用户名: 密码: 验证码:
聚合物微凝胶的微流控制备及形貌与功能调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,通过微流控技术并结合物理或化学交联可制备形貌可调的聚合物微/纳米水凝胶颗粒。由于该技术可以实现微粒的尺寸和形貌的精确调控,因而被广泛应用于药物载体材料,光子晶体材料,以及纳米复合结构材料的制备等方面。
     本文利用微流控技术制备了尺寸均一的海藻酸钠单乳液及复合乳液液滴,通过外场离子交联并调控外场收集液黏度的方法成功地实现了形貌可调微凝胶颗粒的制备。初步探讨了不同形貌微凝胶颗粒的形成机理。其次,利用沉淀聚合法得到的单分散聚-N-异丙基丙烯酰胺纳米凝胶颗粒来构建光子晶体悬浮液。通过双乳液微流控技术与紫外光固化技术制备了以光固化树脂为壳,以纳米凝胶基光子晶体悬浮液为核的光子晶体微球,并对所得到的光子晶体微球的光学性能进行了调控。将所得的光子晶体微球通过离心法制备了Janus结构的光子晶体微球,并探讨了Janus结构与离心条件间的对应关系。本论文包括以下主要内容:
     1、利用微流控技术制备了尺寸均一的海藻酸钠单乳液液滴,以含有甘油和离子交联剂乙酸钡(或氯化钙)的水溶液作为收集液,使得到的海藻酸钠乳液液滴通过离子交联得到海藻酸钡(钙)微凝胶颗粒。通过调节收集液中甘油的含量实现对收集液黏度的调节,从而可以得到不同形貌的微凝胶颗粒。通过调节流速及收集液高度等实验参数实现了微凝胶颗粒形貌的调节。不同形貌的微凝胶颗粒来进行药物释放实验结果表明,微凝胶的形貌对于模型药物的释放速率有重要影响。
     2、利用微流控技术制备了以硝基甲烷溶液为核,以海藻酸钠水溶液为壳的双乳液液滴,以含不同浓度甘油的交联剂溶液来收集该复合液滴得到了不同形貌的微凝胶颗粒。通过调节复合物液滴的结构,海藻酸钠的浓度以及复合物液滴的内核成分等,系统地研究了最终得到的微凝胶颗粒的形貌变化规律。探讨了不同形貌微凝胶颗粒的形成机理。通过加入量子点及荧光小分子成功地实现了对微凝胶的功能化。
     3、利用沉淀聚合法合成了单分散聚-N-异丙基丙烯酰胺基纳米凝胶颗粒的乳液。通过可控挥发自组装得到了浓缩的不同颜色的纳米凝胶悬浮液。以可光聚合的乙氧基化的三羟甲基丙烷三丙烯酸酯作为外部相,以多色的纳米凝胶悬浮液为内部相,通过微流控技术制备了核壳型的不同颜色的光子晶体微球。研究了得到的光子晶体微球的光学性质随着温度改变的变化趋势。通过小分子荧光物质和量子点掺杂的方法实现了对所得到微球的功能化。以上述核壳型光子晶体微球为研究对象,通过离心力诱导微球内部纳米凝胶的聚集而形成Janus超结构微球球。系统地研究了离心温度、离心速度、以及离心时间对于微球内部形貌的影响。同时,研究了在随结构变化过程中,微球的光学性能的变化趋势。通过将树脂层中加入单分散的二氧化硅纳米颗粒,成功实现了双禁带光子晶体微球的制备。以水热还原法合成了尺寸均一的金纳米粒子。通过乳液聚合制备单分散的聚-N-异丙基丙烯酰胺基纳米凝胶颗粒,在聚合反应过程中加入金纳米颗粒的水分散液,得到了以金纳米颗粒为核,以聚-N-异丙基丙烯酰胺为壳的杂化纳米凝胶颗粒。通过调节金纳米颗粒的加入量实现了对杂化纳米凝胶中金颗粒的数目的调节。以该杂化纳米凝胶为构筑单元,通过加热退火法制备了杂化纳米凝胶光子晶体。研究了杂化纳米凝胶的浓度对于微球的光学性质的影响。
Recently, preparation of polymer microparticles with tunable morphology based on polymer micro/nanogels could be achieved by microfluidic technique, combinning physical or chemical cross linking methods. Owning to the finely tunable diameters and morphology of the particles by microfluidic technique, it have been widely applied to the fabrication of drug delivery materials, photonic structured materials and complex structured materials, among others.
     Uniform alginate sodium based single emulsion and double emulsion droplets were created through microfluidic technique. By combinning external ionic cross linking and adjustment of external collecting solutions viscosity, we could achieve the regulation of the resultingmicrogels' morphology. Also, the formation mechnism of the different morphology microgels was discussed. By utilization of the precipitation polymerization method, we produce monodisperse poly-N-isopropylacrylamide nanogels which can be used to form colorful photonic crystal dispersions. Core/shell photonic crystal microspheres using photo polymerizable resin as shell, nanogels based photonic crystal dispersions as the core can be prepared by double emulsion microfluidic technique, combinning UV light solidification method. Then, the Janus photonic crystal microspheres based on the core/shell microsphere were formed by a simple centrifugation method. Relatonship between the Janus structure and centrifugation conditions was also investigated. This dissertaion are consisted of several sections as the following:
     1. Uniform alginate sodium emulsion droplets were created by microfluidic technique. The emulsion droplets were cross-linked by using aqueous solution of barium acetate(or calcium chloride) and glycerol as the collecting solution. Morphology of the microgels were tuned by tailoring the viscosity of the collecting solution by simply varying the concentrations of glycerol. The morphology variation was measured by optical microscopy and scanning electron microscopy(SEM). The drug release experiment was conducted by using the microgels as the drug delivery carrier, and the result indicate the morphology of the microgels have significant impact on the drug release behavior.
     2. Monodisperse double emulsion droplets with alginate sodium solution as the shell and nitromethane solution as the core were created by microfluidic technique. The emulsion droplets were collected by different viscosities of collecting solution and different morphology of microgels were obtained. The resultanting microgels morphology variation trend was systematically investigated. The effects of the double emulsion droplets'sturcture, concentration of alginate sodium solutions and the component of the droplets'core part on the microgels morphology was systematically investigated. The formation mechanism of different morphology microgels was studied.
     3. The monodispersed poly-N-isopropylacrylamide nanogel particles were synthesized by precipitation polymerization method. Different colors of nanogel dispersions were obtained by controlling evaperation self assembly method. Different colors of core/shell photonic crystal microsphereswere obtained by empolying the photopolymerizable ethoxylated trimethylolpropane triacrylate (ETPTA) resin as the shell part and the colorful nanogel dispersions as the inner core. The microsphere's optical property variation trend with the temperature change was investigasted. The microspheres were functionlized by addition of small fluorescent molecules and quantum dots (QDs). The Janus supraparticles based on the above mentioned core/shell microspheres were formed through a centrifuge force induced method. The effect of the centrifugation temperature, centrifugation speed and centrifugation time on the microsphere's inner morphologywere systematically investigated. Optical properties variation trend with the microsphere's inner structure change was studied. Double stop band photonic crystal microspherses were successfully prepared by addition of the monodisperse SiO2nanoparticles into the shell part. The monodisperse Au nanoparticles were synthesized by the sodium citrate hydrothermal reduction. Core/shell hybrid nanogel particles with the gold nanoparticles as the core and the poly-N-isopropylacrylamide as the shell were fabricated by the traditional emulsion polymerization method. The amount of the gold nanoparticles inside the hybrid nanogels could be controlled by the addition the gold nanoparticles dispersion's volume.The hybrid nanogels photonic crystal structured microspheres were formed by using the hybrid nanogel dispersions as the building blocks assisted by the annealing method. The effect of hybrid nanogels'concentration on the microspheres'optical property was also investigated.
引文
[1]Whitesides G.M. The origins and the future of microfluidics. Nature 2006,442(7101):368-373.
    [2]Park Jai II, Saffari A., Kumar S., et al. Microfluidic synthesis of polymer and inorganic particulate materials. Annu.I Rev. Mater. Res.2010,40(1):415-443.
    [3]Oh J.K., Drumright R., Siegwart D.J., et al. The development of microgels/nanogels for drug delivery applications. Prog. PoIy.Sci.2008,33(4):448-477.
    [4]Wang A. Cui Y., Li J., et al. Fabrication of Gelatin Microgels by a"Cast" Strategy for Controlled Drug Release. Adv. Funct. Mater.2012,22(13):2673-2681.
    [5]Vermonden T., Censi R., Hennick W. E. Hydrogels for protein delivery. Chem. Rev.2012,112 (5):2853-2888.
    [6]Retama J.R., Lopez-Ruiz B., Lopez-Cabarcos E. Microstructural modifications induced by the entrapped glucose oxidase in cross-linked polyacrylamide microgels used as glucose sensors. Biomaterials 2003,24(17):2965-2973.
    [7]Lee Y.-H., Braun P. V. Tunable Inverse opal hydrogel pH sensors. Adv. Mater.2003,15(7):563-566.
    [8]Kanai T., Lee D., Shum H.C., et al. Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small 2010,6(7):807-810.
    [9]Kanai T., Lee D., Shum H. C., et al Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths. Adv. Mater.2010,22(44):4998-5002.
    [10]Wu S., Dzubiella J., Kaiser J., et al. Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew. Chem. Int. Ed.2012,51(9):2229-2233.
    [11]Tumarkin E.,Kumacheva E. Microfluidic generation of microgels from synthetic and natural polymers. Chem. Soc. Rev.2009,38(8):2161-2168.
    [12]Nge P. N., Rogers C.I., Woolley A. T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev.2013,113(4):2550-2583.
    [13]Seiffert S., Thiele J., Abate A.R., et al. Smart microgel capsules from macromolecular precursors. J. Am. Chem. Soc.2010,132(18):6606-6609.
    [14]Suh S. K.,Yuet K., Hwang D. K., et al. Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc.2012,134(17):7337-7343.
    [15]Maeda K., Onoe H., Takinoue M., Takeuchi S. Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv. Mater.2012,24(10):1340-1346.
    [16]Kim S.-H., Lee S.Y., Yang S.-M., et al. Self-assembled colloidal structures for photonics. NPG. Asia Mater.2011,3(1):25-33.
    [17]Adam R. A, Andrew S. U., Anderson S., et al. Microfluidic techniques for synthesizing particles. 2007.
    [18]Fdrster S. A.M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater.1999,10(3):195-217.
    [19]Akiyoshi K., Deguchi S., Moriguchi N., et al. Self-aggregates of hydrophobized polysaccharides in water-formation and characteristics of nanoparticles. Macromolecules 1993,26(12):3062-3068.
    [20]Capretto L., Mazzitelli S., Luca G., et al. Preparation and characterization of polysaccharidic microbeads by a microfluidic technique:application to the encapsulation of Sertoli cells. Acta. Biomater.2010,6(2):429-435.
    [21]Jejurikar A., Lawire G., Martin D., et al. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels. Biomed Mater.2011,6(2):025010-025012.
    [22]Schurks N., Wingender J., Flemming H.C., et al. Monomer composition and sequence of alginates from Pseudomonas aeruginosa. Int. J. Biol. Macromol.2002,30(2):105-111.
    [23]Fu S., Thacker A., Sperger D.M., et al. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS Pharm Sci Tech 2011,12(2):453-460.
    [24]Tan W.H.,Takeuchi S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater.2007,19(18):2696-2701.
    [25]Deacon M.P., McGurk S., Roberts C.J., et al. Atomic force microscopy of gastric mucin and chitosan mucoadhesive systems. Biochem. J.2000,348(3):557-563.
    [26]Mukhopadhyay P., Mishra R., Rana D., et al. Strategies for effective oral insulin delivery with modified chitosan nanoparticles:A review. Prog. Poly. Sci.2012,37(11):1457-1475.
    [27]Huang M., Fong C.W., Khor E., et al. Transfection efficiency of chitosan vectors:effect of polymer molecular weight and degree of deacetylation. J. Control Release 2005,106(3):391-406.
    [28]K. N., K. S.S.,N. M.D. Chitosan nanoparticles:a promising system in novel drug delivery. Chem. Pharm Bull (Tokyo) 2010,58(11):1423-1430.
    [29]Shu X.Z., Zhu K.J., Song Weihong Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int. J. Pharm.2001,212(1):19-28.
    [30]Hong S., Hsu H.J., Kaunas R., et al. Collagen microsphere production on a chip. Lab Chip 2012,12(18):3277-3280.
    [31]Oh H.H., Ko Y. G., Lu H., et al. Preparation of porous collagen scaffolds with micropatterned structures. Adv. Mater.2012,24(31):4311-4316.
    [32]Golden A.P.,Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 2007,7(6):720-725.
    [33]Zhang H., Tumarkin E., Peerani R., et al. Microfluidic production of biopolymer microcapsules with controlled morphology. J. Am. Chem. Soc.2006,128(37):12205-12210.
    [34]Kuo C. K. M.P.X. Ionically crosslinked alginate hydrogels as scalolds for tissue engineering Part 1. Structure, gelation rate and mechanical properties Biomaterials 2001,22(6):511-521.
    [35]Rowley J. A. M.G., Mooney D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999,20(1):45-53.
    [36]Cho C. H., Jung J. H., Rhee Y. W.,et al. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdevices 2007,9(6):855-862.
    [37]Stroock A.D., Dertinger S.K., Ajdari A., et al. Chaotic mixer for microchannels. Science 2002,295(5555):647-651.
    [38]Wu H. K., Odom T.W., Chiu D. T., et al. Fabrication of complex three-dimensional microchannel systems in PDMS. J.Am.Chem.Soc.2002,125(2):554-559.
    [39]Wolfe D.B., Ashcom J. B., Hwang J. C., et al. Customization of poly(dimethylsiloxane) stamps by micromaching using a femtosecond-pulsed laser. Adv. Mater.2003,15(1):63-65.
    [40]Yoshiaki M., Rajniak D., Rajniak A., et al. A novel microchip for capillary electrophoresis with acrylic microchannel fabricated on photosensor array. Sensors and Actuators B 2002,81(2): 202-209.
    [41]McDonald J. C., Chabinyc M.L., Metallo S. J., et al. Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem.2002,74(7):1537-1545.
    [42]Campbell C.J., Klajn R., Fialkowski M., et al. One-step multilevel microfabrication by reaction-diffusion. Langmuir 2005,21(1):418-423.
    [43]Asthana A., Kim K.O., Perumal J., et al. Facile single step fabrication of microchannels with varying size. Lab Chip 2009,9(8):1138-1142.
    [44]Chen H., Zhao Y., Li J., et al. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab Chip 2011,11(14):2312-2315.
    [45]Saeki D., Sugiura S., Kanamori T., et al. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Lab Chip 2010,10(17):2292-2295.
    [46]Dang T.D., Joo S.W. Preparation of tadpole-shaped calcium alginate microparticles with sphericity control. Colloids Surf B:Biointerfaces 2013,102,766-771.
    [47]Lin Y.S., Yang C.H., Hsu Y.Y., et al. Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation. Electrophoresis 2013,34(3):425-431.
    [48]Capretto L., Mazzitelli S., Balestra C, et al. Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 2008,8(4):617-621.
    [49]Chan E.S., Lee B.B., Ravindra P., et al. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method. J. Colloid Interface Sci.2009,338(1): 63-72.
    [50]Hirama H., Kambe T., Aketagawa K., et al. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface. Langmuir 2013,29(2):519-524.
    [51]Marquis M. R.D., Cathala B. Microfluidic generation and selective degradation of biopolymer-based Janus microbeads. Biomacromolecules 2012,13(4):1197-1203.
    [52]Zhang H., Tumarkin E., Sullan R.M.A., et al. Exploring microfluidic routes to microgels of biological polymers. Macromol. Rapid Comm.2007,28(5):527-538.
    [53]Shah R.K., Kim J.-W., Agresti J.J., et al. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter 2008,4(12):2303-2309.
    [54]Teh S.Y., Lin R., Hung L.H., et al. Droplet microfluidics. Lab Chip 2008,8(2):198-220.
    [55]Wang J.T., Wang J., Han J.J. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small 2011,7(13):1728-1754.
    [56]Utada A.S., Lorenceau E., Link D.R., et al. Monodisperse double emulsions generated from a microcapillary device. Science 2005,308(5721):537-541.
    [57]Rogoski R.R. Ready as ready can be. Many healthcare IT departments are already prepared for HIPAA. Health Manag Technol.2003,24(1):20-22.
    [58]Chen C. H., Abate A.R., Lee D., et al. Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv. Mater.2009,21(31):3201-3204.
    [59]Chen C.H., Shah R.K., Abate A.R., et al. Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 2009,25(8):4320-4323.
    [60]Nisisako T., Torii T., Takahashi T., et al. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv. Mater.2006,18(9):1152-1156.
    [61]Shepherd R.F., Conrad J.C., Rhodes S.K., et al. Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 2006,22(21):8618-8622.
    [62]Lu Y., YinY., Xia Y. Three-dimentional photonic crystals with non-spherical colloids as building blocks. Adv. Mater.2001,13(6):415-420.
    [63]Sharon C. G., Solomon M.J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater.2007,6(8):557-562.
    [64]Vroege G.J., Lekkerkerker H. N. W. Phase transitions in lyotropic colloidal and polymer liquid crystals Rep.Fmg.Phys.1992,55(8):1241-1309.
    [65]Dendukuri D., Gu S.S., Pregibon D.C., et al. Stop-flow lithography in a microfluidic device. Lab Chip 2007,7(7):818-828.
    [66]Dendukuri D., Pregibon D.C., Collins J., et al. Continuous-flow lithography for high-throughput microparticle synthesis. "Nat. Mater.2006,5(5):365-369.
    [67]Liu K., Ding H.J., Liu J., et al. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 2006,22(22):9453-9457.
    [68]Liu K., Deng Y., Zhang N., et al. Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluidics and Nanofluidics 2012,13 (5):761-767.
    [69]Zhao L.B., Pan L., Zhang K., et al. Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 2009,9(20):2981-2986.
    [70]Ji X.H., Cheng W., Guo F., et al. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. Lab Chip 2011,11(15):2561-2568.
    [71]Suh S.K., Yuet K., Hwang D.K., et al. Synthesis of nonspherical superparamagnetic particles:in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc.2012,134(17):7337-7343.
    [72]Daniel C. Pregibon M.T., Patrick S. Doyle. Multifunctional encoded particles for high-throughput biomalecule anlysis. Science 2007,315(5817):1393-1396.
    [73]Chu L. Y, Kim J.W., Shah R. K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics. Adv. Funct.Mater.2007,17(17):3499-3504.
    [74]Panda P., Ali S., Lo E., et al. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 2008,8(7):1056-1061.
    [75]De Geest B.G., Urbanski J.P., Thorsen T., et al. Synthesis of monodisperse biodegradable microgels in microfluidic devices. Langmuir 2005,21(23):10275-10279.
    [76]Kim J.W., Utada A.S., Fernandez-Nieves A., et al. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. Int. Ed.2007,46(11):1819-1822.
    [77]Nie Z., Xu S., Seo M., et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J. Am. Chem. Soc.2005,127(22):8058-8063.
    [78]Chu L.Y., Utada A. S., Shah R. K., et al. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed.2007,46(47):8970-8974.
    [79]Seiffert S., Oppermann W.,Saalwachter K. Hydrogel formation by photocrosslinking of dimethyl-maleimide functionalized polyacrylamide. Polymer 2007,48(19):5599-5611.
    [80]Seiffert S.,Weitz D.A. Microfluidic fabrication of smart microgels from macromolecular precursors. Polymer 2010,51(25):5883-5889.
    [81]Seiffert S., Romanowsky M.B.,Weitz D.A. Janus microgels produced from functional precursor polymers. Langmuir 2010,26(18):14842-14847.
    [82]Kim J., Nayak S., Lyon L.A. Bioresponsive hydrogel microlenses. J. Am. Chem. Soc.2005,127 (26):9588-9592.
    [83]Mazumder M. A., Burke N.A., Shen F., et al. Core-cross-linked alginate microcapsules for cell encapsulation. Biomacromolecules 2009,10(6):1365-1373.
    [84]Kesselman L.R., Shinwary S., Selvaganapathy P.R., et al. Synthesis of monodisperse, covalently cross-linked, degradable "smart" microgels using microfluidics. Small 2012,8(7):1092-1098.
    [85]Nisisako T., Torii T.,Higuchi T. Droplet formation in a microchannel network. Lab Chip 2002,2 (1):24-26.
    [86]Thorsen T., Roberts R.W., Arnold F.H., et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett.2001,86(18):4163-4166.
    [87]Anna S. L., Bontoux N., Stone H. A. Formation of dispersions using "flow focusing" in microchannels. Appl. Phys. Lett.2003,82(3):364.
    [88]Glotzer S.C. Materials science:some assembly required. Science 2004,306(5695):419-420.
    [89]Bong K.W., Chapin S.C., Doyle P.S. Magnetic barcoded hydrogel microparticles for multiplexed detection. Langmuir 2010,26(11):8008-8014.
    [90]Hwang D.K., Dendukuri D.,Doyle P.S. Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 2008,8(10):1640-1647.
    [91]Hwang D.K., Oakey J., Toner M., et al. Stop-flow lithography for the production of shape-evolving degradable microgel particles. J. Am. Chem. Soc.2009,131(12):4499-4504.
    [92]Appleyard D., Chapin S.C., Doyle P. S. Multiplexed protein quantification with barcoded hydrogel microparticles. Anal. Chem.2011,83(1):193-199.
    [1]Jiang K., Xue C., Arya G., et al. A new approach to in-situ "micromanufacturing":microfluidic fabrication of magnetic and fluorescent chains using chitosan microparticles as building blocks. Small 2011,17(7):2470-2476.
    [2]Rossow T., Heyman J.A., Ehrlicher A.J., et al. Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. J. Am. Chem. Soc.2012,134(10):4983-4989.
    [3]Huang S., Zeng S., He Z., et al. Water-actuated microcapsules fabricated by microfluidics. Lab Chip 2011, 11(20):3407-3410.
    [4]Ogonczyk D. S., M., Garsteck P. Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics 2011,5(1):013405-013412.
    [5]Liu K., Ding H.J., Liu J., et al. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 2006,22(22):9453-9457.
    [6]Hu Y. W.Q., Wang J., Zhu J., Wang H.,Yang Y. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics 2012,6(2):26502-9.
    [7]P.B.Umbanhowar V.P., D. A. Weitz. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 2000,16(2):347-351.
    [8]Mukherjee S.,Sarkar K. Viscoelastic drop falling through a viscous medium. Phys. Fluids 2011, 23(1):013101-08.
    [9]Hsu A.S.,Leal L.G. Deformation of a viscoelastic drop in planar extensional flows of a Newtonian fluid. J. Non-Newton. Fluid Mech.2009,160(2-3):176-180.
    [10]Baumann N. Vortex rings of one fluid in another in free fall. Phys. Fluids 1992,4(3):567-580.
    [11]Champion J.A., Katare Y.K.,Mitragotri S. Particle shape:a new design parameter for micro- and nanoscale drug delivery carriers. J. Control Release 2007,121(1-2):3-9.
    [12]Mitragotri S. In drug delivery, shape does matter. Pharm Res.2009,26(1):232-234.
    [13]Champion J.A.,Mitragotri S. Role of target geometry in phagocytosis. PNAS 2006,103(13): 4930-4934.
    [1]Kim S.-H., Abbaspourrad A.,Weitz D.A. Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids. J. Am. Chem. Soc.2011,133(14):5516-5524.
    [2]Kim S.-H., Hwang H., Lim C. H., et al. Packing of emulsion droplets:structural and functional motifs for multi-cored microcapsules. Adv. Funct. Mater.2011,21(9):1608-1615.
    [3]Lee D.,Weitz D.A. Nonspherical colloidosomes with multiple compartments from double emulsions. Small 2009,5(17):1932-1935.
    [4]Zhao Y., Shum H.C., Chen H., et al. Microfluidic generation of multifunctional quantum dot barcode particles. J. Am. Chem. Soc.2011,133(23):8790-8793.
    [5]Kim S. H. S.J.W., Yang S. M. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew. Chem. Int. Ed.2011,50(5):1171-1174.
    [6]Kim S.H., Shum H.C., Kim J.W., et al. Multiple polymersomes for programmed release of multiple components. J. Am. Chem. Soc.2011,133(38):15165-15171.
    [7]Jeong W.-W., Kim C. One-step method for monodisperse microbiogels by glass capillary microfluidics. Colloids and Surfaces A:Phys.2011,384(1-3):268-273.
    [8]Martinez C.J., Kim J.W., Ye C., et al. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol. Biosci.2012,12(7):946-951.
    [9]Chen C.H., Shah R.K., Abate A.R., et al. Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 2009,25(8):4320-4323.
    [10]Shum H.C., Santanach-Carreras E., Kim J.W., et al. Dewetting-induced membrane formation by adhesion of amphiphile-laden interfaces. J. Am. Chem. Soc.2011,133(12):4420-4426.
    [11]Hayward R.C., Utada A.S., Dan N., et al. Dewetting instability during the formation of polymersomes from block-copolymer-stabilized double emulsions. Langmuir 2006,22(10):4457-4461.
    [12]Yu Z., Wang C.F., Ling L., et al. Triphase microfluidic-directed self-assembly:anisotropic colloidal photonic crystal supraparticles and multicolor patterns made easy. Angew. Chem. Int. Ed. 2012,51(10):2375-2378.
    [13]Li H., Sundararaj U. Experimental investigation of viscoelastic drop deformation in Newtonian matrix at high capillary number under simple shear flow. J. Non-Newton. Fluid Mech.2010,165 (19-20):1219-1227.
    [14]Stone H.A. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 1994,26,65-102.
    [1]Hamid M., Azadi A., Rafiei P. Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliv. Rev. 2008,60(15):1638-1649.
    [2]Karg M., Pastoriza-Santos I., Perez-Juste J., et al. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 2007,3(7):1222-1229.
    [3]Kim J., Nayak S., Lyon L.A. Bioresponsive hydrogel microlenses. J. Am. Chem. Soc.2005,127 (26):9588-9592.
    [4]Kim J., Serpe M.J., Lyon L. A. Photoswitchable microlens arrays. Angew. Chem. Int. Ed.2005,44 (9):1333-1336.
    [5]Kim J., Serpe M. J., Lyon L. A. Hydrogel microparticles as dynamically tunable microlenses. J.Am.Chem.Soc.2004,126(31):9512-9513.
    [6]Dong L., Agarwal A.K., Beebe D.J., et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 2006,442(7102):551-554.
    [7]Horigome K.,Suzuki D. Drying mechanism of poly(N-isopropylacrylamide) microgel dispersions. Langmuir 2012,28(36):12962-12970.
    [8]Matsubara K., Watanabe M., Takeoka Y. A thermally adjustable multicolor photochromic hydrogel. Angew. Chem. Int. Ed.2007,46(10):1688-1692.
    [9]Zhao Y., Zhao X., Tang B., et al. Rapid and sensitive biomolecular screening with encoded macroporous hydrogel photonic beads. Langmuir 2010,26(9):6111-6114.
    [10]Hu J., Zhao X.-W., Zhao Y.-J., et al. Photonic crystal hydrogel beads used for multiplex biomolecular detection. J. Mater. Chem.2009,19(32):5730-5736.
    [11]Reese C.E., Mikhonin A.V., Kamenjicki M., et al. Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc.2004,126(5):1493-1496.
    [12]Sahiner N., Godbey W. T., McPherson G. L., et al. Microgel, nanogel and hydrogel-hydrogel semi-IPN composites for biomedical applications:synthesis and characterization. Colloid Polym. Sci.2006,284(10):1121-1129.
    [13]Debord J.D., Eustis, S., Debord S. B., et al. Color-tunable colloidal crystals from soft hydrogel nanoparticles. Adv. Mater.2002,14(9):658-662.
    [14]Debord J.D.,Lyon L.A. Thermoresponsive photonic crystals. J. Phys. Chem. B 2000,104(27): 6327-6331.
    [15]Kim S.-H. Jeon S.-J.,Yi Gi-Ra, et al. Optofluidic synthesis of electro-responsive photonic Janus balls with isotropic structural colors. Adv. Mater.2008,20(21):4129-4134.
    [16]Kim S.-H., Seon J.-J., and Yang S. M. Optofluidic encapsulation of crystalline colloidal arrays into sperical membrane. J. Am. Chem. Soc.2008,130(18):6040-6046.
    [17]Kim S.-H., Lee S.Y., Yang S. M. Janus microspheres for a highly flexible and impregnable water-repelling interface. Angew. Chem. Int. Ed.2010,49(14):2535-2538.
    [18]Kim S.-H. Hwang H., Lim C. H., et al. Packing of emulsion droplets:structural and functional motifs for multi-cored microcapsules. Adv. Funct. Mater.2011,21(9):1608-1615.
    [19]Wang J., Hu Y, Deng R., et al. Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization. Lab Chip 2012,12(16):2795-2798.
    [20]Hu Y., Wang J., Wang H., et al. Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels. Langmuir 2012, 28(49):17186-17192.
    [21]Utada A.S., Lorenceau E.. Link D.R., et al. Monodisperse double emulsions generated from a microcapillary device. Science 2005,308(5721):537-541.
    [22]L6pez-Loen T., Ortega-Vinuesa J.L., Bastos-Gonza'lez D., et al Cationic and anionic poly(N-isopropylacrylamide) based submicron gel particles electrokinetic properties and colloidal stability. J. Phys. Chem. B 2006,110(10):4629-4636.
    [23]Pelton R.H., Chibante P. Preparation of aqueous latices with N-isopropylacrylamide Colloid Surf. 1986,20,(3):247-256.
    [24]Kim S. H., Seon J.J., Yang S.-M. Optofluidic encapsulation of crystalline colloidal arrays into sperical membrane. J. Am. Chem. Soc.2008,130(18):6040-6046.
    [25]Pelton R. Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci.2000,85(1):1-33.
    [26]Zhu C., Xu W. Y., Chen L.,et al. Magnetochromatic microcapsule arrays for displays. Adv. FunctMater.2011,21 (11):2043-2048.
    [27]Hu Z., Huang.G. A new route to crystalline hydrogels, guided by a phase diagram. Angew. Chem.Int.Ed.2003,42(39):4799-4802.
    [28]Hu Z. Xia X. Hydrogel nanoparticle dispersions with inverse thermoreversible gelation. Adv. Mater.2004,16(4):305-309.
    [29]Kawaguchi S.T.a.H. Colored thin films prepared from hydrogel microspheres. Langmuir 2005, 21(18):8439-8442.
    [30]Ohno K., Morinaga T., Takeno S. Suspensions of silica particles grafted with concentrated polymer brush:a new family of colloidal crystals. Macromolecules 2006,39(3):1245-1249.
    [31]Huang G., Hu Z. Phase behavior and stabilization of microgel arrays. Macromolecules 2007,40(10):3749-3756.
    [32]Asher S. A., Kimble K.W., Walker J. P. Enabling thermoreversible physically cross-Linked polymerized colloidal array photonic crystals. Chem. Mater.2008,20(24):7501-7509.
    [33]Iyer A. S., Lyon L.A. Self-healing colloidal crystals. Angew. Chem. Int. Ed.2009,48(25):4562-4566.
    [34]Weissman J.M., Sunkara H.B., Tse A.S., et al. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science 1996,274(5289):959-960.
    [35]Holtz J.H.,Asher S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997,389(6653):829-832.
    [36]Kim S.-H., Jeon S.-J., Yi Gi-Ra, et al. Optofluidic assembly of colloidal photonic crystals with controlled Sizes, shapes, and structures. Adv. Mater.2008,20 (9):1649-1655.
    [37]Kim S. H., Hwang.H., Yang S. M. Fabrication of robust optical fibers by controlling film drainage of colloids in capillaries. Angew. Chem. Int. Ed.2012,51(15):3601-3605.
    [38]Kim S.-H., Lee S.Y., Yang S.-M., et al. Self-assembled colloidal structures for photonics. NPG Asia Mater.2011,3(1):25-33.
    [39]Kim S. H. Jeon W.C., Hwang H., et al. Robust chirped photonic crystals created by controlled colloidal diffusion. Angew. Chem. Int. Ed.2011,50(49):11649-11653.
    [40]Kim S. H., Hwang H., Yang S. M. Fabrication of robust optical fibers by controlling film drainage of colloids in capillaries. Angew. Chem. Int. Ed.2012,51(15):3601-3605.
    [41]Zhao Y., Xie Z., Gu H., et al. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012,41 (8):3297-3317.
    [42]Zhao Y., Gu H., Xie Z., et al. Bioinspired multifunctional Janus particles for droplet manipulation. J. Am. Chem. Soc.2013,135(1):54-57.
    [43]Kim S.H., Abbaspourrad A.,Weitz D.A. Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids. J. Am. Chem. Soc.2011,133(14):5516-5524.
    [44]Bertone J. F., Jiang P., Kevin S., et al. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys. Rev. Lett.1999,83(2):300-303.
    [45]Jiang P., Bertone J.F., Hwang K. S., et al. Single-crystal colloidal multilayers of controlled thickness. Chem.Mater.1999,11(8):2132-2140.
    [46]Zhou J., Wang G., Marquez M., et al. The formation of crystalline hydrogel films by self-crosslinking microgels. Soft Matter 2009,5(4):820.
    [47]Alsayed A.M., Islam M.F., Zhang J., et al. Premelting at defects within bulk colloidal crystals. Science 2005,309(5738):1207-1210.
    [48]Bazin G., Zhu X. X. Responsive properties of crystalline colloidal arrays formed by core-shell microspheres with pH and temperature sensitivities. Canadian Journal of Chemistry 2012, 90(1):131-137.
    [49]Bazin G.,Zhu X.X. Understanding the thermo-sensitivity of crystalline colloidal arrays formed by poly(styrene-co-N-isopropylacrylamide) core-shell microspheres. Soft Matter 2012,8(6):1909-1915.
    [50]Lyon L. A., Fernandez-Nieves A. The polymer/colloid duality of microgel suspensions. Annu. Rev. Phys. Chem.2012,6325-6343.
    [51]Mei Q.S., Lu K. Melting and superheating of crystalline solids:From bulk to nanocrystals. Prog. Mater. Sci.2007,52(8):1175-1262.
    [52]Bazin G., Zhu X.X. Crystalline colloidal arrays from the self-assembly of polymer microspheres. Prog. Poly. Sci.2013,38(2):406-419.
    [1]Hu J., Zhou S., Sun Y., et al. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev.2012,41(11):4356-4378.
    [2]Shah R.K., Kim J.-W., Weitz D. Janus supraparticles by induced phase separation of nanoparticles in droplets. Adv. Mater.2009,21(19):1949-1953.
    [3]Seiffert S., Romanowsky M.B.,Weitz D.A. Janus microgels produced from functional precursor polymers. Langmuir 2010,26(18):14842-14847.
    [4]Lopez-Leon T., Ortega-Vinuesa J.L., Bastos-Gonza'lez D. Cationic and anionic poly(N-isopropyl acrylamide) based submicron gel particles electrokinetic properties and colloidal stability. J. Phys. Chem. B 2006,110(10):4629-4636.
    [5]Pelton R.H., Chibante P. Preparation of aqueous latices with N-isopropylacrylamide Colloid Surf. 1986,20,(3):247-256.
    [6]Stober W., Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J.Colloid Interf.Sci.1968,26(1):62-69.
    [7]丛海林曹.二氧化硅胶体晶体及其为模板的多孔材料Chemical Journal of Chinese Universities 2005,26(3):535-539.
    [8]Wang J., Hu Y., Deng R., et al. Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization. Lab Chip 2012,12(16):2795-2798.
    [9]Kim S.-H., Seon J.J., Yang S.-M. Optofluidic encapsulation of crystalline colloidal arrays into sperical membrane. J. Am. Chem. Soc.2008,130(18):6040-6046.
    [10]Kang J.-H., Reichmanis E. Low-threshold photon upconversion capsules obtained by photo induced interfacial polymerization. Angew. Chem. Int. Ed.2012,51(47):11841-11844.
    [11]Kim S.-H. Jeon W.C., Hwang H., et al. Robust chirped photonic crystals created by controlled colloidal diffusion. Angew. Chem. Int. Ed.2011,50(49):11649-11653.
    [12]Kim S.-H. Hwang H., Lim C. H., et al. Packing of Emulsion Droplets:Structural and Functional Motifs for Multi-Cored Microcapsules. Adv. Funct. Mater.2011,21 (9):1608-1615.
    [13]Kim S.-H. Seon J.W., Yang S. M. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew. Chem. Int. Ed.2011,50(5): 1171-1174.
    [14]Hima K., Nagamanasa S.G., Ganapathy R. Confined glassy dynamics at grain boundaries in colloidal crystals. PNAS 2011,108 (28):11323-11326.
    [15]Yang H., Jiang P. Large-scale colloidal self-assembly by doctor blade coating. Langmuir 2010,26(16):13173-13182.
    [16]Fudouzi H., Xia Y. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003,19(23):9653-9660.
    [1]McGrath J. G., Bock R.D., Cathcart J. M., et al. Self-assembly of "paint-on" colloidal crystals using poly(styrene-co-N-isopropylacrylamide) spheres Chem. Mater.2007,19(7):1584-1591.
    [2]Karg M., Hellweg T., Paul M. Self-Assembly of Tunable Nanocrystal Superlattices Using Poly-(NIPAM) Spacers. Adv. Funct. Mater.2011,21(24):4668-4676.
    [3]Hu M., Chen J., Li Z. Y., et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev.2006,35(11):1084-1094.
    [4]Huang X., Jain P.K., El-Sayed I.H., et al. Gold nanoparticles:interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007,2(5):681-693.
    [5]Karg M., Jaber S., Hellweg T., et al. Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. Langmuir 2011,27(2):820-827.
    [6]Yang K., Xu H., Cheng L., Sun C. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater.2012,24(41):5586-5592.
    [7]Chang Y. T., Liao P.Y., Sheu H. S, etal. Near-infrared light-responsive intracellular drug and siRNA release using au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater.2012, 24(25):3309-3314.
    [8]Hribar K.C., Lee M.H., Lee D., et al. Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites. ACS Nano 2011,5(4):2948-2956.
    [9]Huang X., El-Sayed M. A. Gold nanoparticles:Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res.2010,1(1):13-28.
    [10]Tiwari P., Vig K., Dennis V., et al. Functionalized Gold nanoparticles and their biomedical applications. Nanomaterials 2011,1(1):31-63.
    [11]Yavuz M.S., Cheng Y, Chen J., et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater.2009,8(12):935-939.
    [12]Karg M., Pastoriza-Santos I., Perez-Juste J., et al. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 2007,3(7):1222-1229.
    [13]Alvarez-Puebla R. A., Contreras-Cceres R., Pastoriza-Santos I., et al. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew. Chem. Int. Ed.2009,48(1):138-143.
    [14]Karg M., Hellweg T., Mulvaney P. Self-Assembly of Tunable Nanocrystal Superlattices Using Poly-(NIPAM) Spacers. Adv. Funct. Mater.2011,21(24):4668-4676.
    [15]Braun V., Enustun J.T. Coagulation of colloidal gold. J.Am.Chem.Soc.1963,85(21):3317-3328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700