用户名: 密码: 验证码:
基于车载激光扫描数据的地物分类和快速建模技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市三维建模是“数字城市”的重要组成部分,其不仅为城市管理者提供直观的虚拟城市模型以方便城市规划、城市建设、公共安全、公益服务等各项工作,同时也为普通民众提供更加方便数字化生活的载体。车载激光雷达测量系统是近年来发展起来的城市三维建模的新技术,为建立更加逼真的城市三维模型提供了新途径。本文旨在研究基于车载激光扫描数据进行城市建模的过程、难点和方法,主要进行了以下几方面的工作:
     1.回顾了车载激光雷达测量系统的发展及其数据特点、数据处理技术的进展概况。车载激光扫描测量系统是在传统的传统激光雷达系统基础之上发展起来的以汽车作为平台实现多传感器集成的测量系统。与机载激光扫描系统相比,车载系统能够获取的建筑物立面数据精度更高;与单站激光扫描系统相比,车载系统能够获取车行路线上多个测点的拼接扫描数据和影像信息,是当前迅速发展城市街景数据获取手段。
     2.融合点云不同特征进行点云分割的方法研究:激光扫描点云数据包含扫描对象表面的三维坐标、回波强度等信息,通过和CCD相机获取的影像数据的配准解算,还可以获取扫描点的颜色信息。本文在研究当前点云分割的基于几何特征和基于光谱特征的方法基础之上,将点云的几何特征和影像特征综合考虑为点云的特征向量空间的维度特征,提出了基于多维欧几里得向量空间的临近度判别方法,并对维度特征引入权值系数来反映不同特征对点云划分的影响程度,提高了该算法对不同来源的点云数据的可靠分割质量和效率。
     3.复杂城市场景中的地物分类识别方法研究:车载激光扫描系统获取的城市街道环境的点云数据中既包含规则地物(地面、建筑物里面、交通标识牌),也包含不规则地物(花坛、行道树、行人等),本次研究首先从车载系统获取的场景数据中包含的地物对象人工模式化入手,总结不同地物在构造形态和空间分布上的规则;然后以点云分割结果为基础,将点云面片作为分类识别的最小处理单元,采用面向对象的设计方法建立点云面片对象类,并总结出一套面片对象的属性和方法体系,从而在地物特征和点云面片对象属性之间建立关联关系,考虑到以往的基于知识的点云分类方法的刚性判断模式的不足,提出基于特征模糊度量和可信度判断的柔性分类模式,提高了对复杂场景中的地物分类识别的精度。
     4.基于OpenGL的城市地物快速三维建模的方法研究:首先分析了三维建模中边界模型(Boundary Representation)和实体模型(CSG)的差异,然后简要介绍了OpenGL建模的基本方法,并实现了基于数据驱动的对象三维重建方法。针对城市街景中地物的特征,重点介绍了基于凸包生成的方法构建规则建筑物平面的方法,以及利用Hough变换和最小二乘法提取穹顶、圆柱等弧状表面的对象特征并建模的方法,并对建成的三维模型进行纹理贴图表现,以提高模型的可视化效果。
     5.开发出点云数据处理原型系统:利用本次研究所取得的主要成果,开发出点云数据处理原型系统对上述算法进行试验处理。并利用当前已获得的多套机载激光点云数据、单站激光点云数据、车载激光点云数据分别对点云分割算法、点云分类识别算法和三维模型重建方法进行了对比分析。
Urban3D model is an important part of "Digital City" that not only offers a virtual simulation for urban planners in urban planning, facilities construction, public security and commonweal services, but also serves as a convenient platform for public participation. Mobile Laser Scanning System is an innovative urban3D modeling technology developed recently that is often used to construct more realistic urban3D models. This dissertation focuses on issues related to processes, difficulties and methods of urban model construction based on Mobile Laser Scanning data. The contents of this research consist of the following parts:
     Literature reviews and summaries of development of Mobile Laser Scanning System, data features and data processing technology. Mobile Laser Scanning System develops based on traditional radar system and becomes a new measuring system that installed on vehicle platform and integrated with multiple sensors. Compared with Airborne Radar Scanning system, the Mobile Laser Scanning System can obtain higher resolution data of building facade. Moreover, compared with Single-Spot Laser Scanning system, the Mobile Laser Scanning System is capable of scanning combined image and information from different scanning spots by navigating along urban roads, which becomes main methodology of current data collection of street view.
     Point cloud segmentation integrated with different data features:Laser Scanning point cloud data includes3D coordination of object surface, echo intensity and etc. The color information of scanned object can also be obtained by calibration integrated with data that captured by CCD camera. Based on current methodology of point cloud segmentation from topology and spectrum features, this dissertation has addressed methodology based on proximity judgment on Euclidean distance in multiple dimensions while considered both topology and image features as dimension features of point cloud comprehensively. Furthermore, a weigh coefficient has also been introduced to reflect the influence degree of segmentation from different features. Therefore, the creditability of this algorithm in calculating data from different resources has been enhanced.
     Object classification in complex urban scene:the Vehicle-Born Radar Scanning system can capture the point cloud data of urban street with regular forms (urban ground, inside of building and traffic sign) and irregular forms (parterre, trees and passengers). At first, this research artificially modularizes the data that is captured by Vehicle-Born Radar Scanning system and also includes ground objects. The regulations of different objects in forming and spatial distributing are also summarized. Secondly, based on the segmentation results, point cloud surface has been set as the minimal recognizing unit in classification; the Objective Oriented Design has been utilized to establish point cloud surface class; the attribution and method of such objective has also been introduced. Therefore, the relationship between urban ground objective and point cloud surface attribution has been established. To avoid the disadvantage of previous arbitrary modularization in point cloud classification, a fixable modularization based on fuzzy feature measurement and credibility judgment has also been addressed. The precision of ground object classification in complex urban scene has been improved accordingly.
     3D urban model quick construction based on OpenGL:the difference between Boundary Representation model and Constructive Solid Geometry model in3D model construction has been analyzed initially. The basic methodology of OpenGL model construction has also been introduced, and the3D model reconstruction has been implemented based on Data Driven methodology as well. In the following phrase, this research has concentrated on Convex Hall Generation method to construct regular building plane and Hough Transformation and Least Squares method to construct the arc features including dome and pillar, concerning the unique characteristics of urban objectives. The texture has been attached to enhance the realistic simulation.
     The prototype of point cloud data processing system:The achievements of this research have implemented into a prototype of point cloud data processing system to testify those algorithms. The comparison between point cloud segmentation algorithm, point cloud classification algorithm and3D model reconstruction has been employed by utilizing the existing data that includes Airborne Laser Scanning data, Terrestrial Laser Scanning data and Mobile Laser Scanning data.
引文
[1]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉测绘科技大学出版社,1996.
    [2]Brian C, Marc L. A volumetric method for building complex models from range images[A]. In:Proceedings of the 23rd annual conference on Computer graphics and interactive techniques[C]:ACM,1996.
    [3]FLOOD M, GUTELIUS B. Commercial Implications of Topographic Terrain Mapping Using Scanning Airborne Laser Radar[J]. Photogrammetric Engineering&Remote Sensing.1997. 63(4):327-329,363-366.
    [4]Haala N, Brenner C. Generation of 3D City Models from Airborne Laser Scanning Data[A]. In:EARSEL Work-shop on LIDAR Remote Sensing on Land and Area[C]. Tallinn/Estonia, 1997.
    [5]陈静,李清泉,李必军.激光扫描测量系统的应用研究[J].测绘工程.2001,10(1):49-52.
    [6]李英成,文沃根,王伟.快速获取地面三维数据的LIDAR技术系统[J].测绘科学.2002,27(4):35-38.
    [7]刘经南,张小红.激光扫描测高技术的发展与现状[J].武汉大学学报(信息科学版).2003,28(2):132-137.
    [8]刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版).2005,30(3):189-193.
    [9]卢秀山,李清泉,冯文灏等.车载式城市信息采集与三维建模系统[J].武汉大学学报(工学版).2003,36(3):76-80.
    [10]Zhan Q, Pang Q, Shi W. Automatic structure detection in a point-cloud of buildings obtained by terrestrial laser scanning[A]. In:MIPPR 2007:Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition[C],2007.
    [11]庞前聪,詹庆明,吕毅.激光遥感技术---古建筑与历史街区保护的新契机[J].中外建筑.2008,82(2):121-124.
    [12]张帆,黄先锋,李德仁.基于球面投影的单站地面激光扫描点云构网方法[J].测绘学报.2009,38(1):48-54.
    [13]Xiao Y, Zhan Q, Pang Q.3D Data Acquisition by Terrestrial Laser Scanning for Protection of Historical Buildings[A]. In:Proceedings of the IEEE International Conference on Wireless Communications, Networking and Mobile Computing(WiCOM2007)[C]. Shanghai,China, 2007.
    [14]王健,靳奉祥,吕海彦等.基于车载激光测距的建筑物立面信息提取[J].山东科技大学学报:自然科学版.2004,23(4):8-11.
    [15]史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘 学报.2005,34(2):95-100.
    [16]康志忠,张祖勋,张剑清.基于车载序列影像的建筑立面纹理的快速重建[J].武汉大学学报(信息科学版).2005,30(11):960-964.
    [17]吴芬芳,李清泉,熊卿.基于车载激光扫描数据的目标分类方法[J].测绘科学.2007,32(4):75-77,55.
    [18]江水,盛业华,李永强等.基于车载激光扫描的带状地物表面快速重建[J].地球信息科学.2007,9(5):19-23.
    [19]李永强,盛业华,刘会云等.基于车载激光扫描的公路三维信息提取[J].测绘科学.2008,33(4):23-25.
    [20]杨长强,叶泽田,卢秀山等.车载激光点云数据的栅格化处理[J].测绘科学.2009,34(5):23-24,20.
    [21]李清泉,毛庆洲.车载道路快速检测与测量技术研究[J].交通信息与安全.2009,27(1):7-10.
    [22]张小红.机载激光雷达测量技术理论与方法[M]:武汉:武汉大学出版社,2007.
    [23]Hoffman R, Jain A K. Segmentation and Classification of Range Images[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1987. PAMI-9(5):608-620.
    [24]徕卡测量系统[N]. http://www.leica-geosystems.com.cn.2010.
    [25]Riegl LTD[N]. http://www.riegl.com/nc/products/airborne-scanning.2010.
    [26]optech LTD[N]. http://www.optech.ca/prodaltm.htm.2010.
    [27]Salwen H. Error Analysis of Optical Range Measurement Systems[J]. Proc IEEE.1970. 58:1741-1746.
    [28]江月松,尤红建,李树楷.机载激光扫描测距仪的误差分析[J].遥感技术与应用.1998,13(2).
    [29]刘少创,邵晖,向茂生等.机载三维成像仪的定位原理与误差分析[J].测绘学报.1999,28(2):121-127.
    [30]刘少创,尤红建,刘彤等.机载激光测距-扫描成像制图系统的定位原理与误差分析[J].武汉测绘科技大学学报.1999,24(2):124-128.
    [31]尤红建,刘彤,李树楷等.机载三维成像仪航带拼接的误差处理研究[J].遥感学报.2001,5(2):114-118.
    [32]刘经南,张小红,李征航.影响机载激光扫描测高精度的系统误差分析[J].武汉大学学报(信息科学版).2002,27(2):111-116.
    [33]黄先锋,李卉,江万寿等.机载激光扫描数据误差分析与精度改善研究进展[J].遥感信息.2007,3:91-95.
    [34]卢秀山,郑作亚,王冬等.3Dsurs系统激光扫描点的理论精度评定[J].测绘学报.2010,39(2):202-206.
    [35]Arun K S, Huang T S, Blostein S D. Least-Squares Fitting of Two 3-D Point Sets[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1987. PAMI-9(5):698-700.
    [36]Besl P J, McKay N D. A Method for Registration of 3-D Shapes[J]. IEEE Transactions on pattern analysis and machine intelligence.1992.14(2):239-256.
    [37]蔡润彬,潘国荣.三维激光扫描多视点云拼接新方法[J].同济大学学报:自然科学版.2006,34(7):913-918.
    [38]蔡润彬.地面激光扫描数据后处理若干关键技术研究[D].上海:同济大学,2008.
    [39]戴静兰.海量点云预处理算法研究[D].杭州:浙江大学,2006.
    [40]施贵刚,程效军,官云兰等.地面三维激光扫描点云配准的最佳距离[J].江苏大学学报:自然科学版.2009,30(2):197-200,208.
    [41]Hoover A, Jean-Baptiste G, Jiang X, et al. An experimental comparison of range image segmentation algorithms [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1996.18(7):673-689.
    [42]庞前聪.基于知识的古建筑激光点云三维重建模式的研究[D].武汉:武汉大学,2009.
    [43]Fan T J, Medioni G, Nevatia R. Segmented descriptions of 3-D surfaces[J]. IEEE Journal of Robotics and Automation.1987.3(6):527-538.
    [44]史桂蓉,邢渊,张永清等.基于曲率半径的数据分割[J].计算机工程与应用.2001,15:93-95.
    [45]柯映林,单东日.基于边特征的点云数据区域分割[J].浙江大学学报:工学版.2005,39(3):377-380.
    [46]Meyer A, Marin P. Segmentation of 3D triangulated data points using edges constructed with a C1 discontinuous surface fitting[J]. Computer-Aided Design.2004.36:1327-1336.
    [47]Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry and Remote Sensing.2008.63(1):84-98.
    [48]BESL P J, JAIN R C. Segmentation through variable-order surface fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1988.10(2):167-192.
    [49]Marshall D, Lukacs G, Martin R. Robust segmentation of primitives from range data in the presence of geometric degeneracy[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2001.23(3):304-314.
    [50]Roggero M. Object segmentation with region growing and principal component analysis[A]. In:ISPRS Commission Ⅲ, Symposium 2002[C]. Graz, Austria,2002.
    [51]Rabbani T, van den Heuvel F, Vosselman G. Segmentation of Point Clouds using Smoothness Constraint[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.2006.36(5):248-253.
    [52]Pu S, Vosselman G. EXTRACTING WINDOWS FROM TERRESTRIAL LASER SCANNING[A]. In:ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007[C]. Espoo, Finland,2007.
    [53]Filin S. Surface clustering from airborne laser scanning data[A]. In:ISPRS Commission Ⅲ, Symposium 2002[C]. Graz, Austria,2002.
    [54]Morsdorf F, Meier E, Kotz B, et al. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management[J]. Remote Sensing of Environment.2004.92(3):353-362.
    [55]王大莹,程新文,潘慧波等.基于最佳阈值形态学方法对机载LiDAR数据进行边缘提取[J].测绘工程.2009,18(2):34-37.
    [56]刘宇.基于微分信息的散乱点云拼合和分割[D].武汉:华中科技大学,2008.
    [57]石波,卢秀山,陈允芳.基于kd-tree的建筑物散乱点云平面分割[J].测绘科学.2008,30(1):135-136.
    [58]史桂蓉,邢渊,张永清.用神经网络进行散乱点的区域分割[J].上海交通大学学报.2001,35(7):1093-1096.
    [59]Kotropoulos C, Pitas I. Segmentation of ultrasonic images using Support Vector Machines[J]. Pattern Recognition Letters.2003.24(4-5):715-727.
    [60]Song M, Civco D. Road extraction using SVM and image segmentation[J]. Photogrammetric engineering and remote sensing.2004.70(12):1365-1371.
    [61]张力宁,刘元朋,张定华.利用模糊神经网络实现逆向工程中的区域分割[J].计算机工程与应用.2004,40(31):33-35.
    [62]Anguelov D, Taskar B, Chatalbashev V, et al. Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data[J]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on.2005.2:169-176.
    [63]Zhan Q, Liang Y, Xiao Y. Color-based segmentation of point clouds[A]. In:International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences[C]. Paris, France,2009.
    [64]Zhan Q, Molenaar M, Tempfli K. Building extraction from laser data by reasoning on image segments in elevation slices[A]. In:The International Archives of Photogrammetry and Remote Sensing[C]. Graz, Austria,2002.
    [65]Zhan Q. A hierarchical object-based approach for urban land-use classification from remote sensing data[D]. Enschede:Wageningen University,2003.
    [66]Sithole G, Vosselman G. Automatic structure detection in a point-cloud of an urban landscape[A]. In:2nd Grss/Isprs Joint Workshop on Remote Sensing and Data Fusion over Ubran Areas[C]. Tech Univ Berlin, Berlin, Germany,2003.
    [67]Vosselman G, Gorte B, Sithole G. Change detection for updating medium scale maps using laser altimetry[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.2004.35(B3)207-212.
    [68]Zhan Q, Molenaar M, Tempfli K, et al. Quality assessment for geo-spatial objects derived from remotely sensed data[J]. International journal of remote sensing.2005. 26(14):2953-2974.
    [69]刘峰,杨志高.基于对象的激光点云数据城区树木识别方法[J].中南林业科技大学学报.2010,30(7):73-77.
    [70]Pu S, Vosselman G. Automatic extraction of building features from terrestrial laser scanning[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.2006.36(5)25-27.
    [71]Sithole G. Detection of Bricks in a Masonry Wall[A]. In:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences[C]. Beijing,2008.
    [72]曾齐红,毛建华,李先华等.机载激光雷达点云的阶层式分类[J].测绘科学.2008,33(1):103-105.
    [73]曾齐红.机载激光雷达点云数据处理与建筑物三维重建[D].上海:上海大学,2009.
    [74]Pu S, Zhan Q. Classification of mobile terrestrial laser point clouds using semantic constraints [A]. In:Videometrics, Range Imaging, and Applications, Proceedings of SPIE[C]. San Diego, USA,2009.
    [75]杨必胜,魏征,李清泉等.面向车载激光扫描点云快速分类的点云特征图像生成方法[J].测绘学报.2010,39(5):540-545.
    [76]Sproull R. Refinements to nearest-neighbor searching in k-dimensional trees[J]. Algorithmica.1991.6(1):579-589.
    [77]ARYA S, MOUNT D M, NETANYAHU N S, et al. An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions[J]. Journal of the ACM.1998. 45(6):891-923.
    [78]熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报.2004,16(7):909-912.
    [79]刘晓东,刘国荣,王颖等.散乱数据点的k近邻搜索算法[J].微电子学与计算机.2006,23(4):23-26.
    [80]卫炜,张丽艳,周来水.一种快速搜索海量数据集K-近邻空间球算法[J].航空学报.2006,27(5):944-948.
    [81]李清泉,李德仁.三维地理信息系统中的数据结构[J].武汉测绘科技大学学报.1996,21(2):128-133.
    [82]李清泉,李德仁.八叉树的三维行程编码[J].武汉测绘科技大学学报.1997,22(2):102-106.
    [83]Rabbani T, Heuvel F A V D, Vosselman G. SEGMENTATION OF POINT CLOUDS USING SMOOTHNESS CONSTRAINT [A]. In:ISPRS Commission V Symposium'Image Engineering and Vision Metrology'[C],2006.
    [84]冯肖维,赵翠莲,王焕龙等.基于外存的点云拓扑结构建立的八叉树算法[J].机械制造.2007,45(5):8-11.
    [85]Pu S, Vosselman G. Knowledge based reconstruction of building models from terrestrial laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing.2009. 64(6):575-584.
    [86]Amet H S. Applications of Spatial Data Structures Computer Graphics, Image Processing, and GIS[M]. MA:ADDISON-WESLEY PUBLISHING COMPANY,1990.
    [87]Suveg I, Vosselman G. Reconstruction of 3D building models from aerial images and maps[J]. ISPRS Journal of Photogrammetry and Remote Sensing.2004.58(3-4):202-224.
    [88]Vosselman G. Building Reconstruction Using Planar Faces in Very High Density Height Data[A]. In:International Archives of Photogrammetry and Remote Sensing[C],1999.
    [89]Morgan M, Habib A.3D TIN for Automatic Building Extraction from airborne Laser Scanning Data[A]. In:Proceedings of the ASPRS Gateway to the New Millennium[C]. St. Louis,Missouri,2001.
    [90]Hofmann A D. Analysis of TIN-structure parameter spaces in airborne laser scanner data for 3-d building model generation[J]. International archives of photogrammetry and remote sensing.2004.35(B3):302-307.
    [91]Ali T, Mehrabian A. A novel computational paradigm for creating a Triangular Irregular Network (TIN) from LiDAR data[J]. Nonlinear Analysis:Theory, Methods& Applications. 2009.71(12):e624-e629.
    [92]Briese C. Structure line modeling based on terrestrial laser scanner data[A]. In:ISPRS Symposium, Commission V-Image Engineering and Vision Metrology[C]. Dresden,2006.
    [93]Wang C K, Hsu P H. Building Extraction from LiDAR Data Using Wavelet Analysis[A]. In: Proceeding of 27th Asian Conference on Remote Sensing[C]. Ulaanbaatar,Mongolia,2006.
    [94]尤红建,张世强.组合CCD图像和稀疏激光测距数据的建筑物三维信息提取[J].光学精密工程.2006,14(2):297-302.
    [95]黄先锋.利用机载LIDAR数据重建3D建筑物模型的关键技术研究[D].武汉:武汉大学,2006.
    [96]Neidhart H, Sester M. Extraction of building ground plans from Lidar data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.2008.37:405-410.
    [97]Vosselman G, Dijkman S.3D Building Model Reconstruction from Point Clouds and Ground Plans[A]. In:International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences[C]. Annapolis, MA, USA,2001.
    [98]Rottensteiner F, Briese C. Automatic generation of building models from LIDAR data and the integration of aerial images[A]. In:Proceedings of the ISPRS working group III/3 workshop'3-D reconstruction from airborne laserscanner and InSAR data'[C]. Dresden, Germany,2003.
    [99]Hu J, You S, Neumann U. Integrating lidar, aerial image and ground images for complete urban building modeling[A]. In:3DPVT[C]. Chapel Hill, USA,2006.
    [100]邓非,徐国杰,冯晨等.LiDAR数据与航空影像结合的建筑物重建[J].测绘信息与工程. 2010,35(1):35-37.
    [101]Huber M, Schickler W, Hinz S, et al. Fusion of LIDAR data and aerial imagery for automatic reconstruction of building surfaces[A]. In:2nd Joint Workshop on Remote Sensing and Data Fusion over Urban Areas[C]. Berlin,Germany,2003.
    [102]Brenner C. Building reconstruction from images and laser scanning[J]. International Journal of Applied Earth Observation and Geoinformation.2005.6(3-4):187-198.
    [103]Schenk T, Csatho B. Fusing Imagery and 3D Point Clouds for Reconstructing Visible Surfaces of Urban Scenes[J]. Urban Remote Sensing Joint Event,2007.2007:1-7.
    [104]王刃.机载LIDAR数据滤波与建筑物提取技术研究[D].郑州:解放军信息工程大学,2008.
    [105]周培德.计算几何:算法设计与分析[M].北京:清华大学出版社,2005.
    [106]刘光惠,陈传波.求解简单多边形和平面点集凸包的新算法[J].计算机科学.2007,34(12):222-226.
    [107]Djouadi A, Bouktache E. A Fast Algorithm for the Nearest-Neighbor Classifier[J]. IEEE Trans. Pattern Analysis and Machine Intelligence.1997.19(3):277-282.
    [108]Jain A K, Duin R P W, Jianchang M. Statistical pattern recognition:a review[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2000.22(1):4-37.
    [109]赵时英.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [110]Shreiner, D., J. Neider, M. Woo等OpenGL编程指南[M]:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700