用户名: 密码: 验证码:
植物整体水分平衡的生理生态调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源不足是干旱半干旱地区生态环境和农业生产的主要限制因素。植物水分平衡的生理生态基础研究是发展节水农业和生态建设的重要依据。植物可以通过调节根茎枝叶等部位的导水特性以维持整体水分平衡,而水通道蛋白的深入研究将有助于揭示植物水分关系的生理生态机制。本论文选用玉米(Zea mays L.)、小麦(Triticum spp.)和甜高粱(Sorghum bicolor (L.) Moench)为实验材料,通过人工控制环境条件下以聚乙二醇诱导形成短期或长期水分胁迫处理,研究了水通道蛋白转录调节、从细胞到整株各尺度导水特性响应以及叶片水氮利用能力变化。取得主要结果如下:
     (1).恒定环境条件下玉米478的叶蒸腾速率、根导水率、叶导水率和整株导水率均表现明显日变化,且各参数间均存在显著正相关关系。这对于维持植株整体水分平衡是必要的。水分胁迫处理2小时后,玉米478根导水率显著降低而叶导水率却显著升高;叶片中ZmPIPs基因的转录量也显著增加,尤其是ZmPIP1;2;而根中仅ZmPIP2;5的转录水平显著下调,表明ZmPIPs可能参与了根叶导水特性的短期调节过程。
     (2).干旱敏感玉米478的叶蒸腾速率呈明显的日变化规律,而抗旱性较强的天四较低且维持恒定;478在叶片水力结构、根叶形态和根导水率等方面均表现出适应高蒸腾耗水的特征;478和天四通过不同的叶内部水势差调节策略维持叶片水分平衡。短期水分胁迫下,478的根导水率下降而叶导水率增加,且叶蒸腾降低幅度却较小导致其体内水分亏缺;而天四的叶蒸腾速率大幅下降且根导水率在胁迫8小时后部分恢复。低叶蒸腾、水分胁迫后蒸腾迅速降低以及根导水率能部分恢复等特性可能是天四保持水分平衡的重要原因。
     (3).正常供水天四和478的根叶中各ZmPIPs基因的转录水平存在明显差异,其中ZmPIP1;5在478中转录量较大而在天四中检测不到。PEG诱导水分胁迫处理2小时内,天四根中各ZmPIPs转录水平总体上调而叶片中总体下调,可能有助于其增加根系吸水同时减少叶片失水;478根中和叶片中各ZmPIPs的mRNA相对含量表现短暂的升高过程,这可能与其叶片蒸腾失水降低幅度较小有关。
     (4).随着染色体倍性增加,小麦叶蒸腾失水和根系吸水能力均不断增大,而皮层细胞体积却逐渐减小。在正常供水或水分胁迫条件下,叶蒸腾速率、单根导水率、根细胞导水率以及TaPIPs转录水平之间均存在显著正相关关系。皮层细胞体积可能参与调节根径向水流各途径的相对贡献。在小麦进化过程中,根中TaPIP基因转录水平、细胞-细胞途径和质外体途径均显著增加,进而增强根系吸水能力以满足冠层耗水增加从而维持整株水分平衡。
     (5).既然植物的基因表达、不同尺度导水特性和叶蒸腾之间存在一致性关系,那么叶片水分利用特性可能对整株耗水起控制作用。高抗旱性甜高粱对长期水分胁迫的适应过程中,叶片瞬时水分利用效率(WUE)显著增加,叶面积和单株耗水均显著降低,而干物质积累却变化不显著;叶氮积累显著降低;而光合氮利用效率(PNUE)和氮利用效率(NUE)显著增加。在干旱适应过程中,甜高粱叶片PNUE提高可能是WUE提高并减少植株耗水的原因之一。
     本论文通过分析控制环境条件下所取得的实验数据,较深入探讨了植物水分平衡生理生态机制中的一些科学问题。研究结果有助于深化植物整体抗旱性的生物学基础的认识,为深入研究水-氮-碳三者间协调关系的生理机制提供基础,并为通过基因改良提高植物水分利用效率提供实验依据。
Water shortage often limits the ecological environment and agricultural productionin the arid and semi-arid area. Understanding the ecophysiological basis of highefficiency of plant water use is very important for developing water-saving agricultureand constructing ecological civilization. Plant can maintain water balance with variablehydraulic properties and aquaporins could be involved, which may help to understandthe ecophysiological mechanisms of plant water relations. This dissertation used thehydroponically grown maize (Zea mays L.), wheat (Triticum spp.) and sweet sorghum(Sorghum bicolor (L.) Moench) seedlings as experimental materials, and used cell-androot-pressure probes, high pressure flow meter and quantitive real-time PCR tomeasure the responses of cell, single root, root and shoot and whole-plant hydraulicsand aquaporin genes transcription to short-term and long-term water stress induced byPEG6000and root excision. The main results are as follows:
     (1). The leaf hydraulic conductivity (Kleaf) of Line478varied diurnally andcorrelated with whole plant hydraulic conductivity. Similar diurnal rhythms of Kleafandthe root hydraulic conductivity (K_(root)) could be important to maintaining whole plantwater balance. Krootsignificantly correlated with leaf transpiration rate (E). After2h ofosmotic stress, the Krootof stressed plants significantly declined but K_(leaf) increased; thetranscription of four ZmPIPs was significantly up regulated in leaves, especially forZmPIP1;2, and ZmPIP2;5was down regulated in roots. The up-regulated Kleafanddown-regulated Krootmay break the water balance; and ZmPIPs genes may get involvedin the hydraulics changes during short-term water stress.
     (2). The E and leaf water potential of478varied diurnally, but those of Tian4,which is more drought resistant, were more constant. Line478had advantages on leafhydraulic architecture, leaf and root morphology, K_(leaf)and K_(root), which may contribute to the higher E. The K_(leaf)and K_(root) of both Tian4and478varied diurnally. The K_(root)ofboth Tian4and478was reduced under osmotic stress, but the K_(root)of Tian4subsequently recovered. A lower and rapidly reduced leaf water loss and the recovery ofroot hydraulics during short-term osmotic stress may account for the ability ofdrought-resistant maize to maintain plant water balance.
     (3). The transcription levels of ZmPIPs in mature leaves and roots of well wateredTian and478were significantly different. ZmPIP1;5was highly expressed in478but itsmRNA was not detected in Tian4. Within2h of water stress induced by PEG, thetranscription levels of ZmPIPs were up-regulated in roots but were down-regulated inleaves of Tian4, which may be help to increase water uptake and decrease water loss; inleaves and roots of478plants, the transcription levels of ZmPIPs both showed antemporary increase, which may contribute to the higher leaf water transpiration.
     (4). The E, single root (Lp_(root)) and cell (Lp_(cell)) hydraulic conductivity of wheatincreased with increasing ploidy, but the V_(cell) was reduced. Osmotic stress significantlyreduced the E, Lp_(cell), Lp_(root), and the relative mRNA content of TaPIP1;2and TaPIP2;5in wheat. Under well-watered or osmotic stress conditions, Lp_(root)positively correlatedwith the E and Lp_(cell); the relative mRNA content of TaPIP1;2and TaPIP2;5significantly correlated with Lp_(cell)and Lp_(root), respectively. Lp_(cell)was reduced, but theLp_(cell)/Lp_(root)increased with increasing Vcell, suggesting that Vcellmay affect root radicalwater transport. Thus, the increased Lp_(cell)and transcription levels of TaPIP1;2andTaPIP2;5in wheat roots provides insight into the mechanisms underlying enhanced rootwater uptake during wheat evolution.
     (5). The Pnof stressed plants totally recovered three days later while gswereconsistently lower than the controls, getting an improved instantaneous water-useefficiency (WUE). During prolonged water stress, the total water loss per plant ofstressed plants reduced significantly, while the dry mass of the whole plant did notchange, and leaf dry mass per unit area increased. The total leaf nitrogen, leaf nitrogenper unit area and leaf nitrogen concentration of stressed plants reduced significantly. Butthe photosynthetic nitrogen-use efficiency (PNUE) and dry mass based nitrogen-useefficiency (NUE) increased significantly. WUE positively correlated with PNUE. Bothimproved water-and nitrogen-use efficiencies of sweet sorghum under water stress maypartly explain its physiological acclimation to drought.
     Based on the experimental data obtained from maize, wheat and sweet sorghum grown under controlled conditions, some important issues on the mechanism ofwhole-plant water balance were concerned in this dissertation. The results cancontribute to understand the biological bases of plant integrative drought-resistance, toclarify the physiological mechanisms of water-nitrogen-carbon relations, and to improvethe water use efficiency of plant by gene modification.
引文
[1]山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报,2002,9(9):27-31.
    [2]山仑.植物抗旱生理研究与发展半旱地农业[J].干旱地区农业研究,2007,25(1):1-5.
    [3] Preston G.M., Carroll T.P., Guggino W.B., et al. Appearance of water channelsin Xenopus oocytes expressing red cell CHIP28protein [J]. Science,1992,256(5055):385-387.
    [4] Chaumont F., Barrieu F., Wojcik E., et al. Aquaporins constitute a large andhighly divergent protein family in maize [J]. Plant Physiology,2001,125(3):1206-1215.
    [5] Forrest K.L., Bhave M. The PIP and TIP aquaporins in wheat form a large anddiverse family with unique gene structures and functionally important features[J]. Functional and Integrative Genomics,2008,8(2):115-133.
    [6] Maurel C., Chrispeels M.J. Aquaporins. A molecular entry into plant waterrelations [J]. Plant Physiology,2001,125(1):135-138.
    [7] Sack L., Holbrook N.M. Leaf hydraulics [J]. Annual Review of Plant Biology,2006,57(361-381.
    [8]娄成后.植物水分平衡中根冠间的信号传递与整体行动[J].植物学通报,2000,17(5):475-477.
    [9] Dixon H.H., Joly J. On the ascent of sap [J]. Philosophical Transactions of theRoyal Society of London B,1895,186(563-576.
    [10] Philip J.R. Plant water relations: some physical aspects [J]. Annual Review ofPlant Physiology,1966,17(1):245-268.
    [11]邵明安,杨文治,李玉山.土壤-植物-大气连统体中的水流阻力及相对重要性[J].水利学报,1986,17(9):8-16.
    [12]康绍忠.土壤-植物-大气连续体水分传输动力学及其应用[J].力学与实践,1993,15(1):11-19.
    [13]邵明安,陈志雄. SPAC中的水分运动[J].西北水土保持研究所集刊,1991,13(1):3-12.
    [14]康绍忠,熊运章,王振镒.土壤-植物-大气连续体水分运移力能关系的田间试验研究[J].水利学报,1990,21(7):1-9.
    [15] Lange O.L., Kappen L., Schulze E.D. Water and plant life: problems andmodern approaches [M]. Berlin&Heidelberg: Springer-Verlag,1976.
    [16] Kaldenhoff R., Ribas-Carbo M., Sans J.F., et al. Aquaporins and plant waterbalance [J]. Plant, Cell&Environment,2008,31(5):658-666.
    [17] Maurel C. Plant aquaporins: Novel functions and regulation properties [J]. FebsLetters,2007,581(12):2227-2236.
    [18] de Groot B.L., Grubmuller H. Water permeation across biological membranes:Mechanism and dynamics of aquaporin-1and GlpF [J]. Science,2001,294(5550):2353-2357.
    [19] Sui H.X., Han B.G., Lee J.K., et al. Structural basis of water-specific transportthrough the AQP1water channel [J]. Nature,2001,414(6866):872-878.
    [20] Johanson U., Karlsson M., Johansson I., et al. The complete set of genesencoding major intrinsic proteins in Arabidopsis provides a framework for anew nomenclature for major intrinsic proteins in plants [J]. Plant Physiology,2001,126(4):1358-1369.
    [21] Sakurai J., Ishikawa F., Yamaguchi T., et al. Identification of33rice aquaporingenes and analysis of their expression and function [J]. Plant and CellPhysiology,2005,46(1568-1577.
    [22] Danielson J.H., Johanson U. Unexpected complexity of the aquaporin genefamily in the moss Physcomitrella patens [J]. BMC Plant Biology,2008,8(45-60.
    [23] Park W., Scheffler B.E., Bauer P.J., et al. Identification of the family ofaquaporin genes and their expression in upland cotton (Gossypium hirsutum L.)[J]. BMC Plant Biology,2010,10(1):142-158.
    [24] Johanson U., Gustavsson S. A new subfamily of major intrinsic proteins inplants [J]. Molecular Biology and Evolution,2002,19(4):456-461.
    [25] Maurel C., Verdoucq L., Luu D.T., et al. Plant aquaporins: Membrane channelswith multiple integrated functions [J]. Annual Review of Plant Biology,2008,59(595-624.
    [26] Bienert G.P., Chaumont F. Plant aquaporins: roles in water homeostasis,nutrition, and signaling processes [M]//Geisler M., Venema K. Transporters andPumps in Plant Signaling. Berlin Heidelberg; Springer.2011:3-36.
    [27] Park W., Scheffler B., Bauer P., et al. Identification of the family of aquaporingenes and their expression in upland cotton (Gossypium hirsutum L.)[J]. BMCPlant Biology,2010,10(1):142-158.
    [28] Weig A., Deswarte C., Chrispeels M.J. The major intrinsic protein family ofArabidopsis has23members that form three distinct groups with functionalaquaporins in each group [J]. Plant Physiology,1997,114(4):1347-1357.
    [29] Chaumont F., Barrieu F., Jung R., et al. Plasma membrane intrinsic proteinsfrom maize cluster in two sequence subgroups with differential aquaporinactivity [J]. Plant Physiology,2000,122(4):1025-1034.
    [30] Moshelion M., Becker D., Biela A., et al. Plasma membrane aquaporins in themotor cells of Samanea saman: diurnal and circadian regulation [J]. Plant Cell,2002,14(3):727-739.
    [31] Fetter K., Van Wilder V., Moshelion M., et al. Interactions between plasmamembrane aquaporins modulate their water channel activity [J]. Plant Cell,2004,16(215-228.
    [32] Van Wilder V., Miecielica U., Degand H., et al. Maize plasma membraneaquaporins belonging to the PIP1and PIP2subgroups are in vivophosphorylated [J]. Plant and Cell Physiology,2008,49(9):1364-1377.
    [33] Uehlein N., Lovisolo C., Siefritz F., et al. The tobacco aquaporin NtAQP1is amembrane CO2pore with physiological functions [J]. Nature,2003,425(6959):734-737.
    [34] Flexas J., Ribas-Carbó M., Hanson D.T., et al. Tobacco aquaporin NtAQP1isinvolved in mesophyll conductance to CO2in vivo [J]. Plant Journal,2006,48(3):427-439.
    [35] Uehlein N., Otto B., Hanson D.T., et al. Function of Nicotiana tabacumaquaporins as chloroplast gas pores challenges the concept of membrane CO2permeability [J]. Plant Cell,2008,20(3):648-657.
    [36] Uehlein N., Sperling H., Heckwolf M., et al. The Arabidopsis aquaporin PIP1;2rules cellular CO2uptake [J]. Plant Cell and Environment,2011,
    [37] Heckwolf M., Pater D., Hanson D.T., et al. The Arabidopsis thaliana aquaporinAtPIP1;2is a physiologically relevant CO2transport facilitator [J]. Plant Journal,2011,67(795-804.
    [38] Evans J.R., Kaldenhoff R., Genty B., et al. Resistances along the CO2diffusionpathway inside leaves [J]. Journal of Experimental Botany,2009,60(8):2235-2248.
    [39] Steudle E. Water uptake by roots: effects of water deficit [J]. Journal ofExperimental Botany,2000,51(350):1531-1542.
    [40] Maurel C., Simonneau T., Sutka M. The significance of roots as hydraulicrheostats [J]. Journal of Experimental Botany,2010,61(12):3191-3198.
    [41] Van den Honert T. Water transport in plants as a catenary process [J]. DiscussFaraday Soc,1948,3(146-153.
    [42]张岁岐,山仑.根系吸水机理研究进展[J].应用与环境生物学报,2001,7(4):396-402.
    [43] Steudle E., Peterson C.A. How does water get through roots?[J]. Journal ofExperimental Botany,1998,49(322):775-788.
    [44]邵明安.试论植物根系中水分运动的动力学[J].西北水土保持研究所集刊,1991,13(1):38-51.
    [45] Steudle E. Water transport across roots [J]. Plant and Siol,1994,167(1):79-90.
    [46] Frensch J., Hsiao T.C., Steudle E. Water and solute transport along developingmaize roots [J]. Planta,1996,198(3):348-355.
    [47] Zimmermann H.M., Steudle E. Apoplastic transport across young maize roots:effect of the exodermis [J]. Planta,1998,206(1):7-19.
    [48]李秧秧,邵明安.玉米单根木质部水势与径向水力导度的轴向变化[J].土壤学报,2003,40(2):200-204.
    [49] Barrowclough D.E., Peterson C.A., Steudle E. Radial hydraulic conductivityalong developing onion roots [J]. Journal of Experimental Botany,2000,51(344):547-557.
    [50] Henzler T., Waterhouse R.N., Smyth A.J., et al. Diurnal variations in hydraulicconductivity and root pressure can be correlated with the expression of putativeaquaporins in the roots of Lotus japonicus [J]. Planta,1999,210(1):50-60.
    [51] Beaudette P.C., Chlup M., Yee J., et al. Relationships of root conductivity andaquaporin gene expression in Pisum sativum: diurnal patterns and the responseto HgCl2and ABA [J]. Journal of Experimental Botany,2007,58(6):1291-1300.
    [52] Vandeleur R.K., Mayo G., Shelden M.C., et al. The role of plasma membraneintrinsic protein aquaporins in water transport through roots: diurnal anddrought stress responses reveal different strategies between isohydric andanisohydric cultivars of grapevine [J]. Plant Physiology,2009,149(1):445-460.
    [53] Mcelrone A.J., Bichler J., Pockman W.T., et al. Aquaporin-mediated changes inhydraulic conductivity of deep tree roots accessed via caves [J]. Plant Cell andEnvironment,2007,30(11):1411-1421.
    [54] Vysotskaya L.B., Arkhipova T.N., Timergalina L.N., et al. Effect of partial rootexcision on transpiration, root hydraulic conductance and leaf growth in wheatseedlings [J]. Plant Physiology and Biochemistry,2004,42(3):251-255.
    [55] Enstone D.E., Peterson C.A., Ma F. Root endodermis and exodermis: structure,function, and responses to the environment [J]. Journal of Plant GrowthRegulation,2002,21(4):335-351.
    [56] Hose E., Steudle E., Hartung W. Abscisic acid and hydraulic conductivity ofmaize roots: a study using cell-and root-pressure probes [J]. Planta,2000,211(6):874-882.
    [57] Martínez-Ballesta M.C., Martínez V., Carvajal M. Aquaporin functionality inrelation to H+-ATPase activity in root cells of Capsicum annuum grown undersalinity [J]. Physiologia Plantarum,2003,117(3):413-420.
    [58] North H.M., Almeida A.D., Boutin J.P., et al. The Arabidopsis ABA-deficientmutant aba4demonstrates that the major route for stress-induced ABAaccumulation is via neoxanthin isomers [J]. Plant Journal,2007,50(5):810-824.
    [59] Parent B., Hachez C., Redondo E., et al. Drought and abscisic acid effects onaquaporin content translate into changes in hydraulic conductivity and leafgrowth rate: a trans-scale approach [J]. Plant Physiology,2009,149(4):2000-2012.
    [60] Bramley H., Turner N.C., Turner D.W., et al. The contrasting influence ofshort-term hypoxia on the hydraulic properties of cells and roots of wheat andlupin [J]. Functional Plant Biology,2010,37(3):183-193.
    [61] Tournaire-Roux C., Sutka M., Javot H., et al. Cytosolic pH regulates root watertransport during anoxic stress through gating of aquaporins [J]. Nature,2003,425(6956):393-397.
    [62] Clarkson D.T., Carvajal M., Henzler T., et al. Root hydraulic conductance:diurnal aquaporin expression and the effects of nutrient stress [J]. Journal ofExperimental Botany,2000,51(342):61-70.
    [63] Gorska A., Ye Q., Holbrook N.M., et al. Nitrate control of root hydraulicproperties in plants: translating local information to whole plant response [J].Plant Physiology,2008,148(2):1159-1167.
    [64] Siefritz F., Tyree M.T., Lovisolo C., et al. PIP1plasma membrane aquaporins intobacco: from cellular effects to function in plants [J]. Plant Cell,2002,14(4):869-876.
    [65] Otto B., Kaldenhoff R. Cell-specific expression of the mercury-insensitiveplasma-membrane aquaporin NtAQP1from Nicotiana tabacum [J]. Planta,2000,211(2):167-172.
    [66] Hachez C., Moshelion M., Zelazny E., et al. Localization and quantification ofplasma membrane aquaporin expression in maize primary root: a clue tounderstanding their role as cellular plumbers [J]. Plant Molecular Biology,2006,62(1):305-323.
    [67] Martre P., Morillon R., Barrieu F., et al. Plasma membrane aquaporins play asignificant role during recovery from water deficit [J]. Plant Physiology,2002,130(4):2101-2110.
    [68] Lopez F., Bousser A., Sissoeff I., et al. Diurnal regulation of water transport andaquaporin gene expression in maize roots: contribution of PIP2proteins [J].Plant and Cell Physiology,2003,44(12):1384-1395.
    [69] Zimmermann H.M., Hartmann K., Schreiber L., et al. Chemical composition ofapoplastic transport barriers in relation to radial hydraulic conductivity of cornroots (Zea mays L.)[J]. Plnata,2000,210(2):302-311.
    [70] Vartanian N., Marcotte L., Giraudat J. Drought rhizogenesis in Arabidopsisthaliana (differential responses of hormonal mutants)[J]. Plant Physiology,1994,104(2):761-767.
    [71] López-Bucio J., Cruz-Ramirez A., Herrera-Estrella L. The role of nutrientavailability in regulating root architecture [J]. Current Opinion in Plant Biology,2003,6(3):280-287.
    [72] Gowing D., Davies W., Jones H. A positive root-sourced signal as an indicatorof soil drying in apple, Malus x domestica Borkh [J]. Journal of ExperimentalBotany,1990,41(12):1535-1540.
    [73] Liu L., McDonald A., Stadenberg I., et al. Stomatal and leaf growth responses topartial drying of root tips in willow [J]. Tree Physiology,2001,21(11):765-770.
    [74] Davies W.J., Wilkinson S., Loveys B. Stomatal control by chemical signallingand the exploitation of this mechanism to increase water use efficiency inagriculture [J]. New Phytologist,2002,153(3):449-460.
    [75] Dodd I.C., Egea G., Davies W.J. Accounting for sap flow from different parts ofthe root system improves the prediction of xylem ABA concentration in plantsgrown with heterogeneous soil moisture [J]. Journal of Experimental Botany,2008,59(15):4083.
    [76] Ehlert C., Maurel C., Tardieu F., et al. Aquaporin-mediated reduction in maizeroot hydraulic conductivity impacts cell turgor and leaf elongation even withoutchanging transpiration [J]. Plant Physiology,2009,150(2):1093-1104.
    [77] Caldwell M.M., Dawson T.E., Richards J.H. Hydraulic lift: consequences ofwater efflux from the roots of plants [J]. Oecologia,1998,113(2):151-161.
    [78] Lambers H., Chapin III F.S., Pons T.L. Plant Physiological Ecology [M].2nded.New York: Springer,2008.
    [79] Steudle E. The cohesion-tension mechanism and the acquisition of water byplant roots [J]. Annual Review of Plant Biology,2001,52(1):847-875.
    [80] Taiz L., Zeiger E. Plant Physiology [M].4thed. Massachusetts: SinauerAssociates,2006.
    [81] Holbrook N.M., Zwieniecki M.A. Embolism repair and xylem tension: do weneed a miracle?[J]. Plant Physiology,1999,120(1):7.
    [82] Hacke U.G., Sperry J.S. Limits to xylem refilling under negative pressure inLaurus nobilis and Acer negundo [J]. Plant Cell and Environment,2003,26(2):303-311.
    [83] Zwieniecki M.A., Holbrook N.M. Confronting Maxwell's demon: biophysics ofxylem embolism repair [J]. Trends in Plant Science,2009,14(10):530-534.
    [84] Tyree M.T., Sperry J.S. Vulnerability of xylem to cavitation and embolism [J].Annual Review of Plant Biology,1989,40(1):19-36.
    [85] Zimmermann M.H. Xylem structure and the ascent of sap [M]. Berlin:Springer-Verlag,1983.
    [86] Simonneau T. The use of tree root suckers to estimate root water potential [J].Plant, cell&environment,1991,14(6):585-591.
    [87] Javot H., Maurel C. The role of aquaporins in root water uptake [J]. Annals ofBotany,2002,90(3):301-313.
    [88] Ye Q., Holbrook N.M., Zwieniecki M.A. Cell-to-cell pathway dominatesxylem-epidermis hydraulic connection in Tradescantia fluminensis (Vell. Conc.)leaves [J]. Planta,2008,227(6):1311-1319.
    [89] Franks P.J., Farquhar G.D. The mechanical diversity of stomata and itssignificance in gas-exchange control [J]. Plant Physiology,2007,143(1):78-87.
    [90] Christmann A., Weiler E.W., Steudle E., et al. A hydraulic signal in root-to-shootsignalling of water shortage [J]. The Plant Journal,2007,52(1):167-174.
    [91] Ernst L., Goodger J.Q.D., Alvarez S., et al. Sulphate as a xylem-borne chemicalsignal precedes the expression of ABA biosynthetic genes in maize roots [J].Journal of Experimental Botany,2010,61(12):3395-3405.
    [92] Comstock J.P. Hydraulic and chemical signalling in the control of stomatalconductance and transpiration [J]. Journal of Experimental Botany,2002,53(367):195-200.
    [93] Hachez C., Heinen R.B., Draye X., et al. The expression pattern of plasmamembrane aquaporins in maize leaf highlights their role in hydraulic regulation[J]. Plant Molecular Biology,2008,68(4):337-353.
    [94] Sack L., Melcher P.J., Zwieniecki M.A., et al. The hydraulic conductance of theangiosperm leaf lamina: a comparison of three measurement methods [J].Journal of Experimental Botany,2002,53(378):2177-2184.
    [95] Kim Y.X., Steudle E. Light and turgor affect the water permeability (aquaporins)of parenchyma cells in the midrib of leaves of Zea mays [J]. Journal ofExperimental Botany,2007,58(15-16):4119-4129.
    [96] Sober A. Hydraulic conductance, stomatal conductance, and maximalphotosynthetic rate in bean leaves [J]. Photosynthetica,1997,34(4):599-603.
    [97] Heinen R.B., Ye Q., Chaumont F. Role of aquaporins in leaf physiology [J].Journal of Experimental Botany,2009,60(11):2971-2985.
    [98] Franks P.J., Drake P.L., Froend R.H. Anisohydric but isohydrodynamic:seasonally constant plant water potential gradient explained by a stomatalcontrol mechanism incorporating variable plant hydraulic conductance [J]. Plant,cell&environment,2007,30(1):19-30.
    [99] Sade N., Vinocur B.J., Diber A., et al. Improving plant stress tolerance and yieldproduction: is the tonoplast aquaporin SlTIP2;2a key to isohydric toanisohydric conversion?[J]. New Phytologist,2009,181(3):651-661.
    [100] Maseda P.H., Fernández R.J. Stay wet or else: three ways in which plants canadjust hydraulically to their environment [J]. Journal of Experimental Botany,2006,57(15):3963-3977.
    [101] Brundrett M.C., Enstone D.E., Peterson C.A. A berberine-aniline bluefluorescent staining procedure for suberin, lignin, and callose in plant tissue [J].Protoplasma,1988,146(2):133-142.
    [102]万贤崇,张岁岐,张文浩.压力探针技术在植物水分关系研究中的运用[J].植物生理与分子生物学学报,2007,33(6):471-479.
    [103]刘小芳,张岁岐,杨晓青.压力探针技术原理及其在植物水分关系研究中的应用[J].干旱地区农业研究,2008,26(4):172-179.
    [104] Steudle E. Pressure probe techniques: basic principles and application to studiesof water and solute relations at the cell, tissue and organ level [M]//Smith J.A.C.,Griffiths H. Water deficits: plant responses from cell to community. Oxford;Bios Scientific Publishers Ltd.1993:5-36.
    [105] Ye Q. Gating of water channels (aquaporins) in plants: effects of osmotic andoxidative stresses and the role of unstirred layers [D]. Bayreuth; University ofBayreuth,2005.
    [106] Miyamoto N., Steudle E., Hirasawa T., et al. Hydraulic conductivity of riceroots [J]. Journal of Experimental Botany,2001,52(362):1835-1846.
    [107] Tyree M.T., Pati o S., Bennink J., et al. Dynamic measurements of rootshydraulic conductance using a high-pressure flowmeter in the laboratory andfield [J]. Journal of Experimental Botany,1995,46(1):83-94.
    [108] Tsuda M., Tyree M.T. Plant hydraulic conductance measured by the highpressure flow meter in crop plants [J]. Journal of Experimental Botany,2000,51(345):823-828.
    [109] Deng X.P., Shan L., Zhang H., et al. Improving agricultural water use efficiencyin arid and semiarid areas of China [J]. Agricultural Water Management,2006,80(1):23-40.
    [110] Heinen R.B., Ye Q., Chaumont F. Role of aquaporins in leaf physiology [J].Journal of experimental botany,2009,
    [111] Chaumont F., Moshelion M., Daniels M.J. Regulation of plant aquaporinactivity [J]. Biology of the Cell,2005,97(749-764.
    [112] Kaldenhoff R., Fischer M. Aquaporins in plants [J]. Acta Physiologica,2006,187(1‐2):169-176.
    [113] Kaldenhoff R., Ribas-Carbo M., Flexas J., et al. Aquaporins and plant waterbalance [J]. Plant Cell and Environment,2008,31(5):658-666.
    [114] Cochard H., Venisse J.S., Barigah T.S., et al. Putative role of aquaporins invariable hydraulic conductance of leaves in response to light [J]. PlantPhysiology,2007,143(1):122-133.
    [115] Tyree M.T., Nardini A., Salleo S., et al. The dependence of leaf hydraulicconductance on irradiance during HPFM measurements: any role for stomatalresponse?[J]. Journal of Experimental Botany,2005,56(412):737-744.
    [116] Shatil-Cohen A., Attia Z., Moshelion M. Bundle-sheath cell regulation ofxylem-mesophyll water transport via aquaporins under drought stress: a targetof xylem-borne ABA?[J]. Plant Journal,2011,67(1):72-80.
    [117] Kaldenhoff R., K lling A., Meyers J., et al. The blue light-responsive AthH2gene of Arabidopsis thaliana is primarily expressed in expanding as well as indifferentiating cells and encodes a putative channel protein of the plasmalemma[J]. The Plant Journal,1995,7(1):87-95.
    [118] Sakurai J., Ahamed A., Murai M., et al. Tissue and cell-specific localization ofrice aquaporins and their water transport activities [J]. Plant and Cell Physiology,2008,49(1):30-39.
    [119] Tao D., Li P.H., Carter J.V. Role of cell wall in freezing tolerance of culturedpotato cells and their protoplasts [J]. Physiologia Plantarum,1983,58(4):527-532.
    [120] Carpita N., Sabularse D., Montezinos D., et al. Determination of the pore size ofcell walls of living plant cells [J]. Science,1979,205(4411):1144-1147.
    [121] Oertli J.J. The response of plant cells to different forms of moisture stress [J].Journal of Plant Physiology,1985,121(4):295-300.
    [122] Verslues P.E., Agarwal M., Katiyar-Agarwal S., et al. Methods and concepts inquantifying resistance to drought, salt and freezing, abiotic stresses that affectplant water status [J]. Plant Journal,2006,45(4):523-539.
    [123] Tenhunen J.D., Pearcy R.W., Lange O.L. Diurnal variations in leaf conductanceand gas exchange in natural environments [M]//Zeiger E., Farquhar G.D.,Cowan I.R. Stomatal Function. Stanford, CA; Stanford University Press.1987:323-351.
    [124] Franks P.J., Drake P.L., Froend R.H. Anisohydric but isohydrodynamic:seasonally constant plant water potential gradient explained by a stomatalcontrol mechanism incorporating variable plant hydraulic conductance [J]. PlantCell and Environment,2007,30(1):19-30.
    [125] Christmann A., Weiler E.W., Steudle E., et al. A hydraulic signal in root-to-shootsignalling of water shortage [J]. Plant Journal,2007,52(1):167-174.
    [126] North G.B., Nobel P.S. Changes in hydraulic conductivity and anatomy causedby drying and rewetting roots of Agave deserti (Agavaceae)[J]. AmericanJournal of Botany,1991,78(7):906-915.
    [127] Secchi F., Lovisolo C., Schubert A. Expression of OePIP2.1aquaporin gene andwater relations of Olea europaea twigs during drought stress and recovery [J].Annals of Applied Biology,2007,150(2):163-167.
    [128] Hachez C., Veselov D., Ye Q., et al. Short-term control of maize cell and rootwater permeability through plasma membrane aquaporin isoforms [J]. Plant Celland Environment,2012,35(1):185-198.
    [129] Lian H.L., Yu X., Lane D., et al. Upland rice and lowland rice exhibiteddifferent PIP expression under water deficit and ABA treatment [J]. CellResearch,2006,16(7):651-660.
    [130] Boyer J.S. Plant productivity and environment [J]. Science,1982,218(4571):443-448.
    [131] Rosenzweig C., Parry M.L. Potential impact of climate change on world foodsupply [J]. Nature,1994,367(6459):133-138.
    [132] Chaves M.M., Oliveira M.M. Mechanisms underlying plant resilience to waterdeficits: prospects for water-saving agriculture [J]. Journal of ExperimentalBotany,2004,55(407):2365-2384.
    [133] Shan L., Xu M. Water-saving agriculture and its physio-ecological bases [J].Chinese Journal of Applied Ecology,1991,2(1):70-76.
    [134] Blum A. Drought resistance, water-use efficiency, and yield potential—are theycompatible, dissonant, or mutually exclusive?[J]. Crop and Pasture Science,2005,56(11):1159-1168.
    [135] Fennell A., Markhart A.H. Rapid acclimation of root hydraulic conductivity tolow temperature [J]. Journal of Experimental Botany,1998,49(322):879-884.
    [136] Aroca R., Amodeo G., Fernandez-Illescas S., et al. The role of aquaporins andmembrane damage in chilling and hydrogen peroxide induced changes in thehydraulic conductance of maize roots [J]. Plant Physiology,2005,137(1):343-357.
    [137] Martinez-Ballesta M.C., Aparicio F., Pallas V., et al. Influence of saline stress onroot hydraulic conductance and PIP expression in Arabidopsis [J]. Journal ofPlant Physiology,2003,160(6):689-697.
    [138] North G.B., Martre P., Nobel P.S. Aquaporins account for variations in hydraulicconductance for metabolically active root regions of Agave deserti in wet, dry,and rewetted soil [J]. Plant Cell and Environment,2004,27(2):219-228.
    [139] Zhang Y.J., Meinzer F.C., Qi J.H., et al. Midday stomatal conductance is morerelated to stem rather than leaf water status in subtropical deciduous andevergreen broadleaf trees [J]. Plant Cell and Environment,2013,36(1):149-158.
    [140] Brodribb T.J., Holbrook N.M., Edwards E.J., et al. Relations between stomatalclosure, leaf turgor and xylem vulnerability in eight tropical dry forest trees [J].Plant Cell and Environment,2003,26(3):443-450.
    [141] Scoffoni C., McKown A.D., Rawls M., et al. Dynamics of leaf hydraulicconductance with water status: quantification and analysis of species differencesunder steady state [J]. Journal of Experimental Botany,2012,63(2):643-658.
    [142] Sperry J.S., Stiller V., Hacke U.G. Xylem hydraulics and thesoil-plant-atmosphere continuum: Opportunities and unresolved issues [J].Agronomy Journal,2003,95(6):1362-1370.
    [143] Sperry J.S. Hydraulics of vascular water transport [M]//Wojtaszek P.Mechanical Integration of Plant Cells and Plants. Berlin&Heidelberg; Springer.2011:303-327.
    [144] Salleo S., Lo Gullo M.A., Raimondo F., et al. Vulnerability to cavitation of leafminor veins: any impact on leaf gas exchange?[J]. Plant Cell and Environment,2001,24(8):851-859.
    [145] Zwieniecki M.A., Melcher P.J., Holbrook N.M. Hydrogel control of xylemhydraulic resistance in plants [J]. Science,2001,291(5506):1059-1062.
    [146] Lee J., Holbrook N.M., Zwieniecki M.A. Ion induced changes in the structure ofbordered pit membranes [J]. Frontiers in plant science,2012,3(55.
    [147] Cochard H., Froux F., Mayr F.F.S., et al. Xylem wall collapse in water-stressedpine needles [J]. Plant Physiology,2004,134(1):401-408.
    [148] Brodribb T.J., Holbrook N.M. Water stress deforms tracheids peripheral to theleaf vein of a tropical conifer [J]. Plant Physiology,2005,137(3):1139-1146.
    [149] Cochard H., Martin R., Gross P., et al. Temperature effects on hydraulicconductance and water relations of Quercus robur L.[J]. Journal ofExperimental Botany,2000,51(348):1255-1259.
    [150] Martre P., Durand J.L., Cochard H. Changes in axial hydraulic conductivityalong elongating leaf blades in relation to xylem maturation in tall fescue [J].New Phytologist,2000,146(2):235-247.
    [151] Stiller V., Lafitte H.R., Sperry J.S. Hydraulic properties of rice and the responseof gas exchange to water stress [J]. Plant Physiology,2003,132(3):1698-1706.
    [152] Stiller V., Sperry J.S., Lafitte R. Embolized conduits of rice (Oryza sativa,Poaceae) refill despite negative xylem pressure [J]. American Journal of Botany,2005,92(12):1970-1974.
    [153] McCully M.E., Huang C.X., Ling L.E.C. Daily embolism and refilling of xylemvessels in the roots of field-grown maize [J]. New Phytologist,1998,138(2):327-342.
    [154] Canny M.J. Embolisms and refilling in the maize leaf lamina, and the role of theprotoxylem lacuna [J]. American Journal of Botany,2001,88(1):47-51.
    [155] Li Y.Y., Sperry J.S., Shao M.A. Hydraulic conductance and vulnerability tocavitation in corn (Zea mays L.) hybrids of differing drought resistance [J].Environmental and Experimental Botany,2009,66(2):341-346.
    [156] Li D.H., Mao L.H., Yang J.S., et al. Breeding process and utilization of excellentmaize inbred line478[J]. Journal of Laiyang Agricultural College,2005,22(003):159-164.
    [157] Zhang S.Q., Zhou X.P., Mu Z.X., et al. Effects of different irrigation patterns onroot growth and water use efficiency of maize [J]. Transactions of the ChineseSociety of Agricultural Engineering,2009,25(10):1-6.
    [158] Sperry J.S., Hacke U.G., Oren R., et al. Water deficits and hydraulic limits toleaf water supply [J]. Plant Cell and Environment,2002,25(2):251-263.
    [159] Kim Y.X., Steudle E. Gating of aquaporins by light and reactive oxygen speciesin leaf parenchyma cells of the midrib of Zea mays [J]. Journal of ExperimentalBotany,2009,60(2):547-556.
    [160] Preston G.M., Carroll T.P., Guggino W.B., et al. Appearance of water channelsin Xenopus oocytes expressing red cell CHIP28protein [J]. Science,1992,256(385-387.
    [161] Maurel C., Verdoucq L., Luu D.-T., et al. Plant aquaporins: membrane channelswith multiple integrated functions [J]. Annual Review of Plant Biology,2008,59(1):595-624.
    [162] Lian H.L., Yu X., Ye Q., et al. The role of aquaporin RWC3in droughtavoidance in rice [J]. Plant and Cell Physiology,2004,45(4):481-489.
    [163]余歆.水孔蛋白与植物对干旱和低温胁迫响应关系的研究[D].上海;中国科学院研究生院(上海生命科学研究院),2004.
    [164] Yamada S., Komori T., Myers P.N., et al. Expression of plasma membrane waterchannel genes under water stress in Nicotiana excelsior [J]. Plant and CellPhysiology,1997,38(11):1226-1231.
    [165] Yu Q.J., Hu Y.L., Li J.F., et al. Sense and antisense expression of plasmamembrane aquaporin BnPIP1from Brassica napus in tobacco and its effects onplant drought resistance [J]. Plant Science,2005,169(4):647-656.
    [166] Smart L.B., Moskal W.A., Cameron K.D., et al. MIP genes are down-regulatedunder drought stress in Nicotiana glauca [J]. Plant and Cell Physiology,2001,42(7):686-693.
    [167] Boursiac Y., Chen S., Luu D.T., et al. Early effects of salinity on water transportin Arabidopsis roots. Molecular and cellular features of aquaporin expression [J].Plant Physiology,2005,139(2):790-805.
    [168] Aharon R., Shahak Y., Wininger S., et al. Overexpression of a plasma membraneaquaporin in transgenic tobacco improves plant vigor under favorable growthconditions but not under drought or salt stress [J]. Plant Cell,2003,15(2):439-447.
    [169]连红莉.响应水分胁迫的稻水孔蛋白[D].上海;中国科学院研究生院(上海生命科学研究院),2006.
    [170] Wright S.I. The effects of artificial selection on the maize genome [J]. Science,2005,310(5745):54-54.
    [171] Turner N.C. Adaptation to water deficits: a changing perspective [J]. FunctionalPlant Biology,1986,13(1):175-190.
    [172] Fereres E., Soriano M.A. Deficit irrigation for reducing agricultural water use[J]. Journal of Experimental Botany,2007,58(2):147-159.
    [173] Lee S.H., Chung G.C., Jang J.Y., et al. Overexpression of PIP2;5aquaporinalleviates effects of low root temperature on cell hydraulic conductivity andgrowth in Arabidopsis [J]. Plant Physiology,2012,159(1):479-488.
    [174] Zhang W.H., Tyerman S.D. Inhibition of water channels by HgCl2in intactwheat root cells [J]. Plant Physiology,1999,120(3):849-857.
    [175] Dubcovsky J., Dvorak J. Genome plasticity a key factor in the success ofpolyploid wheat under domestication [J]. Science,2007,316(5833):1862-1866.
    [176] NBSC. China Statistical Yearbook2011[M]. Beijing: China Statistics Press,2011.
    [177] Condon A.G., Richards R.A., Rebetzke G.J., et al. Improving intrinsic water-useefficiency and crop yield [J]. Crop Science,2002,42(1):122-131.
    [178] Zhang Z.B., Shan L. Comparison study on water use efficiency of wheat flagleaf [J]. Chinese Science Bulletin,1998,43(14):1205-1211.
    [179] Reynolds M.P., Balota M., Delgado M.I.B., et al. Physiological andmorphological traits associated with spring wheat yield under hot, irrigatedconditions [J]. Australian Journal of Plant Physiology,1994,21(6):717-730.
    [180] Zhao C.X., Deng X.P., Shan L., et al. Changes in root hydraulic conductivityduring wheat evolution [J]. Journal of Integrative Plant Biology,2005,47(3):302-310.
    [181] Livak K.J., Schmittgen T.D. Analysis of relative gene expression data usingreal-time quantitative PCR and the2-ΔΔCtmethod [J]. Methods,2001,25(4):402-408.
    [182] Li W.R., Zhang S.Q., Shan L. Effect of water stress on characteristics of rootwater uptake and photosynthesis in alfalfa seedlings [J]. Acta Agrestia Sinica,2007,15(3):206-211.
    [183] Mu Z.X., Zhang S.Q., Liang A.H., et al. Relationship between maize roothydraulic conductivity and drought resistance [J]. Acta Agronomica Sinica,2005,31(2):203-208.
    [184] Tyerman S., Bohnert H., Maurel C., et al. Plant acuaporins: their molecularbiology, biophysics and significance for plant water relations [J]. Journal ofExperimental Botany,1999,50(Special Issue):1055-1071.
    [185] Foteinis S., Kouloumpis V., Tsoutsos T. Life cycle analysis for bioethanolproduction from sugar beet crops in Greece [J]. Energy Policy,2011,39(9):4834-4841.
    [186] Grahovac J.A., Dodi J.M., Dodi S.N., et al. Future trends of bioethanolco-production in Serbian sugar plants [J]. Renewable and Sustainable EnergyReviews,2012,16(5):3270-3274.
    [187] García C.A., Fuentes A., Hennecke A., et al. Life-cycle greenhouse gasemissions and energy balances of sugarcane ethanol production in Mexico [J].Applied Energy,2011,88(6):2088-2097.
    [188] Tamang P.L., Bronson K.F., Malapati A., et al. Nitrogen requirements forethanol production from sweet and photoperiod sensitive sorghums in theSouthern High Plains [J]. Agronomy Journal,2011,103(2):431-440.
    [189] Steduto P., Katerji N., PuertosMolina H., et al. Water-use efficiency of sweetsorghum under water stress conditions gas-exchange investigations at leaf andcanopy scales [J]. Field Crops Research,1997,54(2-3):221-234.
    [190] Mastrorilli M., Katerji N., Rana G., et al. Sweet sorghum in Mediterraneanclimate: radiation use and biomass water use efficiencies [J]. Industrial Cropsand Products,1995,3(4):253-260.
    [191] Reddy B.V.S., Ramesh S., Reddy P.S., et al. Sweet sorghum-a potential alternateraw material for bio-ethanol and bio-energy [J]. International Sorghum andMillets Newsletter,2005,46(79-86.
    [192] Gnansounou E., Dauriat A., Wyman C.E. Refining sweet sorghum to ethanoland sugar: economic trade-offs in the context of North China [J]. BioresourceTechnology,2005,96(9):985-1002.
    [193] Curt M.D., Fernandez J., Martinez M. Productivity and water use efficiency ofsweet sorghum (Sorghum bicolor (L) Moench) cv ''Keller'' in relation to waterregime [J]. Biomass and Bioenergy,1995,8(6):401-409.
    [194] Mastrorilli M., Katerji N., Rana G. Productivity and water use efficiency ofsweet sorghum as affected by soil water deficit occurring at different vegetativegrowth stages [J]. European Journal of Agronomy,1999,11(3-4):207-215.
    [195] Cosentino S.L., Mantineo M., Testa G. Water and nitrogen balance of sweetsorghum (Sorghum bicolor moench L.) cv. Keller under semi-arid conditions [J].Industrial Crops and Products,2012,36(1):329-342.
    [196] Gardner J.C., Maranville J.W., Paparozzi E.T. Nitrogen use efficiency amongdiverse sorghum cultivars [J]. Crop Science,1994,34(3):728-733.
    [197] Ghannoum O., Evans J.R., Chow W.S., et al. Faster rubisco is the key tosuperior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malicenzyme C4grasses [J]. Plant Physiology,2005,137(2):638-650.
    [198] IPCC. Climate Change2007: The Physical Science Basis [M]. Cambridge, UK:Cambridge University Press,2007.
    [199] Lawlor D.W., Cornic G. Photosynthetic carbon assimilation and associatedmetabolism in relation to water deficits in higher plants [J]. Plant Cell andEnvironment,2002,25(2):275-294.
    [200] Flexas J., Bota J., Loreto F., et al. Diffusive and metabolic limitations tophotosynthesis under drought and salinity in C3plants [J]. Plant Biology,2004,6(3):269-279.
    [201] Ghannoum O. C4photosynthesis and water stress [J]. Annals of Botany,2009,103(4):635-644.
    [202] Sage R.F., Pearcy R.W. The nitrogen use efficiency of C3and C4plants II. Leafnitrogen effects on the gas exchange characteristics of Chenopodium album (L.)and Amaranthus retroflexus (L.)[J]. Plant Physiology,1987,84(3):959-963.
    [203] Farquhar G.D., Buckley T.N., Miller J.M. Optimal stomatal control in relation toleaf area and nitrogen content [J]. Silva Fennica,2002,36(3):625-637.
    [204] Shangguan Z.P., Shao M.A., Dyckmans J. Nitrogen nutrition and water stresseffects on leaf photosynthetic gas exchange and water use efficiency in winterwheat [J]. Environmental and Experimental Botany,2000,44(2):141-149.
    [205] Larsson M., Larsson C.M., Whitford P., et al. Influence of osmotic stress onnitrate reductase activity in wheat (Triticum aestivum L.) and the role of abscisicacid [J]. Journal of Experimental Botany,1989,40(11):1265-1271.
    [206] Foyer C.H., Valadier M.H., Migge A., et al. Drought-induced effects on nitratereductase activity and mRNA and on the coordination of nitrogen and carbonmetabolism in maize leaves [J]. Plant Physiology,1998,117(1):283-292.
    [207] McDonald A.J.S., Davies W.J. Keeping in touch: Responses of the whole plantto deficits in water and nitrogen supply [J]. Advances in Botanical Research, Vol22,1996,22(229-300.
    [208] Erickson J.E., Woodard K.R., Sollenberger L.E. Optimizing sweet sorghumproduction for biofuel in the southeastern USA through nitrogen fertilizationand top removal [J]. Bioenergy Research,2012,5(1):86-94.
    [209] Zegada-Lizarazu W., Monti A. Are we ready to cultivate sweet sorghum as abioenergy feedstock? A review on field management practices [J]. Biomass andBioenergy,2012,40(1-12.
    [210] Coleman J.S., Mcconnaughay K.D.M., Bazzaz F.A. Elevated CO2and plantnitrogen-use: is reduced tissue nitrogen concentration size-dependent?[J].Oecologia,1993,93(2):195-200.
    [211] Turner N.C., Schulze E.D., Gollan T. The responses of stomata and leaf gasexchange to vapour pressure deficits and soil water content [J]. Oecologia,1985,65(3):348-355.
    [212] Flexas J., Medrano H. Drought-inhibition of photosynthesis in C3plants:Stomatal and non-stomatal limitations revisited [J]. Annals of Botany,2002,89(2):183-189.
    [213] Tezara W., Mitchell V.J., Driscoll S.D., et al. Water stress inhibits plantphotosynthesis by decreasing coupling factor and ATP [J]. Nature,1999,401(6756):914-917.
    [214] Reich P.B., Walters M.B., Tabone T.J. Response of Ulmus americana seedlingsto varying nitrogen and water status.2Water and nitrogen use efficiency inphotosynthesis [J]. Tree Physiology,1989,5(2):173-184.
    [215] Duan B.L., Li Y., Zhang X.L., et al. Water deficit affects mesophyll limitation ofleaves more strongly in sun than in shade in two contrasting Picea asperatapopulations [J]. Tree Physiology,2009,29(12):1551-1561.
    [216] Zhang Y.L., Hu Y.Y., Luo H.H., et al. Two distinct strategies of cotton andsoybean differing in leaf movement to perform photosynthesis under drought inthe field [J]. Functional Plant Biology,2011,38(7):567-575.
    [217] Brown R. A difference in N use efficiency in C3and C4plants and itsimplications in adaptation and evolution [J]. Crop Science,1978,18(1):93-98.
    [218] Field C., Merino J., Mooney H.A. Compromises between water-use efficiencyand nitrogen-use efficiency in five species of California evergreens [J].Oecologia,1983,60(3):384-389.
    [219] Warren C.R., Adams M.A. Internal conductance does not scale withphotosynthetic capacity: implications for carbon isotope discrimination and theeconomics of water and nitrogen use in photosynthesis [J]. Plant Cell andEnvironment,2006,29(2):192-201.[220] Renou J.L., Gerbaud A., Just D., et al. Differing substomatal and chloroplasticCO2concentrations in water-stressed wheat [J]. Planta,1990,182(3):415-419.
    [221] Flexas J., Bota J., Escalona J.M., et al. Effects of drought on photosynthesis ingrapevines under field conditions: an evaluation of stomatal and mesophylllimitations [J]. Functional Plant Biology,2002,29(4):461-471.
    [222] Cabrera-Bosquet L., Molero G., Bort J., et al. The combined effect of constantwater deficit and nitrogen supply on WUE, NUE and Δ13C in durum wheatpotted plants [J]. Annals of Applied Biology,2007,151(3):277-289.
    [223] Soolanayakanahally R.Y., Guy R.D., Silim S.N., et al. Enhanced assimilationrate and water use efficiency with latitude through increased photosyntheticcapacity and internal conductance in balsam poplar (Populus balsamifera L.)[J].Plant Cell and Environment,2009,32(12):1821-1832.
    [224] Sperry J.S. Hydraulic constraints on plant gas exchange [J]. Agricultural andForest Meteorology,2000,104(1):13-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700