用户名: 密码: 验证码:
基于能源生态足迹的森林碳汇影子价格研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着中国经济持续高速增长,能源消费而排放的CO2数量迅猛增长。因CO2积累而形成的气候变暖,生态系统失衡问题正在受到国际社会的广泛关注。我国作为世界上最大的CO2排放国家,面临着巨大的减排压力。森林生态系统作为陆地生态系统中最大的“储碳器”备受关注,而且国际社会普遍认为森林碳汇效益是最经济有效的减缓气候变化的方式之一。我国第七次森林资源清查数据表明,我国的森林碳储量已经达到78.11亿吨,通过森林可持续经营管理,预计到2020年,森林蓄积量将会增长13亿立方米。因此如何有效地将森林碳汇服务价值纳入我国的CO2减排市场机制中,降低社会CO2减排成本将是非常关键的任务。
     森林碳汇服务价值市场内部化必将提高市场各部门的生产成本,对各部门减排成本产生重要影响。那么如何为森林碳汇服务定价,兼顾各市场主体的CO2排放数量,使得各市场主体在CO2减排约束下重新实现市场均衡是本文的研究目的。本文的研究意义一方面以森林碳汇影子价格为森林碳汇价值补偿提供依据,另一方面森林碳汇影子价格为碳税政策制定提供了新的角度。本文的研究内容主要包括以下方面:
     第一,本文以碳税政策为切入点,通过构建碳税可计算一般均衡模型(CGE)体现碳税对市场主体各部门的影响,以2007年中国社会核算矩阵的数据基础,获得在初始均衡条件下,各部门CO2排放数量,具体包括市场各部门中间高碳能源投入的CO2排放数量,最终消费需求引起的CO2排放数量,以及进出口贸易引起的CO2排放数量等。
     第二,获得初始均衡状态下各部门的CO2排放数量基础上,结合我国现有的森林生态系统碳吸收能力,估算得到市场各部门的能源生态足迹。根据我国的生产性土地面积与世界平均的生产性土地净初级生产力水平,以及考虑到我国森林立木的固碳能力,综合估算我国森林生态系统的碳汇功能承载力。比较我国各部门的能源生态足迹与森林生态系统的碳汇功能承载力,结果显示我国各部门的能源消费产生的CO2排放总量超过了碳汇功能承载力。因此,我国的能源消费是不可持续的。
     第三,在初始均衡状态下,本文通过构建扩展的投入-产出模型,考虑森林生态系统碳汇功能承载力约束下,市场各部门通过恢复森林碳汇生产力活动,实现新的市场均衡状态。其中以林业部门生产森林碳汇的技术系数为基础,构建扩展的投入-产出技术系数矩阵求出市场各部门的扩展技术系数,从而求解在新的市场均衡状态下,市场各部门在碳汇功能承载力约束下的产出。这一产出又可以具体细分为碳汇功能承载力下的约束产出以及为补偿碳汇功能承载力的额外产出。从结果中可以看出:碳汇功能承载力约束下,农林部门总产出量相比较原均衡产出量大幅增长,其他部门都大幅下降,低于原产出量的30%,各部门为恢复碳汇功能承载力而需要投入更多的劳动与资本要素。
     比较碳汇功能承载力约束下的市场各部门均衡价格与初始市场均衡条件下的各部门产品价格差异,价格为负可认为该些部门提供了碳汇正外部性,如农林部门。相反价格为正则体现需要为消费碳汇功能承载力而支付成本,如能源部门。将市场各部门在森林碳汇功能承载力约束下的均衡价格与原均衡价格差异定义为森林碳汇影子价格,而且以市场各部门在森林碳汇影子价格补偿下的市场总福利保持不变,那么得到2007年我国森林碳汇影子价格的市场成本为907元/吨CO2。
     第四,以不同碳税税率模拟了森林碳汇影子价格对市场均衡的影响。通过比较碳税税率为0.5%和1%,以及2%的森林碳汇影子价格对原市场均衡的冲击,可得当碳税税率为1%时,森林碳汇影子价格对市场均衡的影响最小。在碳税税率为1%时,大多数部门总产出下降了,真实GDP也下降了,劳动要素,资本要素的投入量也减少了,CO2排放量也大大降低了,相比税率为0.5%以及2%的情形下,劳动要素在各部门的流动性比较强,城镇、农村居民消费行为也随着价格变化而作出相应的变化,因此,相比较而言,1%的碳税税率较好地模拟了森林碳汇影子价格对原市场均衡的影响。
With the increasing economic growth CO2emission from energy consumption has beensurging. As global warming became worsen and more CO2was gathering in the air, ecologicalimbalance has threatened our world, the international were focusing on global warming.Chinese has been the largest CO2emitter, confronting great pressure to sequester CO2emission.Forest ecosystem is regarded as the most efficient carbon sink in the terrestrial ecosystem.According to the seventh forest resource inventory, Chinese carbon storage has reached7.811billion t. it was estimated that by2020, forest reserves would reach1.3billion cubic meterif forest sustainable management continued. Therefore, it is important to take account of forestecosystem carbon storage service in initiating the CO2abatement measures to lessen CO2sequestration cost.
     Once forest carbon storage service value has been interiorized in the market sectors’production cost, the CO2sequestration cost of every sector would change. Our aim is to discusshow to price forest carbon sink service to reach a new balance for every sector under theconstraint of CO2sequestration. Pricing forest carbon sink service will underlie forestecosystem carbon sink service compensation, also it will be vital for carbon tax policy making.The content of the paper is as follows:
     The first part, it takes carbon tax as the starting point, constructs carbon tax computablegeneral equilibrium model to analyze the impression from carbon tax. Based on2007socialaccounting matrix, every sector’s CO2emission is estimated in the initial equilibrium state.Including CO2emission from intermediate high carbon energy input, from the finalconsumption, from import and export and so on.
     The second part, based on all sectors’ CO2emission and our forest ecosystem carbonstorage capacity, every sector’s energy ecological footprint is estimated. Our forest carbon sinkcapacity is estimated by net primary productivity of ecological productive land multiplied thearea of productive land,also carbon sink productivity of forest tree is added to total carbon sinkcapacity. Comparing Chinese energy ecological footprint with forest carbon sink capacity in2007, it concludes that energy ecological footprint overpasses forest carbon sink capacity,therefore, our energy consumption is unsustainable.
     The third part expanded input-output model is built for energy-ecological-economic system. In the model forest carbon sink capacity is deemed as the constraint, every sectorshould recover forest carbon sink service to reach a new balance. The other sectors’ forestcarbon sink productivity is based on the forest sector’s technical coefficient in the input-outputtable to expand the new technical coefficient matrix in the expanded input-output model.Solving the expanded model, every sector’s output is divided into two parts, first the output isunder the constraint of forest carbon sink capacity, second the additional output is to recover theforest carbon sink capacity. It reveals that constrained by forest carbon sink capacity, output offorest sector has a great growth, while, other sectors decrease sharply to30%of initial output.That is the fact that other sectors should input more labor and capital to recover forest carbonsink capacity.
     Sector’s product price in the new equilibrium compared with that price in the initialequilibrium, the difference signifies the average cost of forest carbon sink capacity constraint, ifthe price is negative, the sector has the positive externalities for carbon sink, such as forestsector. If the price is negative, the sector should pay money for forest carbon sink capacityconsumption, such as energy sector. Forest carbon sink shadow price is defined as thedifference of price between the new equilibrium and the initial equilibrium. If the marketoverall welfare does not change with every sector’s payment for the forest carbon sink shadowprice, it is estimated that the social average cost of forest carbon shadow price is about907CY/t CO2.
     The final part, different tax rates are applied to imitate the forest carbon sink shadow priceshocking the general equilibrium. carbon tax rate is0.5%,1%,2%, the extent of forest carbonsink shadow price shocking the market general equilibrium is different, the result reveals thatcarbon tax rate is1%,and the shocking is mild. Although, the total output is decreasing, trueGDP is lessen, the input of labor and capital falls, CO2emission drops greatly, the mobility oflabor is strong and the behavior of residents’ consumption is responded to price change.Therefore, carbon tax rate is1%, which is better than0.5%and2%to imitate the forest carbonsink shadow price shocking the general equilibrium
引文
[1]白钰,曾辉,李贵才等.基于宏观贸易调整方法的国家生态足迹模型.[J]生态学报,2009,29(9):4827-4835.
    [2]财政部.中国财政年鉴2008.北京:中国财政杂志社,2008.
    [3]陈敏,王如松等.1978年-2003年中国生态足迹动态分析[J].资源科学,2005,27(6):132-139.
    [4]方恺,董德明,沈万斌.能源足迹改进方法及其在区域能源利用效益分析评价中的应用[J].地理科学,2010,30(5):686-692.
    [5]方精云.中国森林生产力及其对全球气候变化的响应.植物生态学报,2000,24(5):513-517.
    [6]范金,伞锋,王艳等.中国城乡居民消费取向的情景分析和政策研究.北京:中国社会科学出版社,2008.
    [7]高鹏飞和陈文颖.碳税与碳排放.[J]清华大学学报(自然科学版).2002年第42卷,第10期:1335-1338.
    [8]国家统计局.中国统计年鉴2008.北京:中国统计出版社,2008b.
    [9]国家统计局.中国统计年鉴2009.北京:中国统计出版社,2009b.
    [10]国家统计局.中国能源统计年鉴2008.北京:中国统计出版社,2008.
    [11]国家统计局.2007年中国投入产出表.北京:中国统计出版社,2009.
    [12]国家统计局.2007年中国电力年鉴.北京:中国统计出版社,2008.
    [13]何静,陈锡康.我国水资源影子价格动态可计算均衡模型.[J]水利水电科技进展,2005,25(1):12-13.
    [14]贺菊煌,沈可挺等.碳税与二氧化碳减排的CGE模型.[J]数量技术经济技术研究,2002(10):39-47.
    [15]江泽慧,彭镇华.世界主要树种木材科学特性[M].北京:科学出版社,2001.
    [16]李海奎,雷渊才.中国森林植被生物量与碳储量评估[M].北京:中国林业出版社,2010年.
    [17]刘秀丽,陈锡康.投入产出分析在我国九大流域水资源影子价格计算中的应用[J].管理评论,2003(1):49~54.
    [18]罗云建,张小全,王效科等.森林生物量的估算方法及其研究进展.林业科学,2009,45(8):129-134.
    [19]刘建兴.中国经济发展中的资源压力总量及其产业结构研究[D].东北大学,2008.
    [20]李坤刚,鞠美庭,李智.等.生态足迹模型的修正及在天津地区的应用探讨[J].环境科学与技术,2008,31(10):137141.
    [21]毛春梅,袁汝华.水资源价值量核算方法研究[J]水科学进展,1998,(12):24-27.
    [22]沈大军.水价理论与实践[M].北京:科学出版社,2001,101~114.
    [23]唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究.[J]林业科学,2000,1(36):19-27.
    [24]魏涛远,格罗姆斯洛德.征收碳税对中国经济与温室气体排放的影响.[J]世界经济与政治2002年,第8期:47-49.
    [25]王仲锋,冯仲科.样地林木生物量精度评定的研究.[J]北京林业大学学报,2005年12月,第27卷,增刊2:173-176.
    [26]王闰平,崔克勇等.山西省可持续发展状况生态足迹分析[J].中国生态农业学报.2006,14(3):199-201.
    [27]王健.基于可计算的一般均衡模型的我国碳税政策“双重红利”研究[J].生态经济.2011年,第10期:34-37.
    [28]王灿.基于动态CGE模型的中国气候政策模拟与分析[D].北京:清华大学,2003.
    [29]王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究.[J]应用生态学报,2001,12(1):13-16.
    [30]王伟光,郑国光.应对气候变化报告(2009).[R]社会科学文献出版社,2009:284~250.
    [31]王春峰.当前气候变化和林业议题谈判的国际进程.[J]林业经济,2009(12):20~24.
    [32]邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型.[J]应用生态学报,2007,1(18):1-8.
    [33]胥辉,刘伟平.相容性生物量模型研究.[J]福建林学院学报,2001,21(1):18-23.
    [34]薛晓娇,李新春.中国能源生态足迹与能源生态补偿的测度.[J]技术经济与管理研究2011(1):90-93.
    [35]谢鸿宇,陈贤生,林凯荣等.基于碳循环的化石能源及电力生态足迹[J].生态学报,2008,28(4):1729-1735.
    [36]杨足膺,赵媛,付伍明.基于弹性系数的江苏省能源生态足迹影响因素分析.[J]生态学报2010,30(24):6741—6748.
    [37]于娟.碳税循环政策在农村能源结构调整中的作用[D]复旦大学,2007年.
    [38]邹艳芬,中国能源生态足迹效率估计[J].中国矿业,2009,18(8):57-59.
    [39]曾伟生,骆期邦.海南省主要树种相对树高曲线模型应用研究.[J]中南林业调查规划,1999年5月,第18卷,第2期:1-7.
    [40]曾祯,潘恒.浅谈运用影子价格理论制定水价[J].技术经济研究与管理,1999(4):38~39.
    [41]张志乐.水作为供水项目产出物的影子价格测算理论和方法[J].水利科技与经济,1999(1):8~14.
    [42]张会儒,唐守正,胥辉.关于生物量模型中的异方差问题.[J]林业资源管理,1999:146-149.
    [43]周光明,黄农.湘潭市能源的生态足迹及森林固碳减排效应的分析[J].湖南林业科技,2006,33(1):4-6.
    [44]赵冠伟,杨木壮,陈健飞.1990-2007年中国能源足迹时空差异分析[J]地理与地理信息科学,2011,27(2):65-69.
    [45]郑玉欲,樊明太.中国CGE模型及政策分析.[M]北京:社会科学文献出版社,1999.
    [46]赵元聪.能源环境政策的增长、就业和减排效应.[D]浙江:浙江大学,2011.
    [47]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势.[J]应用生态学报,2004,15)8):1468-1472.
    [48]张茂震,王广兴.浙江省森林生物量动态.[J]生态学报,2008,28(11):5665-5674.
    [49]张治军.广西造林与再造林固碳成本效益研究.[D]北京:中国林业科学研究院,2009.
    [1]Adolfo Carballo Penela, CarlosSebastia′n Villasante. Applying physical input–output tables of energy toestimate the energy ecological footprint (EEF) of Galicia (NW Spain) Energy Policy36(2008):1148–1163.
    [2]AbigailL.Bristow, Mark Wardman, Alberto M.Zanni,et al. Public acceptability of personal carbon tradingand carbon tax. Ecological Economics69(2010):1824–1837.
    [3]Alblas, W.,1997. Energy and fisical reform in The Netherlands. In: OECD (Ed.), Applying Market-BasedInstruments to Environmental Policies in China and OECD Countries. OECD, Paris,pp.153–168.
    [4]Alig, R., Adams, D., McCarl,B., et al.‘Assessing Effects of Mitigation Strategies for Global ClimateChange with an Intertemporal Model of the U.S. Forest and Agriculture Sectors’, EnvironmentalResour.Econ.9(1997):259–274.
    [5]Annemarie C. Kerkhof,HenriC. Moll Taxation of multiple greenhouse gases and the effects on incomedistribution A case study of the Netherlands. ecological economics67(2008):318-326.
    [6]Anatoly S.,Sten N.. Dynamics of Russian forests and the carbon budget in1961-1998: an assessmentbased on long-term forest inventory data. Climate change55(2002):5-37.
    [7]Bovenberg, A.L., Goulder, L.H., Optimal environmental taxation in the presence of other taxes: Generalequilibrium analyses. American Economic Review1996,86(4):985–1000.
    [8]Barker,T.,Baylis,S., Madsen,P.. A UK carbon/energy tax: the macroeconomic effects. Energy Policy1993,21(3):296–308.
    [9]Burniaux,J.M.,Truong. GTAP-E:an energy-environmental version of the GTAP model. Center for globaltrade analysis. Department of agricultural economics, Purdue University,2002.
    [10]Cagatay telli etc. economics of environmental policy in Turkey: a general equilibrium investigation of theeconomic evaluation of sectoral emission reduction policies for climate change. Journal of policy modeling,march/April2008,30(2):321-340.
    [11]Chuanyi Lu,Qing Tong, Xuemei Liu. The impacts of carbon tax and complementary policies on Chineseeconomy. Energy Policy38(2010):7278–7285.
    [12]C. Monfreda, M. Wackernagel, Establishing national natural capital accounts based on detailedEcological Footprint and biological capacity assessments. land use and sustainability indicators2004,21(3):231-246.
    [13]Cheng-Zhong Chen,Zhen-Shan Lin. Multiple timescale analysis and factor analysis of energy ecologicalfootprint growth in China1953–2006. Energy Policy36(2008):1666–1678.
    [14]D. Hristu-Varsakelis,S. Karagiann, M.Pempetzoglou. Optimizing production with energy and GHGemission constraints in Greece An input–output analysis. Energy Policy38(2010):1566–1577.
    [15]DRI,1991. The economic impact of a package of EC measures to control CO2emissions. Final Reportprepared for the CEC.
    [16]Dellink, Rob; Hofkes, Marjan Dynamic modelling of pollution abatement in a CGE framework.Economic Modelling,2004,21(6):965-989.
    [17]Erb, K.-H., Actual land demand of Austria1926–2000: A variation on Ecological Footprint assessments.Land Use Policy,doi:10.1016/j.landusepol.2003.10.010.
    [18]Francisco J. Andre′, M. Alejandro Cardenete Esther Vela′zquez. Performing an environmental tax reformin a regional economy. A computable general equilibrium approach Ann Regional Science39(2005):375–392.
    [19]Frank Scrimgeour,Les Oxley. Reducing carbon emissions? The relative efectiveness of different Typesof environmental tax: the case of New Zealand. Environmental Modelling&Software20(2005):1439–1448.
    [20]Ferran Sancho. Double dividend effectiveness of energy tax policies and the elasticity of substitution: ACGE appraisal. Energy Policy38(2010):2927–2933.
    [21]Fang J Y, Hen A P, Peng C H,et al..Changes in forest biomass carbon storage in china between1949and1998. Science,292(2001):2320-2322.
    [22]Gao Zhiying, Liu Cuiyan. Empirical Analysis on Ecological Footprint of Household Consumption inChina.Energy Procedia5(2011):2387–2391.
    [23]Gottinger,H. W..Greenhouse gas economics and computable general equilibrium. Journal of PolicyModeling,1998,20(5):537–580.
    [24]Geir H.Bjertn s. Avoiding adverse employment effects from electricity taxation in Norway: What does itcost? Energy Policy39(2011):4766–4773.
    [25]Geir H.Bjertn s,Taran F hn,J rgen Aasness. Designing an electricity tax system in presence ofinternational regulations and multiple public goals: An empirical assessment. Energy Policy36(2008):3723–3733.
    [26]Howe H. Development of the extended linear expenditure system from simple saving assumptions.European economic review6(1975):305-310.
    [27]IEA CO2emission from fuel combustion2011-highlights. The chapter4energy.(Online available:http://www.iea.org/publications/free_new_Desc.asp?PUBS_ID=2450).
    [28]Jarmo Vehmas. Energy-related taxation as an environmental policy tool—the Finnish Experience1990–2003. Energy Policy33(2005):2175–2182.
    [29]J.Peter Clinch,Louise Dunne,Simon Dresner. Environmental and wider implications of politicalimpediments to environmental tax reform. Energy Policy34(2006):960–970.
    [30]Jiun-Jiun Ferng. Toward a scenario analysis framework for energy footprints Ecological Economics40(2002):53–69.
    [31]Jiun-Jiun Ferng. Applying input-output analysis to scenario analysis of ecological footprints.EcologicalEconomics69(2009):345–354.
    [32]JyriSepp l, Ilmo M enp et.al. An assessment of greenhouse gas emissions and material flows causedby the Finnish economy using the ENVIMAT model. Journal of Cleaner Production19(2011):1833-1841.
    [33]John Creedy,Catherine Sleeman Carbon taxation, prices and welfare in New Zealand. EcologicalEconomics57(2006):333–345.
    [34]Jason Venetoulis, John Talberth. Refining the ecological footprint.Environ Dev Sustain10(2008):441–469.
    [35]Ke Wang,Can Wang, Jining Chen. Analysis of the economic impact of different Chinese climate policyoptions based on a CGE model incorporating endogenous technological change. Energy Policy37(2009):2930–2940.
    [36]Kemfert,C.,&Welsch,H.. Energy–capital–labor substitution and the economic effects of CO2abatement:Evidence for Germany. Journal of Policy Modeling2000,22(6):641–660.
    [37]Klaus Hubacek, Stefan Giljum. Applying physical input-/output analysis to estimate land appropriation(ecological footprints) of international trade. Ecological Economics44(2003):137-/151.
    [38]Kurt Kratena ‘Ecological value added’ in an integrated ecosystem-economy Model-an indicator forsustainability. Ecological Economics48(2004):189–200.
    [39]Kurt Kratena. From ecological footprint to ecological rent: An economic indicator for resourceconstraints. Ecological Economics64(2008):507-516.
    [40]Karen Turner,Manfred Lenzen, Thomas Wiedmann. Examining the global environmental impact ofregional consumption activities-Part1: A technical note on combining input–output and ecological footprintanalysis. Ecological economics62(2007):37-44.
    [41]Kurz W, Apps M. A70year retrospective analysis of carbon fluxes in the Canadian forest sector.Ecological Applications1999,9(2):526–47.
    [42]Leontief, W.,.Environmental repercussions and the economic structure: an input-output approach. Reviewof Economics and Statistics LII,1970:262-271.
    [43]Mark Brenner,Matthew Riddle,James K.Boyce. Distributional impacts of carbon charges and revenuerecycling in China. Energy Policy35(2007):1771–1784.
    [44]McDonald, G.W., Patterson, M.G.,.Ecological Footprints and interdependencies of New Zealand regions.Ecological Economics50(2004):49–67.
    [45]Mette Wier, Katja Birr-Pedersen, Henrik Klinge Jacobsen,Jacob Klok. Are CO2taxes regressive?Evidence from the Danish experience. Ecological Economics52(2005):239–251.
    [46]Mustafa H. Babiker, Gilbert E. Metcalf and John Reilly.Tax Distortions and Global Climate Policy. MITJoint Program on the Science and Policy of Global Change,Report No.85,2002.
    [47]Monika St hls,Laura Saikku,Tuomas Mattila. Impacts of international trade on carbon flows of forestindustry in Finland.Journal of Cleaner Production19(2011):1842-1848.
    [48]Mònica Serrano,Erik Dietzenbacher.Responsibility and trade emission balances: An evaluation ofapproaches. Ecological Economics69(2010):2224–2232.
    [49]Nwaobi, Godwin Chukwudum. Emission policies and the Nigerian economy: simulations from adynamic applied general equilibrium model. Energy Economics,2004, l26(5):921-936.
    [50]Oscar J.Cacho, Russell M. Wise&Keneth G. Macdicken. Carbon monitoring costs and their effect onincentives to sequester carbon through forestry Mitigation and Adaptation Strategies for Global Change154(2004):273–293.
    [51]Olga Kiuila,Jerzy Sleszynski. Expected effects of the ecological tax reform for the Polish economy.Ecological Economics46(2003):103-120.
    [52]O.P.R.Van viet, A.P.C.Faaij. Forestry projects under the clean development mechanism? Modelling of theUncertainties in Carbon Mitigation and Related Costs of Plantation Forestry Projects.Climatic Change61(2003):123–156.
    [53]Parks,P.and Hardie,I..‘Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert MarginalAgricultural Land to Forests’, Land Economics,1995,71(1):122–136.
    [54]Parry,I.W.,. Revenue recycling and the costs of reducing carbon emissions. Climate Issues Brief No.2,Resources for the Future, Washington, DC.1997.
    [55]Pearce, D. The role of carbon taxes in adjusting to global warming. The EconomicJournal101(1991):938–948.
    [56]Qiao-MeiLiang,Ying Fan,Yi-Ming Wei. Carbon taxation policy in China: How to protect energy-andtrade-intensive sectors? Journal of Policy Modeling29(2007):311–333.
    [57]Rawshan Ara Begum,JoyJacqueline Pereira. An empirical assessment of ecological footprint calculationsfor Malaysia. Resources, Conservation and Recycling53(2009):582–587.
    [58]Revised1996IPCC Guidelines for National Greenhouse Gas Inventories: Workbook.online:http://www2.ine.gob.mx/sistemas/peacc/descargas/energy_V3.pdf.
    [59]Robert D.Cairns,Pierre Lasserre. Implementing carbon credits for forests based on greenaccounting.Ecological Economics56(2006):610–621.
    [60]Robert Shackleton.et.al. the efficiency value of carbon tax revenue. Energy modeling forum TermanEngineering Center. Stanford university Stanford California,1993.
    [61]Saˇso Medved. Present and future ecological footprint of Slovenia—The influence of energy demandscenarios. Ecological Modelling192(2006):25–36.
    [62]Sirkka Koskela,Ilmo M enp.et.al. EE-IO modeling of the environmental impacts of Finnish importsusing different data sources. Ecological Economics70(2011):2341–2349.
    [63]Silvia Tiezzi. The welfare effects and the distributive impact of Carbon taxation on Italian households.Energy Policy33(2005):1597–1612.
    [64]Sedjo, R.A., Wisniewski,J., Sample, A., Kinsman,J.D.,. The economics of managing carbon via forestry:assessment of existing studies. Environ. Resour.Econ.6(1995):139–165.
    [65]Sohngen, B.L., Alig, R.J.. Mitigation, adaptation and climate change: results from recent research on UStimber markets. Environ. Sci.Policy,2000,3(5):235–248.
    [66]Stavins,R.N.,Richards, K.R., The cost of U.S. forest-based carbon sequestration. Pew Center Reports,2005:1–52.
    [67]Thalmann,Ph.,.The public acceptance of greentaxes:2million voters express their opinion. NCCR WP-4Working Paper No. WP4-1, University of Geneva, Geneva,2001.
    [68]Tim Callan,Sean Lyons,et.al. The distributional implications of a carbon tax in Ireland. Energy Policy37(2009):407–412.
    [69]Wackernagel M,Rees W. Our ecological footprint: reducing human impact on the Earth.Canada, GabriolaIsland, BC: New Society Publishers,1996:61-83.
    [70]Wiedmann,T., Minx,J.,Barrett,J., Wackernagel, M., Allocating ecological footprints to final consumptioncategories with input-output analysis. Ecological Economics56(2006):28-48.
    [71]Wiepke Wissema, Rob Dellink.AGE analysis of the impact of a carbon energy tax on the Irisheconomy.Ecological economics61(2007):671-683.
    [72]W R. Makundi,Ayant A.Sathaye carbon mitigation potential and costs of forestry options in Brazil China,India, Indonesia, Mexico, The Philippines and Tanzania Mitigation and Adaptation Strategies for GlobalChange6(2001):185–211.
    [73]Xavier Labandeira,Jose M.Labeaga. Estimation and control of Spanish energy-related CO2emissions: aninput–output approach. Energy Policy30(2002):597–611.
    [74]Xu, Z.M., Cheng, G.D., Zhang, Z.Q.,. A resolution to the conception of ecological footprint. ChinaPopulation Resources and Environment16(2006):69–78.
    [75]Yijian Xu,Tianzhu Zhang. A new approach to modeling waste in physical input–output analysis.Ecological Economics68(2009):2475-2478.
    [76]YunchangJeffrey Bor,Yophy Huang. Energy taxation and the double dividend effect in Taiwan’s energyconservation policy—an empirical study using a computable general equilibrium model. Energy Policy38(2010):2086–2100.
    [77]ZhongXiang Zhang, Andrea Baranzini. What do we know about carbon taxes? An inquiry into theirimpacts on competitiveness and distribution of income. Energy Policy32(2004):507–518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700