用户名: 密码: 验证码:
反应器颗粒技术聚丙烯接枝物制备、性能及应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文多孔的反应器颗粒技术聚丙烯为接枝基体,以过氧化苯甲酰为引发剂,通过悬浮接枝聚合与固相接枝聚合的方法,制备出具有高接枝率及高接枝效率的聚丙烯接枝物。详细探讨了水相悬浮接枝聚合的反应特点及反应机理,研究了聚丙烯接枝物在与极性聚合物共混、与无机粒子复合方面的应用。主要研究结果如下:
     1,对于水相悬浮接枝聚甲基丙烯酸甲酯体系,接枝率随着反应体系之中单体含量的增多而逐渐增大。当以甲基内烯酸甲酯为单一接枝单体时,接枝率最高能够达到13.6%;接枝效率随着反应体系之中单体含量的增多而逐渐减小,并可控制在61.8%到78.0%之间。第二单体苯乙烯的加入能够提高水相悬浮接枝聚合的接枝率,最高可达24.5%。随着反应体系之中引发剂含量的增加,接枝率先增大而后开始降低,接枝效率却逐渐降低。经过丙酮抽提之后的接枝物的傅立叶红外谱图中1734cm-1处的羰基的特征吸收峰明显,说明甲基丙烯酸甲酯成功接枝到聚丙烯分子链上。随着接枝率的升高,接枝物的熔融指数呈现出先升高后降低的趋势,相对结晶度与熔点则逐渐降低,剪切黏度逐渐升高。扫描电子显微镜显示接枝链能够渗透到聚丙烯的微孔之重,包围在聚丙烯次级粒子周围;透射电子显微镜显示熔融密炼之后的接枝物中,聚甲基丙烯酸甲酯相仍然能够良好分散在聚丙烯之中,直径小于1微米。接枝物在聚丙烯与丙烯腈-苯乙烯-丙烯酸酯共聚物的共混中能够起到大分子相容剂的作用。
     2,对于水相悬浮接枝聚丙烯酸丁酯体系,接枝率随反应体系中单体含量的增多逐渐升高到32.6%;与此同时接枝效率逐渐从86.1%下降到78.3%。随着引发剂增多,接枝率起初升高明显,之后逐渐平缓;而接枝效率则逐渐下降。交联剂三乙二醇二丙烯酸酯的加入能够提高接枝率,最高到36.3%。接枝率小于7.4%时,熔融指数随接枝率的升高而升高,之后随着接枝率的升高,熔融指数开始迅速降低。随着交联剂的增多,熔融指数逐渐下降。随着接枝率的升高,接枝物的相对结晶度与熔点都逐渐降低。动态力学热分析显示接枝物的储能模量随着接枝率的升高而逐渐降低,力学损耗显示聚丙烯酸丁酯与聚丙烯的玻璃化转变温度分别为-50℃与10℃,交联剂的加入使得聚丙烯酸丁酯与聚丙烯的玻璃化转变温度相互靠近。随着接枝率的升高,接触角从纯PP的102.6°逐渐下降95.1°。透射电子显微镜显示聚丙烯酸丁酯能够以直径大约500纳米均匀分散在聚丙烯基体之中,交联剂三乙二醇二丙烯酸酯的加入使得聚丙烯与聚丙烯酸丁酯两相逐渐融合,无明显的两相结构。
     3,对于固相接枝聚(苯乙烯-马来酸酐)接枝物制备二氧化硅复合物体系,复合物中二氧化硅含量与溶胶-凝胶反应中正硅酸乙酯的含量成正比。通过电子显微镜观察,以接枝物为基体制备的二氧化硅复合物中,二氧化硅以10纳米至20纳米的尺寸均匀分散在聚丙烯中;以纯聚丙烯为基体时,二氧化硅则团聚结块。纳米二氧化硅的加入,降低了聚丙烯的结晶尺寸,提高了结晶速率,促进了β型结晶的生成。当纳米二氧化硅含量超过4.39wt%时,可见光透过率可达85%以上。纳米二氧化硅对聚丙烯的机械性能的提高作用明显。
A facile, green, versatile protocol to prepare poly(propylene) based grafting copolymer with high grafting percentage (GP) and grafting efficiency (GE), in which the porous poly(propylene) particles produced by Reactor Granule Technology as reaction bed, was developed using water-solid phase suspension grafting or solid phase grafting. The reaction mechanism of water-solid phase suspension grafting was discussed, and so does the application of grafting copolymer in poly(propylene) blends. The main research results were listed as followed:
     1. In the system of water-solid phase suspension grafting of methyl methacrylate (MMA), grafting percentage increased with the increasing of the monomer ratios and which could reach13.6%. While the grafting efficiency decreased from78.0%to61.8%as the monomer ratio increased. A second monomer styrene improved grafting percentage up to24.5%. Along with the increasing of initiator, GP first increased and then decreased, and GE always decreased. FTIR spectra of the samples after extraction by acetone demonstrated that PMMA was successfully grafted onto poly(propylene). TEM micrographs demonstrated PMMA domains distributed in PP with sizes ranging less than1μm. It was found that PP-g-PMMA was effective in improving the compatibility of PP and acrylonitrile-styrene-acrylate blends.
     2. In the system of water-solid phase suspension grafting of butyl acrylate (BA), GP could reach to32.6%along with the increasing of monomer ratio, and GE would decrease from86.1%to78.3%at the same time. The crosslinking agent, triethylene glycol diacrylate (TEGDA), could improve GP as high as36.3%. Melt flow index (MFI) of the grafting compolymer would increase as the increasing of GP when it was less than7.4%, and a further increasing of GP would decrease MFI rapidly. Dynamic mechanical thermal analysis showed that the storage modulus decreased as the increasing of GP. The contact angle demonstrated that the grafting chains could improve the polarity of PP. TEM photos showed that the PBA domains distributed in PP with sizes about500nm.
     3. In the system of PP/silica nanocomposites using solid phase grafting of styrene and maleic anhydride as reaction loci, the silica content increased with the increasing of tetraethyl orthosilicate (TEOS). SEM and TEM micrographs demonstrated that silica nanoparticles would fine disperse in PP with the diameter of10-20nm. The DSC tests showed that the existence of silica nanoparticles accelerated the generation of PP crystal nucleus during cooling; meanwhile, it urged generation of double melting peaks under rapid cooling which demonstrated β-form crystalline and recrystallization occurred in the heat-cool-heat cycles. The transmittance of visible light could increase from80-85%to87.5-90%in the case of neat PP and silica content of4.39wt%, respectively. And the mechanical properties of the composites were improved significantly.
引文
[1]方拍容.等规聚丙烯纤维生产的展望[J].化学世界,1964,1:1-4
    [2]张兴英,程珏,赵京波.高分子化学[M].北京:化学工业出版社,2006.167-169
    [3]潘祖仁.高分子化学[M].北京:化学工业出版社,2003.163-171
    [4]维基百科编者.聚丙烯[G/OL].维基百科,2013 (2013{CURRENTMONTH}11) [2013-02-20]. http://en.wikipedia.org/w/index.php?title=Polypropylene&oldid=537702627
    [5]李玉芳,伍小明.我国聚丙烯的供需现状及发展前景[J].塑料制造,2011,Z1:72-76
    [6]Chen Q, Xue H, Lin J. Preparation of polypropylene-graft-cardanol by reactive extrusion and its composite material with bamboo powder[J]. J. Appl. Polym. Sci,2010,115: 1160-1167
    [7]Han D, Jang J, Cho B, Kim B, Seo G. Melt complex viscosity and molecular weights for homo-polypropylene modified by grafting bifunctional monomers under electron beam irradiation[J]. Polymer 2006,47:6592-6597
    [8]原京龙,赵伟,王丽.聚丙烯改性研究进展[J].塑料科技,2008,36:94-97
    [9]曾舟华,李付亚,傅和青.聚丙烯物理改性研究进展[J].塑料科技,2007,35:80-83
    [10]赵建保,聚丙烯的物理改性[J].内蒙古石油化工,2009,17:51-52
    [11]张英杰,梁基照.聚丙烯的物理改性[J].上海塑料,2007,3:9-12
    [12]刘犇.等规聚丙烯/顺丁橡胶的结构和性能的研究[D].天津:天津大学,2011
    [13]孙辉.等规聚丙烯/顺丁橡胶共混物的结构及其性能研究[D].天津:天津大学,2006
    [14]陈华鑫,黄利,蔡思琦,张桂珍,俞国华,翟金平.聚丙烯/粉末丁苯橡胶动态流变特性研究[J].现代塑料加工应用,2009,21:31-33
    [1 5]刘建清.丁睛橡胶/聚丙烯热塑性弹性体的制备及形态、结构、性能研究[D].哈尔滨:哈尔滨工程大学,2008
    [16]曹民干,乔雷.聚丙烯/聚乙烯共混合金中聚乙烯的含量对性能的影响[J].绝缘材料,2003.6:25-27
    [17]刘长生.尼龙6/聚丙烯共混体系研究进展[J].湖北化工,2001,2:1-4
    [18]马桂秋,娄杰,张丁浩,盛京.显微镜图像分析研究聚丙烯/尼龙1010共混物相结构及其性能[J].高分子学报,2008,1:1 8-26
    [19]梁栋.剪切力场下聚丙烯/尼龙6原位微纤共混体系结构、形态与性能的研究[D].成都:四川大学,2007
    [20]张群安,史政海.弹性体增韧聚丙烯兆混体系的研究[J].化工新型材料,2010,38:126-128
    [21]杨明山.聚丙烯改性及配方[M].北京:化学工业出版社,2009.127-133
    [22]Lin Y, Chen H, Chan C, Wu J. The toughening mechanism of polypropylene/calcium carbonate nanocomposites[J]. Polymer 2010,51:3277-3284
    [23]Kamal M, Sharma C. S., Upadhyaya P, Verma V, Pandey K. N., Kumar V, Agrawal D. D. Calcium Carbonate (CaCO3) Nanoparticle Filled Polypropylene:Effect of Particle Surface Treatment on Mechanical, Thermal, and Morphological Performance of Composites[J]. J. Appl. Polym. Sci,2012,124:2649-2656
    [24]A. Ariffin, A. S. Mansor, S. S. Jikan, Z. A. Mohd. Ishak. Mechanical, Morphological, and Thermal Properties of Polypropylene/Kaolin Composite. Part I. The Effects of Surface-Treated Kaolin and Processing Enhancement[J]. J. Appl. Polym. Sci.2008,108: 3901-3916
    [25]Dou Q, Meng M, Li L. Effect of pimelic acid treatment on the crystallization, morphology, and mechanical properties of isotactic polypropylene/mica composites[J]. Polym. Compos. 2010.3:1572-1584
    [26]Ndiaye D, Matuana L. M., Morlat-Therias S, Vidal L, Tidjani A, Gardette J. Thermal and Mechanical Properties of Polypropylene/Wood-Flour Composites[J]. J. Appl. Polym. Sci. 2011,19:3321-3328
    [27]Yang H, Kim H, Park H, Lee B, Hwang T. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites[J]. Compos. Struct.2007,77:45-55
    [28]Wang K, Guo M, Zhao D, Zhang Q, Du R, Fu Q, Dong X, Han C. Facilitating transcrystallization of polypropylene/glass fiber composites by imposed shear during injection molding[J]. Polymer.2006,47:8374-8379
    [29]Bianying W, Binbin J. Crystallization behaviors and mechanical performance of polypropylene/tetrapod-shaped zinc oxide whisker composites[J]. J. Appl. Polym. Sci. 2012,124:138-144
    [30]Gao Y, Ren K, Ning N, Fu Q, Wang K, Zhang Q. Stretching-induced interfacial crystalline structures and relevant mechanical properties in melt-spun polypropylene/whisker composite fibers[J]. Polymer.2012,53:2792-2801
    [31]赵敏改性聚丙烯新材料[M].北京:化学工业出版社,2010.131-142
    [32]查辉,王勇.不同溴阻燃剂对聚丙烯阻燃性能的影响[J].消防科学与技术,2012,31:981-984
    [33]邬素华,王丹.无卤阻燃聚丙烯的制备与性能研究[J].塑料科技,2013,41:54-57
    [34]陈莹.聚丙烯/Al(OH)3/Mg(OH)2/ZB阻燃复合材料的制备及其性能研究[D].广州:华南理工大学,2011
    [35]李小吉,李秀云,马寒冰,徐康林,唐安斌.磷-硅阻燃剂在膨胀型阻燃聚丙烯中的应用研究[J].中国塑料,2012,26:83-87
    [36]辛菲,王向东,许国志,蒋玄,安传涛.多壁碳纳米管对聚丙烯膨胀阻燃体系阻燃性能的影响[J].塑料,2012,41:64-68
    [37]周磊,郑来云,李冬泽,石坚,杨宇宁.PP纳米复合材料阻燃性研究[J].塑料工业,2012,40:103-106
    [38]杨明山.聚丙烯改性及配方[M].北京:化学工业出版社,2009.312-314
    [39]杨明山,李林楷.塑料改性工艺\配方与应用[M].北京:化学工业出版社,2006.392-393
    [40]倪焕春,刘娅.改性TiO2纳米粒子对聚丙烯抗紫外光老化及结晶性能的影响[J].化学研究与应用,2009,21:1404-1407
    [41]Tenma M, Mieda N, Takamatsu S, Yamaguchi M. Structure and Properties for Transparent Polypropylene Containing Sorbitol-Based Clarifier[J]. J. Polym. Sci. Pol. Phys.2008,46: 41-47
    [42]鲁圣军,何敏,张敏敏,张天水,于杰.纳米SiO2及硅溶胶成核剂对透明聚丙烯结构与性能的影响[J].高分子材料科学与工程,2009,25:61-64
    [43]曹新鑫,霍国洋,贺超峰,孙晓晴,曾桂华,周会鸽.聚丙烯抗静电改性的研究进展[J].塑料助剂,2012,5,6-9
    [44]祖立武,张晓宇,王稚珍,薛守成,徐米双,张小舟.聚丙烯接枝苯乙烯磺酸-聚苯胺抗静电剂的制备和性能[J].材料研究学报,2012,26:610-614
    [45]王雅珍,李栋,朱清梅,庞向阳,阮诗平,杨雪静.聚丙烯抗静电剂的研究现状及发展趋势[J].塑料工业,2008,36:11-15
    [46]金亚旭,于晓璞,田玉明,杨雯.钛酸钾晶须/聚丙烯导热抗静电复合材料的制备与性能[J].材料热处理学报,2012,33:35-39
    [47]王志广,马季玫,沈新元.添加纳米粒子的抗菌抗静电聚丙烯纤维研制——纳米抗菌抗静电粒子的表面修饰及纺丝[J].产业用纺织品,2007,4:13-15
    [48]李杰,张师军,初立秋,邹浩,张丽英PHMG/MMT复合抗菌剂改性聚丙烯[J].合成树脂及塑料,2012,29:9-12
    [49]李玉芳,王建荣,张悦,刘斌.纳米载银沸石抗菌剂/聚丙烯复合材料研究[J].塑料工业,2012,40:71-73
    [50]宋心琦.茂金属催化剂——聚烯烃新技术的基础[J].化学教学,2011,4:3-6
    [51]Fan W, Leclerc M, Waymouth R. Alternating Stereospecific Copolymerization of Ethylene and Propylene with Metallocene Catalysts[J]. J. Am. Chem. Soc.2001,123:9555-9563
    [52]Wondimagegn T, Wang D, Razavi A, Ziegler T. In Silico Design of Cl-and Cs-Symmetric Fluorenyl-Based Metallocene Catalysts for the Synthesis of High-Molecular-Weight Polymers from Ethylene/Propylene Copolymerization[J]. Organometallics.2009,28: 1383-1390
    [53]Nifant'ev I, Ivchenko P, Bagrov V, Churakov A, Chevalier R. Novel Effective Racemoselective Method for the Synthesis of ansa-Zirconocenes and Its Use for the Preparation of C2-Symmetric Complexes Based on 2-Methyl-4-aryltetrahydro(s)indacene as Catalysts for Isotactic Propylene Polymerization and Ethylene-Propylene Copolymerization[J]. Organometallics.2012,31:4340-4348
    [54]Lu L, Niu H, Dong J, Zhao X, Hu X. Ethylene/Propylene Copolymerization Over Three Conventional C2-Symmetric Metallocene Catalysts:Correlation Between Catalyst Configuration and Copolymer Microstructure[J]. J. Appl. Polym. Sci.2010,118: 3218-3226
    [55]马运兰,刘玉明.氯化聚丙烯的生产技术进展、市场前景及发展建议[J].塑料制造,2008.7:70-73
    [56]Romania F, Corrieri R, Braga V, Ciardelli F. Monitoring the chemical crosslinking of propylene polymers through rheology[J]. Polymer.2002,43:1115-1131
    [57]Busfield W. A modification of the properties of isotactic polypropylene film by γ-radiation in the presence of butadiene[J]. Eur. Polym. J.1981,17:333-340
    [58]Kubo J, Otsuhata K, Ikeda S, Seguchi T. Electron-induced crosslinking of polypropylene with the addition of hydrogen-donating hydrocarbons[J]. J. Appl. Polym. Sci.1997,64: 311-319
    [59]Gloor P, Tang Y, Kostanska A, Hamielec A. Chemical modification of polyolefins by free radical mechanisms:a modelling and experimental study of simultaneous random scission, branching and crosslinking[J]. Polymer.1994,35:1012-1030
    [60]Black R, Lyons B. Effect of High-Energy Radiation on Polypropylene[J]. Nature.1957, 180:1346-1347
    [61]Black R, Lyons B. Radiation-Induced Changes in the Structure of Polypropylene[J]. Proc. R. Soc. London, Ser. A.1959,253:322-330
    [62]Marans N, Zapas L. Molecular weight changes in irradiated polypropylene[J]. J. Appl. Polym. Sci.1967,11:705-718
    [63]Borsig E, Fiedlerova A, Lazar M. Efficiency of chemical cross-linking of polypropylene[J]. J. Macromol. Sci. Chem.1981, A16:513-528
    [64]Chodak I, Fabianova K, Borsig E, Lazar M. Crosslinking of polypropylene in the presence of polyfunctional monomers[J]. Angew. Makromol. Chem.1978,69:107-115
    [65]Beltraan M, Mijangos C. Silane grafting and moisture crosslinking of polypropylene[J]. Polym. Eng. Sci.2000,40:1534-1541
    [66]Liu N, Yao G, Huang H. Influences of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes[J]. Polymer.2000,41: 4537-4542
    [67]Chen Q, Xue H, Lin J. Preparation of polypropylene-graft-cardanol by reactive extrusion and its composite material with bamboo powder[J]. J. Appl. Polym. Sci.2010,115, 1160-1167
    [68]Han D, Jang J, Cho B, Kim B, Seo G. Melt complex viscosity and molecular weights for homo-polypropylene modified by grafting bifunctional monomers under electron beam irradiation[J]. Polymer.2006,47:6592-6597
    [69]Gaylord N, Mishra M. Nondegradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides[J]. J. Polym. Sci. Polym. Lett. Ed.1983,21: 23-30
    [70]Chiang W, Hu C. The improvements in flame retardance and mechanical properties of polypropylene/FR blends by acrylic acid graft copolymerization[J]. Eur. Polym. J.1996, 32:385-390
    [71]Samay G, Nagy T, White J. Grafting maleic anhydride and comonomers onto polyethylene[J]. J. Appl. Polym. Sci.1995,56:1423-1433
    [72]Al-Malaika S, Eddiyanto E. Reactive processing of polymers:Effect of bifunctional and tri-functional comonomers on melt grafting of glycidyl methacrylate onto polypropylene[J]. Polym. Degrad. Stab.2010,95:353-362
    [73]Li S, Xiao M, Wei D, Xiao H, Hua F, Zheng A. The melt grafting preparation and rheological characterization of long chain branching polypropylene[J]. Polymer.2009,50: 6121-6128
    [74]Zhao J, Shi Q, Yin L, Luan S, Shi H, Song L, Yin J, Stagnaro P. Polypropylene modified with 2-hydroxyethyl acrylate-g-2-methacryloyloxyethyl phosphorycholine and its hemocompatibility[J].Appl. Surf. Sci.2010,256:7071-7076
    [75]Yao Z, Lu Z, Zhao X, Qu B, Shen Z, Cao K. Synthesis and characterization of high-density polypropylene-grafted polyethylene via a macromolecular reaction and its rheological behavior[J]. J. Appl. Polym. Sci.2009,111:2553-2561
    [76]Ratzsch M, Arnold M, Borsig E, Bucka H, Reichelt N. Radical reactions on polypropylene in the solid state[J]. Prog. Polym. Sci.2002,27:1195-1282
    [77]Picchioni F, Goossens J, van Duin M, Magusin P. Solid-state modification of isotactic polypropylene (iPP) via grafting of styrene. Ⅰ. Polymerization experiments[J]. J. Appl. Polym. Sci.2003,89:3279-3291
    [78]Yuhai G, Jianchun Z, Meiwu S. Surface graft copolymerization of acrylic acid onto corona-treated poly(ethylene terephthalate) fabric[J]. J. Appl. Polym. Sci.1999,73: 1161-1164
    [79]Song T, Sun YF, Yang WT. Study on surface grafting polymerization of CPP/AA system with two-step method[J]. Acta Polym. Sin.2002,5:632-635
    [80]El-Sawy N, Hegazy E., Rabie A, Hamed A, Miligy G. Radiation-initiated graft copolymerization of acrylic acid and vinyl acetate onto LDPE films in two individual steps[J]. Polym. Int.1993,32:131-135
    [81]Gancel F, Montastruc L, Liu T, Zhao L, Nikov I. Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles[J]. Process. Biochem.2009,44: 975-978
    [82]Mehta I, Sood D, Misra B. Grafting onto polypropylene Ⅱ. Solvent effect on graft copolymerization of acrylonitrile by preirradiation method[J]. J. Polym. Sci. Part A: Polym. Chem.1989,27:53-62
    [83]Wirsem A, Albertsson AC. Graft polymerization of arcylamide onto LLDPE film by electron beam pre-irradiation in air or argon. Ⅰ. Influence of dose, grafting temperature, and monomer concentration[J]. J. Polym. Sci. Part A:Polym. Chem.1995,33:2039-2047
    [84]Estrada-Villegas GM, Macossay J, Bucio E. γ-Ray-induced grafting of DMAEMA and AAc onto PP by two step method[J]. J. Radioanal. Nucl. Chem.2010,284:131-135
    [85]Garnett J, Ng L, Viengkhou Visay. Grafting of methyl methacrylate to cellulose and polypropylene with UV and ionising radiation in the presence of additives including CT complexes[J]. Radiat. Phys. Chem.1999,56:387-403
    [86]Zhou J, Li W, Gu J, Yu H, Tang Z, Wei X. Development of a novel RAFT-UV grafting technique to modify polypropylene membrane used for NOM removal[J]. Sep. Purif. Technol.2010,71:233-240
    [87]Yusof A, Ulbricht M. Polypropylene-based membrane adsorbers via photo-initiated graft copolymerization:Optimizing separation performance by preparation conditions[J]. J. Membrane. Sci.2008,311:294-305
    [88]Zhao Y, Zhu X, Wee K, Bai R. Achieving Highly Effective Non-biofouling Performance for Polypropylene Membranes Modified by UV-Induced Surface Graft Polymerization of Two Oppositely Charged Monomers[J]. J. Phys. Chem. B.2010,114:2422-2429
    [89]Zhou J, Li W, Gu J, Yu H, Tang Z, Wei X. Development of a novel RAFT-UV grafting technique to modify polypropylene membrane used for NOM removal[J]. Sep. Purif. Technol.2010,71:233-240
    [90]Zanini S, Riccardi C, Grimoldi E, Colombo C, Villa A, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia S. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene films:chemical characterization and evaluation of the protein adsorption[J]. J. Colloid. Interf. Sci.2010,341:53-58
    [91]Hua X, Zhang T, Ren J, Zhang Z, Ji Z, Jiang X, Ling J, Gu N. A facile approach to modify polypropylene flakes combining O2-plasma treatment and graft polymerization of 1-lactic acid[J]. Colloids. Surf. A.2010,369:128-135
    [92]Saxena S, Ray A, Gupta B. Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma[J]. J. Appl. Polym. Sci.2010,116:2884-2892
    [93]Li Y, Xie X, Guo B. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene[J]. Polymer.2001,42:3419-3425
    [94]Shi D, Yang J, Yao Z, Wang Y, Huang H, Jing W, Yin J, Costa G Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion:mechanism of melt grafting[J]. Polymer.2001,42:5549-5557
    [95]De Roover B, Sclavons M, Carlier V, Devaux J, Legras R, Momtaz A. Molecular characterization of maleic anhydride-functionalized polypropylene[J]. J. Polym. Sci. Part A:Polym. Chem.1995,33:829-842
    [96]Chen H, Zhu Y, Zhang Y, Xu J. Synthesis and characterization of a macromolecular surface modifier for polypropylene[J]. J. Appl. Polym. Sci.2006,102:3413-3419
    [97]Liu C, Wang Q. Solid-phase grafting of hydroxymethyl acrylamide onto polypropylene through pan milling[J]. J. Appl. Polym. Sci.2000,78:2191-2197
    [98]李乔钓,李春成,钱菊玲,张郑军,梁宝栋,潘恩黎.聚丙烯悬浮法接枝苯乙烯的研究[J].合成树脂及塑料,1996,13:7-10
    [99]徐春,吴靖,周达飞.悬浮法制得PP-g-HEMA结晶性能的研究[J].高分子材料科学与工程,1999,15:121-124
    [100]邬润德,童筱莉,杨正龙.悬浮溶胀法合成接枝聚丙烯[J].中国塑料,2002,16:62-66
    [101]费建奇,忻海.聚丙烯水相悬浮溶胀接枝法接枝苯乙烯[J].石油化工,2006,35:638-642
    [102]刘长生,王琪.磨盘碾磨聚丙烯粒度分布与接枝率的研究[J].高分子学报,2000,2:219-223
    [103]Patel A, Brahmbhatt R, Rao P, Rao K, Devi S. Solid phase grafting of various monomers on hydroperoxidized polypropylene[J]. Eur. Polym. J.2000,36:2477-2484
    [104]Wang J, Wang D, Du W, Zou E, Dong Q. Synthesis of functional polypropylene via solid-phase grafting soft vinyl monomer and its mechanism[J]. J. Appl. Polym. Sci.2009, 113:1803-1810
    [105]Picchioni F, Goossens J, van Duin M. Solid-state modification of polypropylene (PP): Grafting of styrene on atactic PP[J]. Macromol. Symp.2001,176:245-263
    [106]Kim T, Lee N. Melt-Grafting of Maleimides Having Hindered Phenol Group onto Polypropylene[J]. Korean Chem. Soc.2003,24:1809-1813
    [107]Moore EP Jr. The Rebirth of Polypropylene:Supported Catalysts:How the People of the Montedison Laboratories Revolutionized the Pp Industry; Hanser Gardner Publications: Munich,1998.
    [108]Galli P, Haylock J. Advances in Ziegler-Natta polymerization-unique polyolefin copolymers, alloys and blends made directly in the reactor[J]. Macromol. Chem. Macromol. Symp.1992,63:19-25
    [109]Wu C, Zhang M, Rong M, Friedrich K. Tensile performance improvement of low nanoparticles filled-polypropylene composites[J]. Compos. Sci. Technol.2002,62: 1327-1340
    [110]Pan Y, Ruan J, Zhou D. Solid-phase grafting of glycidyl methacrylate onto polypropylene[J]. J. Appl. Polym. Sci.1997,65:1905-1912
    [111]Brahmbhatt R, Patel A, Jain R, Devi S. Solid phase grafting of 4-vinylpyridine onto isotactic polypropylene[J]. Eur. Polym. J.1999,35:1695-1701
    [112]Sun F, Fu Z, Deng Q, Fan Z. Solid-State Graft Polymerization of Styrene in Spherical Polypropylene Granules in the Presence of TEMPO[J]. J. Appl. Polym. Sci.2009,112: 275-282
    [113]Zhang Y, Fan Z, Liu Z, Zhang Y, Feng L. Solid phase graft polymerization of styrene in spherical polypropylene granules[J]. Acta Polym. Sin.2002,4:432-437
    [114]Fu Z, Xu J, Jiang G, Zhang Y, Fan Z. Influence of the reaction conditions on the solid-state graft copolymerization of methyl methacrylate and polyethylene/polypropylene in situ alloys[J].J. Appl. Polym. Sci.2005,98:195-202
    [115]Zhang L, Fan Z, Deng Q, Fu Z. Gel Formed During the Solid-State Graft Copolymerization of Styrene and Spherical Polypropylene Granules. I. Influence of Reaction Conditions on the Gelation and Its Mechanism[J]. J. Appl. Polym. Sci.2007, 104:3682-3687
    [116]Zhang Y, Fan Z, Wu B, Xu J, Wang Q. Grafting of peroxide-initiated maleic anhydride on spherical PE/PP in-reactor blend granules[J]. Chinese J. Polym. Sci.2004,22:231-238
    [117]Deng Q, Fu Z, Sun F, Xu J, Fan Z. Influence of an Annealing Treatment on the Solid-State Grafting of Styrene onto Spherical Isotactic Polypropylene Granules[J]. J. Appl. Polym. Sci.2008,110:1990-1996
    [1]Robin J. Boyer C, Boutevin B, Loubat C. Synthesis and properties of polyolefin graft copolymers by a grafting "onto" reactive process[J]. Polymer.2008.49: 4519-4528
    [2]Dokolas P, Qiao G, Solomon D. Graft copolymerization studies. III. Methyl methacrylate onto polypropylene and polyethylene terephthalate[J]. J. Appl. Polym. Sci.2002,83:898-915
    [3]Zhang L, Fan G, Guo C, Dong J, Hu Y, Huang M. Synthesis of polypropylene graft copolymers from a hydroxyl-groups-containing polypropylene precursor via atom-transfer radical polymerization[J]. Polym. Int.2006,55:675-680
    [4]Patel A, Brahmbhatt R, Rao P, Rao K, Devi S. Solid phase grafting of various monomers on hydroperoxidized polypropylene [J]. Ear. Polym.J.2000,36: 2477-2484
    [5]Du J, Niu H, Dong J, Dong X, Han C. Self-Similar Growth of Polyolefin Alloy Particles in a Single Granule Multi-Catalyst Reactor[J]. Adv. Mater.2008,20: 2914-2917
    [61 邓清田.苯乙烯在聚内烯粒子中的固相接枝聚合及其体聚集态结构对反应的调控作用[D].杭州:浙江大学,2008
    [7]Wang J, Wang D. Du W, Zou E. Dong Q. Synthesis of functional polypropylene via solid-phase grafting soft vinyl monomer and its mechanism[J].J. Appl. Polym. Sci.2009,113:1803-1810
    [8]Wang D, Xie X, Jow J, Chen H, Lai S. Styrene-assisted melt free-radical grafting of pentaerythritol triacrylate onto polypropylene and its crystallization behavior [J].J. Appl. Polym. Sci.2008,108:1737-1743
    [9]Luo Y, Liu X. Reversible addition-fragmentation transfer (RAFT) copolymerization of methyl methacrylate and styrene in miniemulsion[J].J. Polym. Sci. Pol. Chem.2004,42:6248-6258
    [10]Zhang L, Fan Z. Deng Q. Fu Z. Gel formed during the solid-state graft copolymerization of styrene and spherical polypropylene granules. I. Influence of reaction conditions on the gelation and its mechanism [J].J. Appl. Polym. Sci. 2007,104:3682-3687
    [11]Collar E, Laguna O, Areso S, Garcia-Martinez J. Succinyl fluorescein grafted atactic polypropylene as an interface modifier in polypropylene/talc composites:a thermal study under dynamic conditions[J]. Eur. Polym. J.2003, 39:157-163
    [12]Dudic D, Djokovic V, Kostoski D. The high temperature secondary crystallisation of aged isotactic polypropylene [J]. Polym. Test.2004,23: 621-627
    [1]温变英,吴刚.浅析聚合物共混研究中的哲学原理[J].科学技术与辩证法,2001,18:26-28
    [2]邓友娥,章文贡.动态机械热分析技术在高聚物性能研究中的应用[J].实验室研究与探索.2002,21:38-30
    [3]许建中,许晨.动态机械热分析技术及其在高分子材料中的表征应用[J].化学工程与装备.2008,6:22-26
    [4]Liu X, Wu Q. PP/clay nanocomposites by grafting-melt intercalation^]. Polymer.200142:100013-10019
    [5]Chow W, Mohd Ishak Z, Karger-Kocsis J, Apostolovc A, Ishiaku U. Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded poly amide 6/polypropylene/organoclay nanocomposites[J]. Polymer.2003,44:7427-7440
    [6]Vladimirov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D. Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties [J]. Compos. Sci. Technol. 2006,66:2935-2944
    [7]Lohse D, Datta S, Kresge E. Graft copolymer compatibilizers for blends of polypropylene and ethylene-propylene copolymers[J]. Macromolecules.1991, 24:561-566
    [8]江学良,张勇,张隐西.动态固化聚丙烯P环氧树脂共混物的研究[J].高分子学报.2004,4:490-494
    [1]Jancar J, Dibenedetto A. The mechanical properties of ternary composites of polypropylene with inorganic fillers and elastomer inclusions [J]. J. Mater. Sci. 1994,29:4651-4658
    [2]Coutinho F, Costa T. Performance of polypropylene-wood fiber composites [J]. Polym. Test.1999,18:581-587
    [3]Premphet K, Horanont P. Phase structure of ternary polypropylene/elastomer/filler composites:effect of elastomer polarity [J]. Polymer.2000,41:9283-9290
    [4]Weon J, Sue H. Mechanical properties of talc-and CaCO3-reinforced high-crystallinity polypropylene composites[J]. J. Mater. Sci.2006,41: 2291-2300
    [5]Du B, Guo Z, Song P, Liu H, Fang Z, Wu Y. Flame retardant mechanism of organo-bentonite inpolypropylene[J]. Appl. Clay. Sci.2009,45:178-184
    [6]Mareri P, Bastide S, Binda N, Crespy A. Mechanical behaviour of polypropylene composites containing fine mineral filler:Effect of filler surface treatment[J]. Compos. Sci. Technol.1998,58:747-752
    [7]Zou H, Wu S, Shen J. Polymer/Silica Nanocomposites:Preparation, Characterization, Properties, and Applications[J]. Chem. Rev.2008,108: 3893-3957
    [8]Kaminsky W, Funck A, Wiemann K. Nanocomposites by In Situ Polymerization of Olefins with Metallocene Catalysts[J]. Macromol. Symp. 2006,239:1-6
    [9]Rong M, Zhang M, Pan S, Lehmann B, Friedrich K. Analysis of the interfacial interactions in polypropylene/silica nanocomposites[J]. Polym. Int.2004,53: 176-183
    [10]Elias L, Fenouillot F, Majeste J, Cassagnau P. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles[J]. Polymer.2007, 48:6029-6040
    [11]Xu N, Zhou W, Shi W. Preparation and enhanced properties of poly (propylene)/silica-grafted-hyperbranched polyester nanocomposites [J]. Polym. Adv. Technol.2004,15:654-661
    [12]Bikiaris D, Papageorgiou G, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis G. Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles[J]. J. Appl Polym. Sci.2006,100:2684-2696
    [13]Nitta K, Asuka K, Liu B, Terano M. The effect of the addition of silica particles on linear spherulite growth rate of isotactic polypropylene and its explanation by lamellar cluster model[J]. Polymer.2006,47:6457-6463
    [14]Zoukrami F, Haddaoui N, Vanzeveren C, Sclavons M, Devaux J. Effect of compatibilizer on the dispersion of untreated silica in a polypropylene matrix[J]. Polym. Int.2008,57:756-763
    [15]Zhou H, Rong M, Zhang M, Friedrich K. Effects of reactive compatibilization on the performance of nano-silica filled polypropylene composites[J]. J. Mater. Sci.2006,41:5767-5770
    [16]Uotila R, Hippi U, Paavola S, Seppala J. Compatibilization of PP/elastomer/microsilica composites with functionalized polyolefins:Effect on microstructure and mechanical properties [J]. Polymer.2005,46:7923-7930
    [17]Sclavons M, Franquinet P, Carlier V, Verfaillie G, Fallais I, Legras R, Laurent M, Thyrion F. Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy[J]. Polymer.2000,41:1989-1999
    [18]Bikiaris D, Vassiliou A, Pavlidou E, Karayannidis G. Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing[J]. Eur. Polym. J.2005,41:1965-1978
    [19]Jain S, Goossens H, Picchioni F, Magusin P, Mezari B, van Duin M. Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solid-state modification and sol-gel reactions[J]. Polymer.2005,46: 6666-6681
    [20]Jain S, Goossens H, van Duin M, Lemstra P. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene [J]. Polymer. 2005,46:8805-8818
    [21]Jain S, Goossens J, van Duin M. Synthesis, Characterization and Properties of (Vinyl Triethoxy Silane-grafted PP)/Silica Nanocomposites [J]. Macromol. Symp.2006,233:225-234
    [22]Jain S, Goossens J, Peters G, van Duin M, Lemstra P. Strong decrease in viscosity of nanoparticle -filled polymer melts through selective adsorption [J]. Soft. Matter.2008,4:1848-1854
    [23]Guldogan Y, Egri S, Rzaev ZMO, Piskin E. Comparison of maleic anhydride grafting onto powder and granular polypropylene in the melt by reactive extrusion[J]. J. Appl. Polym. Sci.2004,92:3675-3684
    [24]Zhao S, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene[J]. Polymer.2008,49:2745-2754
    [25]Whitney P, Zhu S. Differential scanning calorimetry of copolymer of isotactic polypropylene backbone with grafted poly(ethylene-co-propylene) branches[J]. J. Appl. Polym. Sci.2006,99:3380-3388
    [26]Marigo A, Marega C, Causin V, Ferrari P. Influence of thermal treatments, molecular weight, and molecular weight distribution on the crystallization of β-isotactic polypropylene[J]. J. Appl. Polym. Sci.2004,91:1008-1012
    [27]Bogoeva-Gaceva G, Janevski A, Grozdanov A. Crystallization and melting behavior of iPP studied by DSC[J]. J. Appl. Polym. Sci.1998,67:395-404
    [28]Vleeshouwers S. Simultaneous in-situ WAXS/SAXS and d.s.c. study of the recrystallization and melting behaviour of the a and β form of iPP[J]. Polymer. 1997,38:3213-3221
    [29]Varga J. Melting memory effect of the β-modification of polypropylene[J]. J. Therm. Anal.1986,31:165-172
    [30]Jones A, Aizlewood J, Beckett D. Crystalline forms of isotactic polypropylene[J]. Makromol. Chem.1964,75:134-158
    [31]Petraccone V, Guerra G, De Rosa C, Tuzi A. Extrapolation to the equilibrium melting temperature for isotactic polypropylene [J]. Macromolecules.1985,18: 813-814
    [32]Menyhard A, Gahleitner M, Varga J, Bernreitner K, Jaaskelainen P,Oysaed H, Pukanszky B. The influence of nucleus density on optical properties in nucleated isotactic polypropylene[J]. Eur. Polym. J.2009,45:3138-3148
    [33]Ko T, Ning P. Peroxide-catalyzed swell grafting of maleic anhydride onto polypropylene[J]. Polym. Eng. Sci.2000,40:1589-1595
    [34]Qian J, Cheng G, Zhang H, Xu Y. Preparation and characterization of polypropylene/silica nanocomposites by gamma irradiation via ultrafine blend[J]. J. Polym. Res.2011,18:409-417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700