用户名: 密码: 验证码:
植被发育斜坡非饱和带土体大孔隙对降雨入渗影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪中期以来,在日益加剧的全球变暖趋势的强烈驱动下,极端强降雨事件及与之相伴的山区流域植被发育斜坡群发性失稳事件的发生频率越来越高,因此对该问题深入研究具有重要的现实意义。截止目前,对降雨诱发型滑坡的研究主要集中在并无直接关系的降雨事件与滑坡事件及斜坡岩土体水岩相互作用方面,而对地下水对降雨的响应过程和响应机制的研究没有得到足够重视。地下水对降雨响应的第一发生环节是土壤水对降雨的响应,土体结构是影响该响应过程的重要因素。天然植被发育斜坡非饱和带土体中存在各种大孔隙结构,但既有斜坡土体降雨入渗研究多未考虑大孔隙的影响,因此植被发育斜坡土体降雨入渗研究已成为系统理解地下水对降雨响应的瓶颈。因此,本文采用现场亚甲基蓝染色示踪渗透试验法、碘-淀粉可视化方法、理论分析和有限元软件HYDRUS-2D数值模拟分析植被发育斜坡非饱和带土体大孔隙对降雨入渗的影响研究。本文完成的主要工作和取得的主要成果如下:
     1、对呈贡段家营试验区和昭通头寨沟试验区植被发育斜坡土体的物理、化学和水力特性进行了室内试验和现场试验研究。试验结果表明:植被发育斜坡土体的含水率和总孔隙率一般比裸坡土体和耕作土壤大,而容重和比重一般比裸坡土体和耕作土壤小:植被发育斜坡土体有机质含量比耕作土壤多;植被发育斜坡土体的给水度和饱和导水率总体随深度增加而减小,其中饱和导水率普遍大于裸坡土体和耕作土壤。
     2、选择亚甲基蓝作为染色示踪剂,在植被发育斜坡非饱和带开展染色示踪渗透试验,研究植被发育斜坡非饱和带土体大孔隙类型、大孔隙流路径分布模式及植被根系、有机质、土壤颗粒尺寸分布和土壤动物对大孔隙流路径分布模式的影响。研究得出以下结论:植被发育斜坡土体大孔隙主要有植被根系通道(有根皮腐烂根系通道、无根皮腐烂根系通道和根-土间隙),动物通道、洞穴,团聚体间大孔隙和砾-土间隙,其中根-土间隙是最主要的大孔隙;植被根系显著影响大孔隙流路径数量、尺度和分布特征,尤其是铅垂向下和顺坡向下的根系,当根系尺寸增大时,其对大孔隙流路径影响更显著;有机质有利于团聚体间大孔隙的形成;黏粒、粉粒和砂粒对大孔隙流路径形成没有积极功效,但砾粒有利于大孔隙路径形成,尤其是在表土层;土壤动物区系对动物通道网络形态的影响与动物生活习性和土壤质地、根系分布情况有关。
     3、采用碘-淀粉可视化方法和聚类分析方法研究植被发育斜坡非饱和带水流路径分布模式。试验结果表明:从地表垂直向下,强降雨条件下植被发育斜坡水流路径分布模式异质性逐渐增大;水流路径在顺坡方向的异质性比垂直方向的异质性大。
     4、土壤水运动理论研究表明非饱和土壤水运动理论有两次质的飞跃发展,但既有大孔隙流模型研究主要针对农业土壤,不适用于研究植被发育斜坡大孔隙流问题。本文提出植被发育斜坡非饱和带土体根-土间隙大孔隙流的概念模型。
     5、基于染色示踪渗透试验、水流路径示踪试验和既有相关研究成果讨论植被发育斜坡大孔隙对降雨入渗的影响。研究得出如下主要结论:植被发育斜坡非饱和带土体大孔隙主要通过截留地下暴雨径流而产生大孔隙流,快速增加降雨入渗进入土体的面积,加速降雨入渗;树干径流也能快速进入土体深部;土壤动物通道或土体的饱和导水率、入渗率与动物通道的生物量、总面积、长度和体积呈正相关关系,而与通道的连通性关系不显著;砾-土间隙截留地下暴雨径流或其他类型的大孔隙流,提高土体降雨入渗能力;植被根系通道对降雨入渗的影响远大于土壤动物通道;大孔隙网络系统的非均匀性导致土体含水率空间分布异质性。
     6、采用有限元软件HYDRUS-2D模拟分析相同降雨条件下,有无大孔隙、大孔隙直径、长度、弯曲率、密度和轴向对植被发育斜坡降雨入渗的影响。分析得出以下一些结论:植被发育斜坡土体大孔隙加快降雨垂直入渗,减弱表土层地下径流,延缓表土层出现暂态饱和区的时间,导致湿润前锋形态不规则;单根大孔隙直径变化对斜坡剖面含水率分布、压力水头分布和湿润前锋形态影响不大;大孔隙直径增大,优先流流速减小,大孔隙积水响应时间(稍微)推迟,有压入渗面积增大致使大孔隙内积水消散更快;大孔隙长度增大,斜坡剖面湿润前锋形态越不规则,降雨入渗深度越深,延缓大孔隙底部积水响应时间,大孔隙内积水高度减小,大孔隙长度对优先流流速没有显著影响;大孔隙弯曲率增大,其内部积水响应时间先增大后减小,降雨垂直入渗深度减小,大孔隙内积水长度增加,优先流最大流速先增大后减小;大孔隙弯曲率对湿润前锋形态的影响主要在降雨初期,随着弯曲率增大,湿润前锋形态不规则性逐渐减小;大孔隙群密度增大,湿润前锋形态越复杂,降雨下渗越快,大孔隙积水响应时间延缓,大孔隙之间的相互作用越显著;大孔隙群轴向与斜坡倾向之间的夹角减小,斜坡坡面湿润前锋形态不规则性减弱,优先流最大流速增大;当大孔隙位于表土层且大孔隙轴向与斜坡坡面近似平行时,大孔隙不利于降雨入渗。
Since the mid-twentieth century, because of the ever-increasing global warming, the frequency of extreme intense rainfall events and well vegetated slope failure events following the heavy rains in mountains are getting higher and higher. In-depth researches of this problem have great practical significance for landslide susceptibility assessment. Up to now, the existing research achievements of landslides induced by rainfall mainly focused on the interrelation between rainfall events and landslide events which no direct relation, as well as the aspects of water-rock interaction in rock-soil mass of slope. But the response process and response mechanism of groundwater to rainfall has received much less attention. The response of soil water to rainfall is the first step of the response of groundwater to rainfall. It is widely recognized that this response process in soils are strongly determined by soil structure. There are various macropores in vadose zone soils of well vegetated natural slope. However, a lot of research work has not been considered the influence of macropores on rainfall infiltration in slope. So, the research of rainfall infiltration in well vegetated slope is the bottleneck of systematically understanding the response of groundwater to rainfall. The effects of macropores on rainfall infiltration in vadose zone soils of well vegetated slope are studied by methylene blue dye tracer infiltration experiment, iodine-starch visual method, theoretical analysis and HYDRUS-2D finite element software numerical simulation method. The main research achievements are summarized as the following:
     1、The physical-chemical-hydraulical properties of unsaturated soil in well vegetated slope were investigated by laboratory test and field test in Chenggong experimental plots and in Touzhai experimental plots. The test results show that the water content, total porosity, organic matter, storativity of free water and the saturated hydraulic conductivity of soil in well vegetated slope are larger than the bare slope and the cultivated soils:on the contrary, the soil specific gravity and the bulk density are smaller in well vegetated slope. The storativity of free water and the saturated hydraulic conductivity decreased with increasing soil depth.
     2、In order to distinguish the types of macropores, the distribution patterns of macropore flow paths and the effects of root systems, organic matter, gravel and soil fauna on the distribution patterns of macropore flow paths. Methylene blue was chosen as the dye tracer. Dye tracer infiltration experiments were conducted in well vegetated slope. Results show that:Root channels (including with bark, without bark and root-soil interstice), animal burrows, inter aggregate porosity and gravel-soil interstice are common macropores in well vegetated slope. Root systems have significant effects on the quantity, the scale and the distribution patterns of macropore flow paths, especially, those which had developed vertically or in a downslope direction. The organic matter was favorable for the formation of the inter-aggregate pore. Gravel is favorable for the formation of macropore flow paths, especially in the topsoils. The effects of soil fauna on the morphology of animal burrows network are related to the life inbit of soil animals, soil texture and root distribution.
     3、Iodine-starch visual method and cluster analysis were used to study the distribution pattern of water flow paths in well vegetated slope. Research indicated that the heterogeneity of the distribution pattern of water flow paths increased with decreasing soil depth under intense rainfall condition. The heterogeneity of water flow paths in the direction of downslope is more significant than in the direction of vertical.
     4、The theory of soil water movement studies indicate that the research of unsaturated soil water movement has gone through two leaps. The existing research achievements of macropore flow model mainly focused on the agricultural soil, which are unfit for researching on the macropore flow in well vegetated slope. The conception mode of root-soil interstice macropore flow in well vegetated slope are presented.
     5、Base on the results of dye tracer infiltration experiments, water flow paths tracer experiments and the relative existing research outcomes, the effects of macropores on rainfall infiltration in well vegetated slope were discussed. We come to the following conclusions: Macropore flow in vadose zone of well vegetated slope is initiated through macropores intercept subsurface storm flow. Macropore flow lead to the fast rise in the infiltration and speed up rainfall infiltration. Stem flow can reach the deep soil quickly. The saturated hydraulic conductivity of the animal burrows and the soil are correlated positively with the biomass, total area, length and volume of animal burrows. Gravel-soil interstice intercept subsurface storm flow and other macropore flow, and increase the infiltration capacity of soils. The effect of root channel on rainfall infiltration is far greater than from animal burrows. The heterogeneity of macropore network system leads to ununiformity of the distribution of soil water content.
     6、Making use of the finite element program of HYDRUS-2D, the influence of macropore and the diameter, the length, the tortuosity, the density and the orientation of macropores were simulated under same rainfall process. The result indicates:macropore accelerate the rainfall infiltration and weaken the subsurface flow, and delay the time of appearance of transient state saturated zone, and then lend to the shape of wetting front is irregular. The influence of the diameter of single macropore to the distribution of the soil water content and the pressure head, the shape of wetting front are not obvious. The increasing of macropore diameter lead to the velocity of preferential flow decreases, the decay of the time of ponding in macropores and the ponding fast discharge. The increasing of the length of macropore lead to the shape of wetting front is more irregular, the depth of infiltration increases, the decay of the time of ponding in macropores and the ponding depth of macropore increases. The velocity of preferential flow is less influenced by the length of macropore. The decay of the time of ponding in macropores and the velocity of preferential flow begin to increase and then decease with the increasing of the tortuosity of macropore. The depth of rainfall infiltration decreases and the ponding depth of macropore increases with the increasing of the tortuosity of macropore. The tortuosity of macropore effects on the shape of wetting front are more important at the start of the infiltration than at later times. The irregularitiy of the shape of wetting front decreases with the increasing of the tortuosity of macropore. Because of the increasing of the density of macropore, the complex of shape of wetting front and getting more and more. The penetration rate of rainfall increases with the increasing of the density of macropore. The increasing of density of macropore lead to the interaction between differential macropore getting more and more pronounced. The irregularitiy of the shape of wetting front decreases with the decreasing of the angle between the orientation of macropore and the trend of the slope. The velocity of preferential flow increases with the decreasing of the angle. Macropore that in the topsoil and parallel to slope surface leads to an even lower infiltration rate of precipitation.
引文
[1]Jakob M.Lambert S. Climate change effects on landslides along the southwest coast of British Columbia[J].Geomorphology,2009:1-10.
    [2]Rowlands DJ, Frame DJ, Ackerley D, et al. Broad range of 2050 warming from an observationally constrained large climate model ensemble[J].Nature Geoscience,2012, 5:256-260.
    [3]Malet JP, Remaitre, Maquaire O, et al. Assessing the influence of climate change on the activity of landslides in the Ubaye Valley[C].Proceedings International Conference on Landslides and Climate change Challenges and Solutions,2007:195-205.
    [4]Crozier MJ. Deciphering the effect of climate change on landslide activity:A review[J]. Geomorphology,2010,124:260-267.
    [5]Dehn M, Burge G, Buma J, et al. Impact of climate change on slope stability using expanded downscaling[J].Engineering Geology,2000,55:193-204.
    [6]Dixon N, Brook E. Impact of predicted climate change on landslide reactivation:case study of Mam Tor, UK[J].Landslides,2007.4(2):137-147.
    [7]Collison A, Wade S, Griffiths J, et al. Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England[J].Engineering Geology,2000, 55:205-218.
    [8]Chiang SH, Chang KT. Predict rainfall-induced landslides using simulated scenarios of climate change[J].EGU General Assembly,2009:3348-3361.
    [9]Chiang SH. Chang KT. The potential impact of climate change on typhoon-triggered landslides in Taiwan,2010-2099[J].Geomorphology,2011.133:143-151.
    [10]Guzzetti F, Crosta G,Marchetti M. et al. Debris flows triggered by the July,17-19,1987 storm in the Valtellina area (Northern Italy) [C].Internationales Symposion, Tagungspublikation. Band 2, Seite,193-204,1992.
    [11]Godt JW. Maps showing locations of damaging landslides caused by El Nino rainstorms, winter season 1997-98, San Francisco Bay region, Califorrnia[R].U.S.Geological Survey Miscellaneous Field Investigation Series Maps, MF-2325-A-J,1999.
    [12]Shakoor A, Smithmyer AJ. An analysis of storm-induced landslides in colluvial soils overlying mudrock sequences, southeastern Ohio, USA[J]. Engineering Geology,2005, 78(3/4):257-274.
    [13]Chigira M. Geologic factors contributing to landslide generation in a pyroclastic area: August 1998 Nishigo Village, Japan[J],Geomorphology,2002,46(1/2):117-128.
    [14]Susan HC, Kathleen MH, Ingrid E, et al. Landslide response to hurricane Mitch rainfall in seven study areas in Nicaragua. U.S. Geological Survey Open-file Report 01-412-A,2001.
    [21]Cardinali M, Galli M, Guzzetti F, et al. Rainfall induced landslides in December 2004 in south-western Umbria, central Italy:types, extent, damage and risk assessment[J].Natural Hazards and Earth System Sciences,2006,6:237-260.
    [16]张开平,吕态能.新平县曼蚌河滑坡型泥石流特征及治理[J].云南地理环境研究,2003,15(4):54-60
    [17]陈晓清,韦方强,崔鹏,等.云南新平2002-08-14特大滑坡泥石流灾害及防治对策[J].山地学报,2003,21(5):599-604.
    [18]马东涛,冯自立,张金山,等.7.19云南腾冲滑坡泥石流灾害调查报告[J].水土保持通报,24(6):67-71.
    [19]马东涛,张金山,冯自立,等.2004.7.20云南盈江滑坡泥石流山洪灾害成因及减灾对策[J].灾害学,2005,20(1):67-71.
    [20]高克昌,孟国才,韦方强,等.德宏“7.5”特大滑坡泥石流灾害分析及其对策[J].防灾减灾工程学报,2005,25(3):251-257.
    [21]孟国才,高克昌,王士革,等.云南陇川县“2004-07-05”特大滑坡泥石流灾害及防治对策[J].中国地质灾害与防治学报,2004,15(4):104-108.
    [22]余峙丹,张辉,郭荣芬.云南楚雄特大滑坡泥石流气象成因[J].气象科技,2010,38(1):136-140.
    [23]刘传正,杨旭东,李荣华,等.广西玉林6.2群发型滑坡泥石流灾害[J].中国地质灾害与防治学报,2010,21(2):93.
    [24]徐则民,黄润秋.山区流域高盖度斜坡对极端降雨事件的地下水响应[J].地球科学进展,2011,26(6):598-607.
    [25]张玉成,杨光华,张玉兴.滑坡的发生与降雨关系的研究[J].灾害学,2007,22(1):82-85.
    [26]林孝松,郭跃.滑坡与降雨的耦合关系研究[J].灾害学,2001,16(2):87-92.
    [27]张友谊,胡卸文,朱海勇.滑坡与降雨关系研究进展[J].自然灾害学报,2007,16(1):104-108.
    [28]陶云,唐川,段旭.云南滑坡泥石流灾害及其与降水特征的关系[J].自然灾害学报, 2009,18(1):180-186.
    [29]马艳鲜,余忠水.西藏泥石流、滑坡时空分布特征及其与降水条件的关系[J].自然灾害学报,2009,29(1):55-58.
    [30]张玲,黄敬峰,王深法,等.基于GIS的滑坡临界降雨指标的研究[J].浙江大学学报(农业与生命科学版),2003,29(5):493-498.
    [31]陈丽霞,殷坤龙,刘礼领,等.江西省滑坡与降雨的关系研究[J].岩土力学,2008,29(4):1114-1120.
    [32]谢剑明,刘礼领,殷坤龙,等.浙江省滑坡灾害预警预报的降雨阀值研究[J].地质科技情报,2003,22(4):101-105.
    [33]李昂,侯圣山,周平根.四川雅安市雨城区诱发滑坡研究[J].中国地质灾害与防治学报,2007,18(1):15-17.
    [34]郁淑华,何光碧,徐会明,等.泥石流滑坡发生的降水预报方法与雨量标准-以四川省盆地区域为例[J].山地学报,2005,23(2):158-164.
    [35]高华喜,殷坤龙.降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J].岩土力学,2007,28(5):1055-1060.
    [36]麻土华,李长江,孙乐玲,等.浙江地区引发滑坡的降雨强度-历时关系[J].中国地质灾害与防治学报,2011,22(2):20-25.
    [37]Crosta GB, Frattini P. Rainfall thresholds for triggering soil slips and debris flow[C]. In: Proc.2nd EGS Plinius Conf. on Mediterranean Storms (Mugnai A, Guzzetti F). Siena,2001.
    [38]Cannon SH, Gartner JE. Wildfire-related debris flow from a hazards perspective[C]. In: Debris flow hazards and related phenomena (Jakob M, Hungr O).Berlin Heidelberg: Springer,2005.
    [39]Ceriani M, Lauzi S, Padovan N. Rainfall and landslides in the Alpine area of Lombardia Region, centralAlps, Italy[C]. In:Interpraevent Int. Symp. vol.2. Bern,1992.
    [40]Calcaterra D, Parise M, Palma B, et al. The influence of meteoric events in triggering shallow landslidesin pyroclastic deposits of Campania, Italy[C]. In:Proc.8thInt. Symp. on Landslides, vol.1. Cardiff:A.A. Balkema,2000.
    [41]Jakob M, Weatherly H. A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia[J]. Geomorphology,2003,54:137-156.
    [42]Floris M, Mari M, Romeo RW, et al. Modelling of landslide-triggering factors-a case study in the Northern Apennines, Italy[C]. In:Lecture Notes in Earth Sciences 104:Engineering Geology for Infrastructure Planning in Europe. Berlin Heidelberg:Springer,2004.
    [43]Baum RL, Godt JW, Harp EL, et al. Early warning of landslides for rail traffic between Seattle and Everett, Washington[C]. In:Proc.2005 Int. Conf.on Landslide Risk Management (Hungr O,Fell R, Couture R, Eberhardt E). New York:A. A. Balkema,2005.
    [44]Arboleda RA, MartinezML.1992 lahars in the Pasig-Potrero River system[J]. In:Fire and mud:eruptions and lahars of Mount Pinatubo (Newhall CG, Punongbayan RS).Philippine Institute of Volcanology and Seismology. Seattle:Quezon City and University of Washington Press,1996.
    [45]Guzzetti F, Peruccacci S, Rossi M, et al. Rainfall thresholds for the initiation of landslides in central and southern Europe[J]. Meteorology and Atmospheric Physics,2007,98:239-267.
    [46]Caine N. The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler[J]. Series A, Physical Geography,1980,62(1/2):23-27.
    [47]Innes JL. Debris flows[J]. Progress in Physical Geography,1983,7:469-501.
    [48]Kanji MA, Massad F, Cruz PT. Debris flows in areas of residual soils[C]:occurrence and characteristics. Int. Workshop on Occurrence and Mechanisms of Flows in Natural Slopes and Earthfills. Iw-Flows2003, Sorrento:Associacione Geotecnica Italiana 2,2003.
    [49]Corominas J, Moya J. Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain[J].Geomorphology,1999,30:79-93.
    [50]Annunziati A, Focardi A, Focardi P, et al. Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps-Tuscany, Italy (19 June 1996 storm) [C]. In:Proc. EGS Plinius Conf. on Mediterranean Storms, Maratea, Italy,2003.
    [51]Tatizana C, Ogura M, RochaM, et al. Analise decorrelacao entre chuvas e escorregamentos, Serra do Mar, Municipio de Cubatao[J]. Proc.5th Congress Brasiler, Geol Eng San Paolo, 1987.
    [52]Jibson RW. Debris flow in southern Porto Rico[J].Geological Society of America,1989,236: 29-55.
    [53]田宏岭,乔建平,王萌,等.基于危险度区划的县级区域降雨引发滑坡的风险预警方法-以四川省米易县降雨滑坡为例[J].地质通报,2009,28(8):1093-1097.
    [54]李铁峰,温铭生,从威青,等.降雨型滑坡危险性区划方法[J].地学前缘,2007,14(6):107-110.
    [55]Wieczorek GF, Guzzetti F. A review of rainfall thresholds for triggering landslides. Mediterranean Storms[C].Proceedings of the EGS Plinus Conferenceheld at Maratea, Italy, October,1999.
    [56]黄润秋,戚国庆.非饱和渗流基质吸力对边坡稳定性的影响[J].工程地质学报,2002,10(4):343-348.
    [57]戴福初,李焯芬,黄志全,等.火山岩坡残积土地区暴雨滑坡泥石流的形成机理[J].工程地质学报,1999,7(2):147-153.
    [58]Terlien MTJ. Hydrological landslide triggering in ash-covered slopes of Manizales(Columbia) [J]. Geomorphology,1997,20(1/2):165-175.
    [59]Zhang J, Jiao JJ, Yang J. In situ rainfall infiltration studies at a hillside in Hubei Province, China[J]. Engineering Geology,2000,57(1/2):31-38.
    [60]王钊,龚壁卫,包承纲.鄂北膨胀土坡基质吸力的量测[J].岩土工程学报,2001,23(1):64-67.
    [61]黄润秋,戚国庆.滑坡基质吸力观测研究[J].岩土工程学报,2004,26(2):216-219.
    [62]汤明高,许强,黄润秋.滑坡体基质吸力的观测试验及变化特征分析[J].岩石力学与工程学报,2006,25(2):355-362.
    [63]张卢明,郑明新,何敏.滑坡防治前后滑带土基质吸力特征研究[J].岩土力学,2010,31(10):3305-3312
    [64]吴俊杰,王成华,李广信.非饱和土基质吸力对边坡稳定的影响[J].岩土力学,2004,25(5):732-736.
    [65]罗晓辉,叶火炎.考虑基质吸力作用的土坡稳定性分析[J].岩土力学,2007,28(9):1919-1923.
    [66]张开鹏,刘新喜.降雨入渗对三峡库区堆积层滑坡稳定性的影响[J].中国安全科学学报,2006,16(2):4-8.
    [67]Montgomery DR, Dietrich WE, Torres R, et al. Hydro logic response of a steep unchanneled valley to natural and applied rainfall[J]. Water Resources Research,1997.33(1):91-109.
    [68]Fiorillo F, Wilson RC. Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy) [J]. Engineering Geology,2004,75(3/4):263-289.
    [69]Gabet EJ, Burbank DW, Putkonen JK, et al. Rainfall thresholds for landsliding in the Himalayas of Nepal[J]. Geomorphology,2004,63(3/4):131-143.
    [70]Gerscovich DMS, Vargas JEA, De Campos TMP. On the evaluation of unsaturated flow in a natural slope in Rio de Janeiro, Brazil[J]. Engineering Geology,2006,88(1/2):23-40.
    [71]Matsukura Y. The role of the degree of weathering and groundwater fluctuation in landslide movement in a colluvium of weathered hornblende-gabbro[J]. Catena,1996,27(1):63-78.
    [72]Van ATWJ, Hendriks MR, Hessel R, et al. Hydrological triggering conditions of landslides in varved clays in the French Alps[J]. Engineering Geology,1996,42 (4):239-251.
    [73]Lacerda WA. Landslide initiation in saprolite and colluvium in southern Brazil:field and laboratory observations[J]. Geomorphology,2007,87(3):104-119.
    [74]Jiao JJ, Wang XS, Nandy S. Confined groundwater zone and slope instability in weathered igneous rocks in Hong Kong[J]. Engineering Geology,2005,80(1/2):71-92.
    [75]王志强,张文捷.降雨对何家洞滑坡地下水位及稳定性的影响[J].江西水利科技,2007,33(4):194-196.
    [76]陈晓清,崔鹏,冯自立,等.滑坡转化泥石流起动的人工降雨试验研究[J].岩石力学与工程学报,2006,25(1):106-116.
    [77]张家发,张伟,朱国胜,等.三峡工程永久船闸高边坡降雨入渗实验研究[J].岩石力学与工程学报,1999,18(2):137-141.
    [78]詹良通,吴宏伟,包承纲,等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学,2003,24(2):151-158.
    [79]魏丽,陈双溪,边小庚.暴雨型滑坡灾害因素分析及预测试验研究[J].应用气象学报,2007,18(5):682-688.
    [80]程平,程耕国.降雨产生地下水流的实验与仿真结果的比较[J].武汉理工大学学报,2006,28(8):94-96.
    [81]周中,傅鹤林,刘宝琛,等.堆积层边坡人工降雨致滑的原位监测试验研究.中国铁道科学,2006,27(4):11-16.
    [82]McDonnell JJ. The influence of macropores on debris flow initiation[J].Quarterly Journal of Engineering Geology,1990,23(4):325-331.
    [83]Tu XB, Kwong AKL, Dai FC, al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced[J]. Engineering Geology,2009,105(1): 134-150.
    [84]娄一青,郑东健,岑黛蓉.降雨条件下边坡地下水渗流有限元分析[J].水利与建筑工程学报,2007,5(1):5-7.
    [85]刘建军,装桂红,薛强.降雨条件下道路边坡地下水渗流分析[J].岩土力学,2005,26(supp),196-198.
    [86]谢兴华,段祥宝.降雨条件下滑坡体地下水运动规律研究[C].见:中国水利学会第二届青年科技论坛论文集.郑州:黄河水利出版社,2005.
    [87]丁金华,任大春.泄洪雾化降雨对水布垭大岩淌滑坡地下水分布的影响研究[J].长江科学院院报,2009,26(10):109-113.
    [88]廖彬秀.降雨入渗下斜坡水文响应:[硕士学位论文].长安:长安大学,2010.
    [89]Iverson RM. Landslide triggering by rain infiltration[J]. Water Resources Research,2000, 36(7):1897-1910.
    [90]Cascini L, Gulla G, Sorbino G. Groundwater modelling of a weathered gneissic cover[J]. Canadian Geotechnical Journal,2006,43(11):1153-1166.
    [91]程平,程耕国.降雨产生地下水流的进展过程仿真[J].辽宁工程技术大学学报,2006,25(4):626-628.
    [92]李德心,何思明,朱兴华,等.前期有效降雨对滑坡启动影响分析[J].灾害学,2011,26(3):41-45.
    [93]Terwilliger VJ. Effects of vegetation on soil slippage by pore pressure modification[J]. Earth Surface Processes and Landforms,1990,15(6):553-570.
    [94]Angeli MG, Buma J, Gasparetto P, et al. A combined hillslope hydrology/stability model for low-gradient clay slopes in the Italian Dolomites[J]. Engineering Geology,1998,49(1):1-13.
    [95]Chigira M, Imai C, Hijikata H. Water percolating behavior indicated by the water chemistry within a decomposed granite slope, central Japan. Engineering Geology,2006, 84(1/2):84-97.
    [96]Wakatsuki T,Matsukura Y. Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan[J].Catena,2008, 72(1):153-168.
    [97]Chang Muhsiung, Chiu Yeefong, Lin Shenyee, et al. Preliminary study on the 2003 slope failure in Woo-wan-chai Area, Mt. Ali Road, Taiwan[J].Engineering Geology,2005, 80(1/2):93-114.
    [98]Sirangelo B, Braca G. Identification of hazard conditions for mudflow occurrence by hydro logical model:Application of FLaIR model to Sarno warning system[J]. Engineering Geology,2004,73(3/4):267-276.
    [99]Binet S, Mudry J, Scavia C, et al. In situ characterization of flows in a fractured unstable slope[J]. Geomorphology,2007,86(1/2):193-203.
    [100]郭继勋,祝延成.羊草草原生态系统的分解者与枯枝落叶分解的研究[J].草业学报,1994.3(1):13-17.
    [101]徐则民.植被与斜坡非饱和带大空隙[J].地学前缘,2007,14(6):134-142.
    [102]孙建平,刘青泉,李家春,等.降雨入渗对深层滑坡稳定性影响研究[J].中国科学G辑,2008,38(8):945-954.
    [103]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [104]王康.非饱和土水流运动及溶质迁移[M].北京:科学出版社,2010.
    [105]杨忠,熊东红,周红艺,等.干热河谷不同岩土组成坡地的降水入渗与林木生长[J].中国科学(E辑-技术科学),2003,33(增刊):85-93.
    [106]李守德,王保田,张福海,等.降雨入渗与蒸发过程中非饱和土边坡土体吸力[J].水利水运工程学报,2005,(3):31-36.
    [107]李贵玉,徐学选,王俊华,等.黄土丘陵区不同植被下土体入渗性能研究[J].水土保持学报,2007,14(3):27-30.
    [108]李汝成,王复明.降雨入渗对泥岩、土混填路堤稳定性的影响[J].岩石力学与工程学报,2008,27(11):2260-2266.
    [109]曹建生,刘昌明,张万军.岩土二元结构小流域降雨入渗补给地下裂隙潜流过程初步研究[J].自然科学进展,2005,15(6):759-763.
    [110]刘小文,耿小牧.降雨入渗对土坡稳定性影响分析[J].水文地质工程地质,2006,(6):40-47.
    [111]曹建生,张万军,刘昌明,等.岩土二元介质坡地非饱和渗流特征试验研究[J].农业工程学报,2007,23(8):9-15.
    [112]谭新,陈善雄,杨明.降雨条件下土坡饱和非饱和渗流分析[J].岩土力学,2003,24(3):381-384.
    [113]刘金龙,栾茂田,王吉利,等.降雨条件下土坡饱和非饱和渗流及稳定性分析[J].岩土力学,2006,27(增刊):103-107.
    [114]姚华彦,贾善坡.各向异性渗透对土坡孔隙水压力及浸润线的影响分析[J].水电能源科学,2009,27(1):85-87.
    [115]朱元骏,邵明安.含砾石土壤降雨入渗过程模拟[J].水科学进展,2010,21(6):779-787.
    [116]陈洪松,邵明安,王克林.上方来水对坡面降雨入渗及土壤水分再分布的影响[J].水科学进展,2005,16(2):233-237.
    [117]包含,侯立柱,等.室内模拟降雨条件下土壤水分入渗及再分布试验[J].农业工程学报,2011,27(7):70-75.
    [118]张亚丽,李怀恩,张兴昌.土壤质地对坡地土壤水分运动与转化特征的影响研究[J].灌溉排水学报,2008,27(6):27-29.
    [119]李毅,邵明安.雨强对黄土坡面土壤水分入渗及再分布的影响[J].应用生态学报,2006,17(12):2271-2276.
    [120]韩同春,黄福明.双层结构土质边坡降雨入渗过程及稳定性分析[J].浙江大学学报(工学版),2012,46(1):39-45.
    [121]王治军,雒天峰.滴灌条件下侧柏林地根区土壤水分运动规律研究[J].干旱地区农业研究,2008,26(4):13-16.
    [122]王正宁,王新平.荒漠灌丛树干茎流及其入渗、再分配特征[J].水利学报,2010,41(4):464-470.
    [123]徐学选,张北赢,田均良.黄土丘陵区降水-土壤水-地下水转化实验研究[J].水科学进展,2010,21(1):16-22.
    [124]王政友.降水对土壤水资源的补给及其制约因素分析[J].水资源与水工程学报,2011,22(2):157-160.
    [125]武海霞.降雨强度对土壤水再分布的影响[J].人民长江,2010,41(9):98-100.
    [126]张志才,陈喜,魏玲娜,等.土壤水对降水和地表覆盖的响应[J].水资源保护,2011,27(1):15-19.
    [127]吕菲,刘建立,何娟.利用CT数字图像和网络模型预测近饱和土壤水力学性质[J].农业工程学报,2008,24(5):10-14.
    [128]盛丰,方妍,张仁铎.运用染色示踪方法研究土壤质地对土壤水非均匀流动特征的影响[J].土壤通报,2012,43(1):26-30.
    [129]崔海英.PAM对坡地水分入渗及土壤流失影响的研究[D-硕士学位论文].北京:中国农业大学,2006.
    [130]程艳涛.冻土高寒草甸草地土壤水分入渗过程及影响因素的试验研究[D-硕士学位论文].兰州:兰州大学,2008.
    [131]王志强.降雨入渗对江西典型自然边坡稳定影响的实例研究[D-硕士论文].南昌:南昌大学,2007.
    [132]林嵩.降雨入渗过程中的土质边坡稳定分析[D-硕士论文].大连:大连理工大学,2008.
    [133]马晓刚.缙云山不同植物群落类型土壤入渗性能研究[D-硕士论文].西安:西南大学,2008.
    [134]吴尧.岷江上游森林土壤大孔隙特性与水分入渗性能研究[D-硕士学位论文].南京:南京林业大学,2008.
    [135]Gasmo JM, Rahardjo J, Leong E C. Infiltration effects on stability of a residual soil slope[J]. Computers and Geotechnics,2000,26:145-165.
    [136]Huang J, Wu PT, Zhao XL. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments[J]. Catena,2012, http: //dx.doi.org/10.1016/j.catena.2012.10.013.
    [137]Marston RB. Ground cover requirements for summer storm runoff on aspen sites in northern Utah[J]. Journal of Forestry,1952,54 (4):303-307.
    [138]Mando A, Stroosnijder L, Brussaard L. Effects of termites on infiltration into crusted soil[J]. Geodenna,1996, (74):107-113.
    [139]PitkaEnen Jyrki, Nuutinen Visa. Earthworm contribution to infiltration and surface runoff after 15 years of different soil management J], Applied Soil Ecology,1998, (9):411-415.
    [140]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318
    [141]王志兵.头寨滑坡的工程地质特征及其演化过程[D-硕士学位论文].昆明:昆明理工大学,2008.
    [142]刘爽,何文清,严昌荣,刘勤.不同耕作设施对旱地农田土壤物理特性的影响[J].干旱地区农业研究,2010,28(2):65-70.
    [143]潘德成,吴详云,李海燕,张丹丹.阜新煤矿区次生裸坡土壤抗冲性比较分析[J].辽宁工程技术大学学报(自然科学版),2010,29(4):678-681.
    [144]张雯,侯立白,张斌,王国骄,讲文春,贾燕.辽西易旱区不同耕作方式对土壤物理性能的影响[J].干旱区资源与环境,2006,20(3):149-153.
    [145]雷金银,吴发启,马波,李荣标.毛乌素沙地南缘保护性耕作措施对土壤物理性质的影响[J].干旱地区农业研究,2008,26(3):161-166.
    [146]姜世成.松嫩盐碱化草地水盐分布格局及盐碱裸地植被快速恢复技术研究[博士学位论文].昆明:东北师范大学,2010.
    [147]张海林,秦耀东,朱文珊.毛耕作措施对土壤物理性状的影响[J].土壤,2003,(2):140-144.
    [148]吴尧,姚健,吴永波,等.毛岷江上游典型植被下土壤分析特征及对水分入渗的影响[J].水土保持通报,2012,32(2):12-16.
    [149]张立娟,李德成,李徐生,等.成土年龄对雷琼地区玄武岩母质土壤剖面中常量元素迁移的影响[J].土壤,2012,44(2):274-281.
    [150]黄成敏,龚子同.海南岛北部玄武岩上土壤发生研究Ⅲ.元素地球化学特征[J].土壤学报,2002,39(5):643-652.
    [151]潘国庆,罗来君.耕作土壤有机质含量的演变规律[J].江苏农业科学,2004,(3):82-83.
    [152]邵景安,唐晓红,魏朝富,等.报护性耕作对稻田土壤有机质的影响[J].生态学报,2007,27(11):4434-4442.
    [153]陈建刚,李启军,侯旭峰,等.妫水河流域不同植被覆盖条件下土壤入渗及模型的比较分析[J].中国水土保持科学,2004,2(6):22-26.
    [154]潘紫文,刘强,佟得.海黑龙江省东部山区主要森林类型土壤水分的入渗速率[J].东北林业大学学报,2002,30(5):24-26.
    [155]王云琦 王玉杰.缙云山典型林分森林土壤持水与入渗特性[J].北京林业大学学报,2006,28(3):102-108.
    [156]袁东,池永翔,程刚.闽北地区不同植被类型下滑坡体土层入渗性能研究[J].长江科学院院报,2010,27(5):8-12.
    [157]张家明,徐则民,裴银鸽.植被发育斜坡非饱和带大孔隙[J].山地学报,2012,30(4):439-449.
    [158]Watson KW, Luxmoore RJ. Estimating macroporosity in a forest watershed by use of a tension infiltro meter [J]. Soil Science Society of America Journal,1986,50:578-582.
    [159]李伟莉,金昌杰,王安志,等.长白山主要类型森林土壤大孔隙数量与垂直分布规律[J].应用生态学报,2007,18(10):2179-2184.
    [160]时忠杰,王彦辉,徐丽宏,等.六盘山森林土壤的石砾对土壤大孔隙特征及出流速率的影响[J].生态学报,2008,25(10):4929-4939.
    [161]时忠杰,王彦辉,熊伟,等.六盘山典型植被类型土壤中石砾对大孔隙形成的影响[J]山地学报,2007,25(5):541-547.
    [162]时忠杰,王彦辉,徐丽宏,等.六盘山典型植被下土壤大孔隙特征[J].应用生态学报,2007,18(12):2675-2680.
    [163]陈风琴,石辉.缙云山常绿阔叶林土壤大孔隙与入渗特性关系初探[J].西南师范大学学报(自然科学版),2005,30(2):350-353.
    [164]石辉,陈凤琴,刘世荣.岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J].生态学报,2005,25(3):507-512.
    [165]石辉,王峰,李秧秧.黄土丘陵区人工油松林土壤大孔隙定量研究[J].中国生态农业学报,2007,15(1):28-32.
    [166]Feyen H, Wunderli H, Wydler H, et al. A tracer experiment to study flow paths of water in a forest soil[J]. Journal of Hydrology,1999,225:155-167.
    [167]Alaoui A, Goetz B. Dye tracer and infiltration experiments to investigate macropore flow[J].Geoderma,2008,144:279-286.
    [168]Nobles M M, Wilding L P, Lin H S. Flow pathways of bromide and Brilliant Blue FCF tracers in caliche soils[J]. Journal of Hydrology,2010,393:114-122.
    [169]Noguchi S, Nik A R, Kasran B, et al. Soil Physical Properties and Preferential Flow Pathways in Tropical Rain Forest, Bukit Tarek, Peninsular Malaysia[J]. Journal of Forest Research,1997,2:115-120.
    [170]王伟,张洪江,程金花,等.四面山阔叶林土壤大孔隙特征与优先流的关系[J].应用生态学报,2010,21(5):1217-1223.
    [171]李伟莉,金昌杰,王安志,等.长白山北坡两种类型森林土壤的大孔隙特征[J].应用生态学报,2007,18(6):1213-1218.
    [172]Pierret A, Capowize Y, Belzunces L, et al.3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J].Geoderma,2002, 106:247-271.
    [173]Capowize Y, Pierret A, Daniel O, et al.3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores[J].Biol Fertil Soils,1998,27:51-59.
    [174]Becen K, Germann P. Macropores and water flow in soils[J].Water resources research, 1982,18(5):1311-1325.
    [175]徐则民,黄润秋,唐正光,等.植被护坡的局限性及其对深层滑坡孕育的贡献[J].岩石力学与工程学报,2005,24(5):438-450.
    [176]Leonard J, Perrier E, Rajot J L. Biological macropores effect on runoff and infiltration: a combined experimental and modelling approach[J].Agriculture, Ecosystems and Environment,2004,104:277-285.
    [177]Perret J, Prasher S O, Kantzas A, et al. Three-dimensional quantification of macro pore networks in undisturbed soil cores [J].Soil Science Society of America Journal,1999,63: 1530-1543.
    [178]Beven K, Germann P. Macropores and water flow in soils [J]. Water Resources,1982, 18(5):1311-1325.
    [179]Aubertin GM. Nature and extent of macropores in forest soils and their influence on subsurface water movement [R]. Forst Service, U.S. Department of Agriculture,1971.
    [180]Buttle JM, Leigh DG. The influence of artificial macropores on water and solute transport in laboratory soil columns [J]. Journal of Hydrology,1997,17:290-314.
    [181]Christiansen JS, Thorsen M, Clausen T, et al. Modelling of macropore flow and transport processes at catchment scale [J]. Journal of hydro logy,2004,299:136-158.
    [182]Skopp J. Comment on micro-, meso-, and macroporosity of soil [J].Soil Science Society of America Journal,1981,45:1246.
    [183]Pierret A, Capowiez Y, Belzunces L, et al.3D reconstruction and quantification of macro pores using X-ray computed tomography and image analysis[J]. Geoderma,2002, 106:247-271.
    [184]Nelson WR, Baver LD. Movement of water through soils in relation to the nature of the pores [J].Soil Science Society of America Journal,1940:5(c):69-75.
    [185]Jongerius, A. Morphologic investigation of the soil structure. Meded. Stricht. Bodemkartering. Bodem Stud. Wageningen, the Netherlands.1957
    [186]Marshall TJ. Relations between water and soil [R].Tech Commun No.50, Commonwealth Bureau of Soils Harpenden, Commonwealth Agricultural Bureaux, Farnham Royal.1959.
    [187]Johnson WM, MeCelland JE, McCaleb SB, et al. Classification and description of soil pores [J]. Soil Science,1960,89(6):319-321.
    [188]Brewer R. Fabric and mineral analysis of soils [M]. New York:Wiley,1964.
    [189]McDonald PM. Disposition of soil moisture held in temporary storage in large pores [J]. Soil Science,1967.103(2):139-143.
    [190 Russell EW. Soil conditions and plant growth (10th.ed.) [M] London:Longmans,1973.
    [191]Mclntype DS. Pore space and aeration determinations, in Loveday J. Methods for analysis of irrigated Soils [M]. Farnham Royal:Commonweath Agricultural Bureaux,1974.
    [192]Mosley MP. Streamflow generation in a forested watershed, New Zealand [J]. Water Resources Research,1979,15(4):795-806.
    [193]Ranken DW Hydrologic properties of soil and subsoil on a steep forested slope [Masters Thesis].Corvallis:Oregon State University,1974.
    [194]Greenland DJ. Soil damage by intensive arable cultivation:Temporary or permanent? [J].Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,1977,281:193-208.
    [195]Bouma J. Jongerius A, Boersma O, et al. The function of different types of macropores during saturated flow through four swelling soil horizons [J].Soil Science Society of America Journal,1977,41(5):945-950.
    [196]Bullock P. Thomasson A J. Rothamsted studies of soil structure analysis and comparison with data from water retention measurements [J].Soil Science,1979,30(3):391-413.
    [197]Reeve MJ, Hall DG, Bullock P. The effect of soil composition and environmental factors on shrinkage of some clayey British soisl [J].Soil Science.1980,31(3):429-442.
    [198]Beven K. Micro, meso, macroporosity and channeling flow phenomenain soils [J].Soil Science Society of America Journal,1981,45:1245.
    [199]Luxmoore RJ. Micro-, meso- and macroporosity of soil [J].Soil Science Society of America Journal,1981,45:671-672.
    [200]Seven K, Germann. Water flow in soil macropores II, A combined flow model[J]. Soil Science,1981,32(1):15-29.
    [201]Watsib KW, Luxmoore RJ. Estimating macroporosity in a forest watershed by use of a tension infiltrometer [J].Soil Science Society of America Journal,1986,50:578-582.
    [202]Luxmoore RJ, Jardine PM, Wilson GV, et al. Physical and chemical controls of preferred path flow through a forested hillslope [J].Geoderma,1990,46:139-154.
    [203]Harvey JW, Nuttle WK. Fluxes of water and solute in a coastal wetland sediment.2. effect of macropores on solute exchange with surface [J]. Journal of Hydrology,1995, 164:109-125.
    [204]Leonard J, Perrier E, Rajot JL. Biological macropores effect on runoff and infiltration:a combined experimental and modelling approach[J].Agriculture Ecosystems and Environment,2004,104:277-285.
    [205]Carey SK, Quinton WL, Goeller N T. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils [J].Hydrological Processes,2007, 21:2560-2571.
    [206]Tippkotter R, Eickhorst T, Taubner H, et al. Detection of soil water in macropores of undisturbed soil using microfocus X-ray tube computerized tomography (μCT) [J].Soil & Tillage Research,2009,105:12-20.
    [207]Lamande M, Labouriau R, Holmstrup M, et al. Density of macropores as related to soil and earthworm community parameters in cultivated grasslands [J].Geoderma,2011,162:319-326.
    [208]Bouma J. Soil morphology and preferential flow along macropores [J]. Agricultural Water Management,1981,3:235-250.
    [209]. PitkAnen J, Nuutinen V. Distribution and abundance of burrows formed by Lumbricus Terrestris L. and Aporrectodea Caliginosa Sav. In the soil profile[J]. Soil Biol Biochem, 1997,29(3/4):463-467.
    [210]Wahl NA, Bens O, Buczko U, et al. Effects of conventional and conservation tillage on soil hydraulic properties of a silty-loamy soil[J]. Physics and Chemistry of the Earth, 2004,29:821-829.
    [211]Stein A, Droogers P, Booltink H. Point processes and random sets for analyzing patterns of methylene blue coloured soil[J]. Soil & Tillage Research,1998,46:273-288.
    [212]Devitt DA, Smith SD. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem[J]. Journal of Arid Environments,2002,50:99-108.
    [213]Gaiser RN. Root channels and roots in forest soils [J]. Soil Science Society of America Journal,1952,16(1):62-65.
    [214]McDonnell JJ. A rationale for old water discharge through macropores in a steep, humid catchment [J]. Water Resources research,1990,26(11):2821-2832.
    [215]Holden J. Flow through macropores of different size classes in blanker peat [J]. Journal of Hydrology,2009,364:342-348.
    [216]Passioura JB. Soil conditions and plant growth[J]. Plant, Cell and Environment,2002,25: 211-218.
    [217]Peth S. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography [J]. Soil physics,2008,72(4):897-907.
    [218]Ehlers W. Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Science,1975.119 (3),242-249.
    [219]Langmaack M, Schrader S, Rapp-Bernhardt U,et al. Quantitative analysis of earthworm burrow systems with respect to biological soil-structure regeneration after soil compaction [J].Biol Fertil Soils,1999,28:219-229.
    [220]陈效民,黄德安,吴华山.太湖地区主要水稻土的大孔隙特征及其影响因素研究[J].土壤科学,2006,43(3):509-512.
    [221]中野秀章.森林水文学[M].李云森译.北京:中国林业出版社,1983:1-234.
    [222]Luo LF, Lin H, Li SC. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography[J].Journal of Hydrology,2010,393: 53-64.
    [223]Six J, Bossuyt H, Degryze S, et al. A history of research on the lime between (micro)aggregates, soil biota, and soil organic matter dynamic[J].Soil & Tillage Research,2004,79:7-31
    [224]Ashman MR, Hallett PD, Brookes PC. Are the links between soil aggregate size class, soil organic matter and respiration rate artifacts of the fractionation procedure? [J].Soil Biology & Biochemistry,2003,35:435-444.
    [225]Vinther FP, Eiland F, Lind AM, et al. Microbial bio mass and numbers of denitrifies related to macropore channels in agricultural and forest soils [J].Soil Biology & Biochemistry,1999,31:603-611.
    [226]史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类互动的影响[J].应用生态学报,2002,23(11):1491-1494.
    [227]Kemper WD, Miller DE. Management of crusting soil:Some practical possibilities[C]. In Cary and Evans, Eds., Soil Crusts. Tucson:University of Arizona Agricultural Experiment Station, Technical Bulletin,1974,214.
    [228]Summer ME. Handbook of Soil Science[M]. CRC Press:Boca Raton, FL 2000:1-2148.
    [229]史志华,闰峰陵,李朝霞,等.红壤表土团聚体破碎方式对坡面产流过程的影响[J].自然科学进展,2007,17(2):217-224.
    [230]Vogel HJ, Cousin I, Ippisch O, et al. The dominant role of structure for solute transport in soil:experimental evidence and modelling of structure and transport in a field experiment[J]. Hydro logical Earth Systems Science Discussion,2005,2:2153-2181.
    [231]Lu JH, Wu LS. Visualizing bromide and iodide water tracer in soil profiles by spray methods[J].Journal of Environmental Quality,2003,32:363-367.
    [232]Wang K, Zhang RD. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine[J]. Journal of Hydrology,2011,397:105-117.
    [233]Tamm CO, Troedsson T. A new method for the study of water movement in soil[J].Geologiska F6reningen i Stockholm Forhandlingar,1957,79:581-587.
    [234]Van Ommen HC, Dekker LW, Dijksma R, et al. A new technique for evaluating the presence of preferential flow paths in nonstructured soils[J].Soil Science Society of America Journal,1988,52:1192-1193.
    [235]Wang Z, Lu JH, Wu LS, et al. Visualizing preferential flow paths using ammonium carbonate and a pH-indicator[J].Soil Science Society of America Journal,2002,66: 347-351.
    [236]Mooney SJ, Morris C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray Computed Tomography[J]. Catena,2008, 73:204-211.
    [237]Noguchi S, Nik AR, Kasran B, et al. Soil physical properties and referential flow pathways in tropical rain forest [J]. Journal of Forest Research,1997,2:115-120.
    [238]孔祥言.高等渗流力学(第二版)[M].北京:中国科学技术大学出版社,2010.
    [239]王全九,邵明安,郑纪勇.土壤水水分运动与溶质迁移[M].北京:中国水利水电出 版社,2007.
    [240]杨德军,张士乔,张科峰.土壤水动力学模型及在SPAC系统建模中的应用[M].杭州:浙江大学出版社,2011.
    [241]Germann PF, Beven K. Kinematic wave approximation to infiltration into soils with sorbing macropores [J].Water Resources Research,1985,21(7):990-996.
    [242]Di Pietro L, Ruy S, Capowiez Y. Predicting preferential water flow in soils by traveling-dispersive waves[J].Journal of Hydro logy,2003,278:64-75.
    [243]Gerke HH, van Genuchten MTh. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media [J]. Water Resources Research, 1993,29:305-319.
    [244]Ahuja LR, Hebson C. Root zone water quality model. GPSR technical report No.2[R]. USDA, ARS, Fort Collins, CO.
    [245]Romkens MJM, Prasad SN. Rain Infiltration into swelling/shrinking/cracking soils[J]. Agricultural Water management,2006,86:196-205.
    [236]Armstrong AC, Mattews AM, Portwood AM, et al. CRACK-NP:A pesticide leaching model for cracking clay soils[J]. Agricultural Water management,2000,44:183-199.
    [247]Lepore BJ, Morgan CLS, Norman JM, et al. A Mesopore and Matrix infiltration model based on soil structure[J].Geoderma,2009,152:301-313.
    [248]Gwo JP, Jardine PM, Wilson GV, et al. multiple-pore-region concept to modeling mass transfer in subsurface media[J]. Journal of Hydrology,1995,164:217-237.
    [249]Hutson JL, Wagenet RJ. A multi region model describing water flow and solute transport in heterogeneous soils[J].Soil Science Society of America Journa,1995,59:743-751.
    [250]Greco R. Preferential flow in macroporous swelling soil with internal catchment model development and applications[J].Journal of Hydrology,2002,269:150-168.
    [251]Ahuja LR, Rojas KW, Hanson JD, et al.The Root Zone Water Quality Model[M]. Colorado:Water Resources Publications, LLC,2000.
    [252]Watson KK. A statistical treatment of the factors affecting the infiltration capacity of a field soil[J]. Journal of Hydrology,1965,3(1):58-65.
    [243]Wuest SB, Caesar-Tom That TC, Wright SF, et al. Organic matter addition, N, and residue burning effects on inflitration, biological, and physical properties of an intensively tilled silt-loam soil[J]. Soil & Tillage Research,2005,84:154-167.
    [254]Majer JD, Walker TC, Berlandier F. The role of ants in degraded soils within Dryandra State Forest[J]. Mulga Research Centre Journal,1987,9:15-16.
    [255]Reynolds ERC, Thompson FB. Forests, Climate, and Hydrology- Regional Impacts[M]. Tokyo:United Nations University Press,1998.
    [256]Marin CT, Sevink WB. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia[J].Journal of Hydrology,2000,237:40-57.
    [257]Aboal JR, Morales D, Hernandez M, et al.The measurement and modelling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands[J]. Journal of Hydrology,1999,221:161-175.
    [258]Navar J. Stemflow variation in Mexico's northeastern forest communities:Its contribution to soil moisture content and aquifer recharge [J] Journal of Hydrology,2011, 408:35-42.
    [259]Joschko M, Sochtig W, Larink O. Functional relationship between earthworm burrows and soil water movement in column experiments[J].Soil Biology and Biochemistry,1992,24 (2):1545-1547.
    [260]Bouche MB, Al-Addan F. Earthworms, water infiltration and soil stability:soil new assessments [J]. Soil Biology and Biochemistry,1997,29(3/4):441-452.
    [261]Bastardie F, Cannavacciuolo M, Capowiez Y, et al. Anew simulation for modelling the topology of earthworm burrow systems and their effects on macropore flow in experimental soils[J]. Biol Fertil Soils,2002,36:161-169.
    [162]Shipitalo MJ, Dick WA, Edwards W M. Conservation tillage and macropore factors that affect water movement and the fate of chemicals[J]. Soil & Tillage Research,2000,53: 167-183.
    [263]Shipitalo MJ, Nuutinen V, Butt K R.Interaction of earthworm burrows and cracks in a clayey, subsurface-drained, soil[J]. Applied Soil Ecology,2004,26:209-217.
    [264]Edwards WM, Shipitalo MJ, Ownes LB, et al. Conservation tillage and macropore factors that affect water movement and the fate of chemicals[J]. Journal of Soil and Water Conseration,1989,44 (3):240-243.
    [265]Shipitalo MJ, Edwards WM, Redmond C E.Comparison of Water Movement and Quality in Earthworm Burrows and:Pan Lysimeters[J]. Journal of Environmental Quality,1994, 23 (6):1345-1351.
    [266]Friend JJ, Chan KY.Influence of Cropping on the Population of a Native Earthworm and Consequent Effects on Hydraulic Properties of Vertisols.[J]Soil, Land Care & Environmental Research,1995,33 (6):995-1006
    [267]Aina PO. Contribution of earthworms to porosity and water infiltration in a tropical soil under forest and long-term cultivation[J]. Pedobiologia,1984,26,131-136.
    [268]Elkins NZ, Sabol G, Ward TJ, et al. The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem[J]. Oecologia (Berlin), 1986,68:521-528.
    [269]Sarr M, Agbogba C, Russell-Smith A, et al. Effects of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal[J]. Applied Soil Ecology, 2001,16:283-290.
    [270]Valentin C.Influence of rock fragments on the water retention.-and water percolation in a calcareous soil[J]. Catena,2003,53 (2):97-114.
    [271]Brakensiek DL, Rawls WJ. Soil containing rock fragments:effects on infiltration[J]. Catena,1994,23:99-110.
    [272]Grant WJ, Struchtemeyer RA.Influence of the Coarse Fraction in Two Maine Potato Soils on Infiltration, Runoff and Erosion[J]. Soil Science Socity Proceedings,1959: 391-394.
    [273]Valentin C, Casenave A. Infiltration into Sealed Soils as Influenced by Gravel Cover[J]. Soil Scicence Society of America Journal,1992,56:1667-1673.
    [274]Valentin C. Surface sealing as affected by various rock fragment covers in West Africa[J]. Catena,1994,23:87-97.
    [275]Muhuys GR, Stolzy LH, Letey J, et al. Effect of Stones on the Hydraulic Conductivity of Relatively Dry Desert Soils[J].Soil Scicence Society of America Journal,1975,39: 37-42.
    [276]Ravina I, Magier J. Hydraulic Conductivity and Water Retention of Clay Soils Containing Coarse Fragments[J].Soil Scicence Society of America Journal,1984,48: 736-740.
    [277]Peck AJ, Watson JD. Hydraulic conductivity of flow in non-uniform soil. Workshop on Soil Physics and Field heterogeneity, Canberra, Australia. Unpublished,1979.
    [278]Brakensiek DL, Rawls WJ, Stephenson GR.Determining the saturated hydraulic conductivity of a soil containing rock fragments[J].Soil Scicence Society of America Journal,1986,50:834-835.
    [279]Bogner C, Wolf B, Schlather M, et al.Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics[J]. European Journal of Science, 2008,59:103-113.
    [280]Laine-Kaulio H. Development and alalysis of a dualpermeabiligy model for subsurface stormflow and solute transport in a forest hillslope[D-博士学位论文]. Helsinki:Aalto University,2011.
    [281]Bramley H, Hutson J, Tyerman SD. Floodwater infiltration through root channels on a scale clay floodplain and the influence on a local tree species Eucalyptus largiflorens[J]. Plant and Soil 253:275-286,2003.
    [282]Espeby B. Tracing the origin of natural water in a glacial till slope during snowmelt[J]. Journal of Hydrology,1999,118 (4):107-127.
    [283]董宾芳.黄土丘陵区林地植物根系与土壤优势流关系研究[D-硕士论文].重庆:西南大学,2007.
    [284]Mitchell AR, Ellsworth TR, Meek DB. Plant root systems'effect on preferential flow in swelling soil. In:Gish T J, Shirmohammadi A (Eds.), Preferential flow. Proceedings of the National Symposium, December 16-17,1991. Chicago, IL.Americal Socity of Agricultural Engineering, St. Joseph, MI.
    [285]刘秀萍,陈丽华,宋维峰,等.油松根系形态分布的分形分析研究[J].水土保持通报,2007,27(1):47-54.
    [286]李伟莉,金昌杰,王安志,等.长白山北坡两种森林土壤的大孔隙特征[J].应用生态学报,2007,18(6):1213-1218.
    [287]张洪江,程金花,史玉虎,等.三峡库区花岗岩林地坡面优先流对降雨的响应[J].北京林业大学学报,2004,26(5):6-9.
    [288]祁生林,张洪江,何凡,等.长江三峡花岗岩林地坡面降雨渗流与水土流失关系研究[J].工程地质学报,2006,14(3):365-369.
    [289]Alaoui A, Helbling A. Evaluation of soil compaction using hydro-dynamic water content variation:comparison between compacted and noncompacted soil[J]. Geoderma,2006, 134:97-108.
    [290]Lin HS, McInnes KJ, Wilding LP, et al. Effective porosity and flow rate with infiltration at low tensions in a well-structured subsoil[J]. American Society of Agricultural Engineers, 1996,39:131-133.
    [291]王晓峰,刘光焰,王涛.非饱和土体降雨入渗的全过程数值模拟[J].水文,2007,27 (1):30-32.
    [292]张志才,陈喜.降雨入渗补给量计算的数值模拟方法[J].中国农村水利水电,2007,12:1-4.
    [293]朱磊,杨金忠,岳卫峰.水流在土壤大孔隙中运动的数值模拟[J].灌溉排水学报,2008,27(3):20-23.
    [294]Guan H, Simunek J, Newman BD, et al.Modeling investigation of water partitioning at a semiarid ponderosa pine hillslope, Hydro logical Processes[J]. Hydro logical Process,2010, 24:1095-1105.
    [295]Janssen J, Lennartz B. Water losses through paddy bunds:Methods, experimental data, and simulation studies[J]. Journal of Hydrology,2009,369:142-153.
    [296]Gardenas AI, Simunek J, Jarvis N, et al. Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field[J]. Journal of Hydrology,2006, 329:647-660.
    [297]Kandelous MM, Simunek J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D[J]. AgriculturalWater Management,2010,97:1070-1076.
    [298]Lamy E, Lassabatere L, Bechet B, et al. Modeling the influence of an artificial macropore in sandy columns on flow and solute transfer [J]. Journal of Hydrology,2009, 376:392-402.
    [299]Yao LQ, Feng SY, Ma XM, et al. Coupled effects of canal lining and multi-layered soil structure on canal seepage and soil water dynamics[J].Journal of Hydrology,2012, 430-431:91-102.
    [300]Kohne JM, Kohne S, Simunek J. A review of model applications for structured soils: a) Water flow and tracer transport[J]. Journal of Contaminant Hydrology,2009,104:4-35.
    [301]海龙,梁冰.考虑降雨入渗条件的土体边坡稳定性分析[J].水资源与水工程学报,2010,21(4):46-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700