Supercontinuum pulse generation and propagation in a liquid carbontetrachloride, " Appl. Optics,26(14),1987,2700-2702.
    [9]T. Jimbo, V. L. Caplan, Q. X. Li, et al. "Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ Cations," Opt. Lett.,12(7),1987, 477-479.
    [10]V. Francois, F. A. Ilkov, and S. L. Chin. "Supercontinuum generation in CO2 gas accompanied by optical breakdown," J. Phys. B:At. Mol. Opt. Phys.,25(11),1992, 2709-2724.
    [11]Lin, C., and R. H. Stolen. "'New nanosecond continuum for excited-state spectroscopy,' Appl. Phys. Lett.28(4),1976,216-218.
    [12]M. N. Islam, G. Sucha, I. Bar-Joseph, et al. "Broad bandwidths from frequeney-shift solitons in fibers," Opt. Lett.,14(7),1989,370-372.
    [13]T. Morika, S. Kawanishi, K.Mori, et al. "Nearly penalty-free,<4ps supereontinuum Gbit/s pulse generation over 1535-1560nm," Electron. Lett.,30(10),1994,790-791.
    [14]H. Sotobayashi, and K. Kitayama. "325nm bandwidth supereontinuum generation at 10Gbit/s using dispersion-flattened and non-decreasing normal dispersion fiber with pulse compression technique," Electron. Lett.,34(13),1998,1336-1337.
    [15]A. Mussot, T. Sylvestre, L. Provino, et al. "Generation of a broadband single-mode supereontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser." Opt. Lett.28(19),2003.1820-1822.
    [16]J. K. Ranka, R. S. Windeler, and A. J. Stentz. "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett.,25(1),2000, 25-27.
    [17]J. W. Nicholson. M. F. Yan. P. Wisk. et al. "All-fiber, octave-spanning supercontinuum.' Opt. Lett.28(8).2003,643-645.
    [18]F. G. Omenetto, N. A. Wolchover, M. R. Wehner, et al. "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express,14(11),2006,4928-4934.
    [19]P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, et al. "Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express,16(10),2008,7161-7168.
    [20]R. R. Alfano, and S. L. shapiro. "Emission in the Region 4000 to 7000 A Via Four-Photon Coupling in Glass," Phys. Rev. Lett.,24(11),1970,584-587.
    [21]A. Penzkofer, and W. Kaiser. "Generation of picosecond light continua by parametric four-photon interactions in liquids and solids," Opt. Quantum Electron.,9,1977,315-349.
    [22]W. L. Smith, P. Liu, and N. Bloembergen, "Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAIG:Nd laser," Phys. Rev. A,15(6),1977, 2396-2403.
    [23]J. T. Manassah, R. R. Shapiro, and M. Mustafa. "Spectral distribution of an ultrafast supercontinuum laser source," Phys. Lett. A,107(7),1985,305-309.
    [24]J. T. Manassah, M. A. Mustafa, R. R. Alfano, et al. "Spectral Extent and Pulse Shape of the Supercontinuum for Ultrashort Laser Pulse," IEEE J. Quantum Electron., QE-22(1),1986, 197-204.
    [25]Akheelesh K. Abeeluck, Clifford Headley, and Carsten G Jorgensen. "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Rman fiber laser," Opt. Lett.29(18),2004,2163-2165.
    [26]Akheelesh K. Abeeluck, and Clifford Headley. "Continuous-wave pumping in the anomalous-and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett.30(1),2005,61-63.
    [27]A. Apolonski, B. Povazay, A. Unterhuber, et al, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B,19 (9),2002, 2165-2170.
    [28]R. Cherif, M. Zghal, L. Tartara, et al. "Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber," Opt. Express,16(3),2008,2147-2152.
    [29]X. Gu, M. Kimmel, A. Shreenath, R. Trebino, et al. "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express,11(21),2003,2697-2703.
    [30]N. R. Newbury, B. R. Washburn, K. L. Corwin, et al. "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett.28(11),2003,944-946.
    [31]B. Washburn, and N. Newbury. "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express,12 (10),2004 2166-2175.
    [32]J. M. Dudley, and S. Coen. "Fundamental limit s to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express, 12(11):2423-2428.
    [33]D. Huang, E. A. Swanson, C. P. Lin, et al. "Optical coherence tomography,"Science 254(5035),1991,1178-1181.
    [34]J. M. Schmitt. "Optical coherence tomography(OCT):a review," IEEE J. Quantum Electron. 5(4),1999,05-1215.
    [35]Rick L. Morrison, Steven G. Johnson, Anthony L. Lentine,et al. "Design and demonstration of a high-speed, multichannel, optical-sampling oscilloscope," Appl. Opt. 35(8),1996,1187-1194.
    [36]P. C. Sun, Y. T. Mazurenko, and Y. Fainman, "Femtosecond pulse imaging:ultrafast optical oscilloscope," J. Opt. Soc. Am. A,14(5),1159-1170 (1997).
    [37]H. Takara, S. Kawanishi, T. Morioka, et al. "100Gbit/s optical wave-form measurement with 0.6ps resolution optical sampling using subpicosecond supercontinuum pulses," Electron. Lett.,30(14),1994,1152-1153.
    [38]Tetsuya Kanada and Douglas L. Franzen. "Single-mode fiber dispersion measurements using optical sampling with a mode-locked laser diode," Opt. Lett.11(5),1986,330-332.
    [39]M. Fujise, M. Kuwazuru, M. Numokawa, et al. "Chromatic dispersion measurement over a 100km dispersion-shifted single-mode fiber by a new phase-shift technique," Electron.Lett., 22(11),1991,570-572.
    [40]Q. Ye, C. Xu, X. Liu, et al. "Dispersion measurement of tapered air-silica microstructure fiber by white-light interferometry," Appl. Opt.,41(22),2002,4467-4470.
    [41]K. Mori, T. Morioka, and M. Saruwatari, "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5μm compact laser source," IEEE Trans. Instrum. Meas.,44(3),1995,712-715.
    [42]Sucbei Moon, and Dug Y. Kim. "Reflectometric Fiber Dispersion Measurement Using a Supercontinuum Pulse Source," IEEE Photon. Technol. Lett.,21(17),2001,1262-1264.
    [43]J. Hult, R. S. Watt, and C. F. Kaminski, "Dispersion measurement in optical fibers using supercontinuum pulses," J. Lightw. Technol.,25(3),2007,820-824.
    [44]K. Morioka, K. Mori, S. Kawanishi, et al. "Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation," Elecron. Lett., 30(23),1994,1960-1962.
    [45]J. C. Twichell, and R. Helkey. "Phase-encoded optical sampling for analog-to-digital converters," IEEE Photon. Technol. Lett.,12(9),2000,236-238.
    [46]Hajime Sakata. "Photonic Analog-To-Digital Conversion by use of Nonlinear Fabry-Perot Resonators," Appl. Opt.40(2),2001,240-248.
    [47]R. Urata, R. Takahashi, V. Sabnis.et al. "Ultrafast differential sample and hold using low-temperature-grown GaAs MSM for photonic A/D conversion," IEEE Photon. Technol. Lett.13(7),2001,717-719.
    [48]Yao Li, and Yan Zhang. "Optical analog-to-digital conversion using acousto-optic theta modulation and table lookup," Appl. Opt.,30(30),1991,4368-4371.
    [49]Barry L. Shoop and Joseph W. Goodman, "Optical oversampled analog-to-digital conversion," Appl. Opt.,31(26),1992,5654-5660.
    [50]B. Jalali, and Y. M. Xie, "Optical folding-flash analog-to-digital converter with analog encoding," Opt. Lett.,20(18),1995,1901-1903.
    [51]L. Brzozowski, and E. H. Sargent. "All-optical analog-to-digital converters, hardlimiters, and logic gates," J. Lightwave Technol.19(1),2001,114-119.
    [52]Binglin Miao, Caihua Chen, Ahmed Sharkway, et al."Two bit optical analog-to-digital converter based on photonic crystals," Opt. Express 14(17),2006,7966-7973.
    [53]K. Xu, J. Niu, Y. Dai, et al. "All-optical analog-to-digital conversion scheme based on Sagnac loop and balanced receivers," Appl. Opt.,50(14),2011,1995-2000.
    [54]夏舸,光纤中超连续谱产生的研究,华中科技大学,2006.
    [55]S. Oda, and A.Maruta. "A novel quantization scheme by slicing supercontinuum spectrum for all optical analog-to-digital conversion," IEEE Photon. Technol. Lett.,17(12),2005, 465-467
    [56]O. Boyraz, J. Kim, M. N. Islam, et al. "10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers," J. Lightwave Technol,18(12),2000,2167-2175.
    [57]H. Takara. "Supercontinuum multi-carrier source for WDM systems," in:OFC,70,2002, WR5:314-315.
    [58]H. Takara. "Multiple optical carrier generation from a supercontinuum source," Optics & Photonics News,13(3),2002,48-51.
    [59]E. Yamada, H. Takara, T. Ohara, et al. "150 channel supercontinuum CW optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems," Elecron. Lett., 37(5),2001,304-306.
    [60]K. Takada, M. Abe, T. Shibata, et al. "5 GHz-spaced 4200-channel two-stage tandem demultiplexer forultra-multi-wavelength light source using supercontinuum generation," 38(12),2002,572-574.
    [61]H. Takara, T. Ohara, and K. Sato. "Over 1000 km DWDM transmission with supercontinuum multi-carrier source," Elecron. Lett.,39(14),2003,1078-1079.
    [62]T. Ohara, H. Takara, T. Yamamoto, et al. "Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source," J. lightwave Technol.,24(6),2006, 2311-2317.
    [63]G. A. Nowak, J. Y. Kim, and M. N. Islam. "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," Appl. Optics,38(36),1999,7364-7369.
    [64]Chen YongZhu, Li YuZhong, Qu Gui, et al. "Numerical research of flat wideband supercontinuum generation in anomalous dispersion-flattened fibers," Acta. Phys. Sin., 55(2),2006,717-722.
    [65]J. W. Lou, T. J. Xia, O. Boyraz, et al. "Broader and flatter supercontinuum spectra in dispersion tailored fibers," in:OFC,1997, TuH6:32-34.
    [66]Y. Takushima, F. Futami, and K. Kikuchi. "Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source," IEEE Photon. Technol. Lett.,10(11),1998,1560-1562.
    [67]F. Futami, K. Kikuchi. "Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber," IEEE Photon. Technol. Lett.,13(1),2001,73-75.
    [68]M. Imai, T. Arai, H. Sone, and Y. Imai. "Enhancement of supercontinuum spectrum generation due to cross-phase modulation in a dispersion-flattened/decreasing fiber," in: OFC,2001, WDD13.
    [69]Z. Y. Wang, Y. Q. Wang, Z. Y. Li, et al. "Ultra-broadband supercontinuum generated in dispersion-flattened fiber," Chin. Opt. Lett.2(1),2004,46-49.
    [70]T. Okuno, M. Onishi, and M. Nishimura. "Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber," IEEE Photon. Technol. Lett.,10 (1),1998, 72-74.
    [71]K. Mori, H.Takara, S. Kawanishi, et al. "Flatly broadened supercontinuum generated in a dispersion decreasing fiber with convex dispersion profile," Electron. Lett.,33(21),1997, 1806-1808.
    [72]A.V. Gusakov, V.P. Kalosha, J. Herrmann, "Ultrawide spectral broadening and pulse compression in tapered and photonic fibers," in:Quantum Electronics and Laser Science Conference,2001,29-30.
    [73]W. J. Wadsworth, J. C. Knight, and P. St. J. Rwsell. "White light spectra generated in photonic crystal fibres," in:Lasers and Electro-Optics Europe,2001, Cthm5:352.
    [74]Goery Genty. "Supercontinuum generation in microstructured fibers and novel optical measurement techniques," Helsinki University of Technology Department of Electrical and Communications Engineering,2004.
    [75]J. C. Travers, S. V. Popov, J. R. Taylor, et al. "CW-Pumped, High Power, Extended Supercontinuum Generation in Low Water-Loss PCF," in:Advanced Solid-State Photonics, 2005, TuC6.
    [76]A. Sizmann, M. Fischer R. Holzwarth. "Calibration System based on a Laser Frequency Comb," Interim Report in response to the ESO Technical Specification and Statement of Work,2006.
    [77]Rui Zhang. "Propagation of ultrashort light pulses in tapered fibers and photonic crystal fibers," Rheinische Friedrich-Wilhelms University of Bonn,2006. http://hss.ulb.uni-bonn.de/diss-online elektronisch publiziert (2006).
    [78]Alexandre Bozolan, Christiano J. de Matos, Cristiano M. B. Cordeiro, et al. "Supercontinuum generation in a water-core photonic crystal fiber," Opt. Express 16(13), 2008,9671-9676.
    [79]J. Cascante-Vindas, S. Torres-Peiro, A. Diez, et al."Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber," Appl. Phys.B,98(2-3),2009, 371-376.
    [80]H. Hundertmark, S. Rammler, T. Wilken, et al. "Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse," Opt. Express 17(3),2009,1919-1924.
    [81]M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan,et al. "Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion," Opt. Express 19(16),2011,15389-15396.
    [82]J. C. Knight, T. A. Birks, P. St. J. Russell, et al. "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett.,21(19),1996,1547-1549.
    [83]A. Blanco, E. Chomskis, S. Grabtchak, et al. "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature,405, 2000,437-440.
    [84]J. Y. Wang, M. Y. Gao, C.Jiang, et al. "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chin. Opt. Lett.,3(7),2005,380-382.
    [85]Debashri Ghosh, Samudra Roy, Mrinmay Pal, et al. "Modeling of microstructured nonzero dispersion shifted optical fiber with ultralow dispersion slope," J. Opt. Soc. Am. B,26(2), 2009,337-345.
    [86]H. Z.Xu, J. Wu, K. Xu, et al. "Ultra-flattened chromatic dispersion control for circular photonic crystal fibers," Journal of Optics,13(5),2011,055405.
    [87]B. M Azizur Rahman, Muhammad Uthman, Namassivayane Kejalakshmy, et al. "Design of bent photonic crystal fiber supporting a single polarization," Appl. Opt.,50(35).2011. 6505-6511.
    [88]Marek Napieraia, Tomasz Nasilowski, Elzbieta Beres-Pawlik, et al. "Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss," Opt. Express,19(23),2011,22628-22636,
    [89]M. Nakazawa, K.. Tamura, H. Kubota, et al. "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol.4(2),1998,215-223.
    [90]K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express,12(10), 2004,2027-2032.
    [91]Y. Z. Xu, X. M. Ren, X. Zhang, et al. "Flat supercontinuum generated in a single-mode optical fibre with a new chromatic dispersion profile," Chin. Phys. Lett.,22, (8),2005, 1923-1926.
    [92]K. K. Chow, Y. Takushima, C. Lin, et al. "Flat Supercontinuum generation in a dispersion-flattened nonlinear photonic crystal fiber with normal dispersion," in:Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,2006, paper OFH5.
    [93]L. E. Hooper, P. J. Mosley, A. C. Muir, et al. "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Opt. Express,19(6),2011, 4902-4907.
    [94]B. R. Washburn, S. E. Ralph, and R. S. Windeler, "Ultrashort pulse propagation in air-silica microstructure fiber," Opt. Express,10(13),2002,575-580.
    [95]J. Takayanagi, N. Nishizawa, H. Nagai, et al. "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system," IEEE Photon. Technol. Lett.17(1),2005,37-39.
    [96]F. G. Omenetto, N. A. Wolchover, M. R. Wehner, et al. "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express,14(11),2006,4928-4934.
    [97]顾皴,飞秒光纤激光器产生超连续谱的研究,上海交通大学,2010.
    [98]T. Morioka, K. Mori, and M. Saruwatari. "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres," Electron. Lett.29(10),1993,862-864.
    [99]S. Kawanishi, H. Takara, K. Uchiyama, et al. "1.4 Tbit/s (200 Gbit/s×7 ch) 50 km optical transmission experiment," Electron. Lett.33(20),1997,1716-1717.
    [100]E. Yamada, H. Takara, T. Ohara, et al. "150 channel supercontinuum CW optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems," Electron. Lett. 37(5),2001,304-306.
    [101]K. Mori, K. Sato, H. Takara, et al. "Supercontinuum lightwave source generating 50GHz spaced optical ITU grid seamlessly over S-, C-and L-bands," Electron. Lett.39(6), 2003,544-546.
    [102]T. Yamamoto, H. Kubota, S. Kawanishi, et al. "Supercontinuum generation at 1.55 μm in a dispersion-flattened polarisation-maintaining photonic crystal fiber," Opt. Express,11 (13),2003,1537-1540.
    [103]Y. Z. Xu, X. M. Ren, Z. N. Wang, et al. "Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse," Chin. Phys. Lett.24(3), 2007,734-737.
    [104]徐永钊,光子晶体光纤及相关通信光电子技术的理论与实验研究,北京邮电大学,2007.
    [105]A. Mussot, E. Lantz, H. Maillotte, et al. "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,"Opt. Express,12(13),2004,2838-2843.
    [106]J. C. Travers, R. E. Kennedy, S. V. Popov, et al. "Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber," Opt. Lett.30(15), 2005,1938-1940.
    [1]P. Diament. Wave Transmission and Fiber Optics (Macmillan, New York,1990), Chap.3.
    [2]Govind P. Agrawal. Nonlinear Fiber Optics, Fourth Edition, USA:Elsevier Inc.,2006, USA, Chap.1.
    [3]P. N. Butcher, and D. N. Cotter. The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, UK,1990).
    [4]Y. R. Shen. Principles of Nonlinear Optics (Wiley, New York,1984).
    [5]R. H. Stolen and C. Lin. "Self-phase-modulation in silica optical fibers," Phys. Rev. A 17(4),1978,1448-1453.
    [6]R. H. Stolen, E. P. Ippen, and A. R. Tynes. "Raman oscillation in glass optical waveguide," Appl. Phys. Lett.20(2),1972,62-64.
    [7]E. P. Ippen, and R. H. Stolen. "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett.21(11),1972,539-541.
    [8]耿丹,光子晶体光纤中受激布里渊散射与四波混频技术研究,浙江大学,2008.
    [9]R. H. Stolen, J. E. Bjorkholm, and A. Ashkin. "Phase-matched three-wave mixing in silica fiber optical waveguides," Appl. Phys. Lett.24(7),1974,308-310.
    [10]P. V. Mamyshev, and S. V. Chernikov. "Ultrashort-pulse propagation in optical fibers," Opt. Lett.15(19),1990,1076-1078.
    [11]P. M. Morse, and H. Feshbach. Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Chap.9.
    [12]N. Karasawa, S. Nakamura, N. Nakagawa, rt al. "Comparison Between Theory and Experiment of Nonlinear Propagation for a-Few-Cycle and Ultrabroadband Optical Pulses in a Fused-Silica Fiber," IEEE J. Quantum Electron.37(3),2001.398-404.
    [13]R. H. Stolen, J. P. Gordon, W. J. Tomlinson, et al. "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6(6),1989,1159-1166.
    [14]S. V. Chernikov, and P. V. Mamyshev. "Femtosecond soliton propagation in fibres with slowly decreasing dispersion," J. Opt. Soc. Am. B 8(8),1991,1633-1641.
    [15]F. DeMartini, C. H. Townes, T. K. Gustafson, et al. "Self-steepening of light pulses," Phys. Rev.164(2),1967,312-323.
    [16]A. K. Atieh, P. Myslinski, J. Chrostowski, et al. "Measuring the Raman time Constant (TR) for Soliton pulses in standard single-mode fiber," J. Lightwave Technol.17(2),1999, 216-221.
    [17]Y. S. Kivshar, and G. P. Agrawal. Optical Solitons:From Fibers to Photonic Crystals (Academic Press, Boston,2003).
    [18]P. D. Drummond, and S. J. Carter. "Quantum-field theory of squeezing in solitons,"'J. Opt. Soc. Am. B 4(10),1987,1565-1573.
    [19]J. P. Gordon, and H. A. Haus. "Random walk of coherently amplified solitons in optical fiber transmission," Opt. Lett.11(10),1986,665-667.
    [20]J. F. Corney, and P. D. Drummond. "Quantum noise in optical fibers. Ⅱ. Raman jitter in soliton communications," J. Opt. Soc. Am. B 18(2),2001,153-161.
    [21]P. D. Drummond. "Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics," Phys. Rev. A 42(11),1990,6845-6857.
    [22]N. Bloembergen. Nonlinear Optics (Benjamin, New York,1965).
    [23]P. D. Drummond, and S. J. Carter. "Quantum-field theory of squeezing in solitons," J. Opt. Soc. Am. B 4(10),1987,1565-1573.
    [24]P. D. Drummond, S. J. Carter, and R. M. Shelby. "Time dependence of quantum fluctuations in solitons," Opt. Lett.14(7),1989,373-375.
    [25]S. J. Carter, and P. D. Drummond."Squeezed quantum solitons and Raman noise," Phys. Rev. Lett.67(27),1991,3757-3760.
    [26]M. D. Levenson. Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).
    [27]P. D. Drummond, and J. F. Corney. "Quantum noise in optical fibers. I. Stochastic equations," J. Opt. Soc. Am. B 18(2),2001,139-152.
    [28]K. L. Corwin, N. R. Newbury, J. M. Dudley, et al. "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett.90(11),2003, 113904.
    [29]Agrawal G P.贾东方,余震虹,谈斌等译.非线性光纤光学原理及应用.北京,电子工业出版社,2002,4-121.
    [30]G. H. Weiss, and A. A. Maradudin. "The Baker-Hausdorff Formula and a Problem in Crystal Physics," T. Math. Phys.3(4),1962,771-777.
    [31]Johan Hult. "A Fourth-Order Runge-Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers," J. Lightwave Technol.25(12),2007, 3770-3775.
    [1]W. J. Tomlinson, R. H. Stolen, and A. M. Johnson. "Optical wave breaking of pulses in nonlinear optical fibers," Opt. Lett.10(9),1985,457-459.
    [2]D. V. Skryabin, F. Luan, J. C. Knight, et al. "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science,301(5640),2003,1705-1708.
    [3]S. Roy, S. K. Bhadra, and G. P Agrawal."Dispersive waves emitted by solitions perturbed by third-order dispersion inside optical fibers," Phys. Rev. A 79(2),2009,3824-3829.
    [4]G.P. Agrawal著.非线性光纤光学原理及应用.贾东方,余震虹等译.北京:电子工业出版社,2002.64
    [5]F. Zolla, G. Renversez, A. Nicolet, et al. Foundations of Photonic Crystal Fibres (Imperial Collage Press, London,2005).
    [6]Niels Asger Mortensen. "Effective area of photonic crystal fibers," Opt. Express 10(7), 2002,341-348.
    [7]王亚苗.高非线性色散平坦微结构光纤的研究,北京邮电大学,2010.
    [8]郑龙.新型微结构光纤设计及其应用研究,北京邮电大学,2011.
    [1]S. Taccheo, and K. Ennser. "Investigation of Amplitude Noise and Timing Jitter of Supercontinuum Spectrum-Sliced Pulses," IEEE Photonic Tech. L.,14(8),2002, 1100-1102.
    [2]K. L. Corwin, N. R. Newbury, J. M. Dudley, et al. "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. B 77(2-3),2003,269-277.
    [3]C. H. Henry, and R. F. Kazarinov. "Quantum noise in photonics," Rev. Mod. Phys., Vol. 68(3),1996,801-853.
    [4]D. Turke, S. Pricking, A. Husakou, et al. "Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime," Opt. Express,15(5),2007, 2732-2741.
    [5]L. Zheng, X. Zhang, X. M. Ren, et al. "Dispersion flattened photonic crystal fiber with high nonlinearity for supercontinuum generation at 1.55 μm," Chin. opt. Lett.9(4),2011, 040601.
    [6]K. J. Blow, N. J. Doran, and David Wood. "Suppression of the soliton self-frequency shift by bandwidth-limited amplification," J. Opt. Soc. Am. B 5(6),1988,1301-1304.
    [7]Dieter Schadt, and Bozena Jaskorzynska. "Suppression of the Raman self-frequency shift by cross-phase modulation," J. Opt. Soc. Am. B 5(11),1988,2374-2378.
    [8]A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor. "Suppression and manipulation of the soliton self-frequency shift," Opt. Lett.,14(10),1989,514-516.
    [9]M. Ding, and K. Kikuchi. "Realization of femtosecond soliton oscillation in all-fiber Raman laser with soliton self-frequency shift suppression," IEEE Photon. Technol. Lett., 4(8),1992,927-930.
    [10]D. V. Skryabin, F. Luan, J. C. Knight, et al. "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science,301(5640),2003,1705-1708.
    [11]Nail Akhmediev, and Magnus Karlsson. "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51(3),1995,2602-2607.
    [12]S. Roy, S. K. Bhadra, and G. P Agrawal."Dispersive waves emitted by solitions perturbed by third-order dispersion inside optical fibers," Phys. Rev. A 79(2),2009,3824-3829.
    [13]P. K. A. Wai, C. R. Menyuk, Y. C. Lee, et al. "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett., 11 (7),1986,464-466.
    [1]J. R. Klauder, A. C. Price, S. Darlington, et al.'The Theory and Design of Chirp Radars," Bell System Technical Journal 39,745 (1960).
    [2]E. B.Treacy. "Measurement of picosecond pulse substructure using compression techniques," Appl. Phys. Lett.,14(3),1969,112-114.
    [3]R. L. Fork, C. H. Brito Cruz, P. C. Becker, et al. "Compression of optical pulses to six femtoseconds by using cubic phase compensation," Opt. Lett.12(7),1987,483-485.
    [4]S. V. Chernikov, E. M. Dianov, D. J. Richardson, et al. "Soliton pulse compression in dispersion-decreasing fiber," Opt. Lett.18(7),1993,476-478.
    [5]R. F de Souza, E. J. S Fonseca, J. Miguel Hickmann, et al. "Weak signal pulse compression and amplification through stimulated Raman scattering and cross-phase modulation in optical fibers," Opt. Commun.,124(1-2),1996,79-82.
    [6]E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, et al. "Optical compression of multi-soliton pulse in optical fibers," Sov. Tech. Phys. Lett.12(6),1986,311-313.
    [7]G. A. Nowak, J. Y. Kim, and M. N. Islam. "Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber," Appl. Opt.,38(36),1999,7364-7369.
    [8]J. P. Gordon, "Dispersive perturbations of solitons of the nonlinear Schrodinger equation," J. Opt. Soc. Am. B,9(1),1992,91-97.
    [9]O.Boyraz. "Generation of S-band WDM source by using nonlinear properties of sillica fibers," Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Engineering,2002.1-37.
    [10]F. Lu, and W. H. Knox. "Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers," Opt. Express 12 (2),2004,347-353.
    [11]F. Vanholsbeeck, S. Martin-Lopez, M. Gonzdlez-Herrdez, et al. "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13 (17),2005, 6615-6625.
    [12]N. R. Newbury, B. R. Washburn, and K. L. Corwin. "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett.28 (11),2003,944-946.
    [13]S. Taccheo, and K. Ennser. "Investigation of Amplitude Noise and Timing Jitter of Supercontinuum Spectrum-Sliced Pulses," IEEE Photonic Tech. L.14 (8),2002, 1100-1102.
    [1]Alnair Labs Corporation. "Wavelength-Tunable and Bandwidth-Variable Optical Filter BVF-100," http://ww.alnair-labs.com/pdf/BVF-100.pdf
    [2]X. F. Duan, Y. Q. Huang, H. Huang, et al. "Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications," Journal of Lightwave Technology,27(21),2009,4697-4702.
    [3]Y. H. Zuo, R. W. Mao, Y. Y. Zheng, et al. "A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry-Perot cavity structure," IEEE Photonics Technology Letters, 17(10),2005,2134-2136.
    [4]M G. Littman, and H. J. Metcalf. "Spectrally narrow pulsed dye laser without beam expander," Applied Optics,17(14),1978,2224-2227.
    [5]K. R. Wildnauer, and Z. Azary. "A double-pass monochromator for wavelength selection in an optical spectrum analyzer-internal construction of the HP 71450A and 71451A optical analyzers-Technical," Hewlett-Packard Journal,44(6),1993,68-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700