用户名: 密码: 验证码:
聚丙烯腈纤维在沥青混合料路面中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善沥青混合料路面的路用性能,采用新材料、新设备、新工艺减少沥青路面的损坏,延长其使用寿命,是改造沥青路面工业落后技术现状的重要手段。业已证明聚丙烯腈纤维作为一种新型的沥青混合料添加材料,具有强度高,吸附性强、化学稳定性及分散性好等特点,可提高路面的高温抗变形能力和低温抗裂等性能,从而延长了路面使用寿命,具有广泛的应用前景。
     本文就聚丙烯腈纤维在沥青混合料中的应用做了如下系统研究:
     第一,首先借助扫描电子显微镜观察了聚丙烯腈纤维的微观形貌,聚丙烯腈纤维长度在6mm左右,直径在18μm左右,长度和粗细程度比较均匀,横截面近似为圆形,沿纤维纵向具有粗糙且明显的纹理,端部具有比较明显的“突起”。其次,通过吸油性试验、吸水性试验和耐高温性能试验分析了聚丙烯腈纤维与沥青混合料的适用性,表明聚丙烯腈纤维的吸油性良好、吸水性较小,并且在高温处理后,聚丙烯腈纤维的微观形貌、化学成分和力学性能基本没有发生变化,表现出了与沥青混合料之间良好的相容性。
     第二,通过改进的锥入度试验,弯曲梁流变试验和动态剪切流变试验,分析了聚丙烯腈纤维对基质沥青胶浆性能的影响。首先,纤维的添加有效地降低了基质沥青的温度敏感性,起到了增粘增稠的作用,并且剪切强度显著提高,有效地改善了沥青胶浆的高温性能;低温下,聚丙烯腈纤维沥青胶浆的蠕变劲度提高,抗温缩变形能力增强;动态剪切流变参数G*、δ、G′、G″、G*/sin δ与温度之间具有良好的相关性,聚丙烯腈纤维的添加提高了胶浆中弹性可恢复部分所占的比例,抗车辙因子G*/sinδ显著提高,有效地改善了胶浆的高温抗永久变形能力。其次,聚丙烯腈纤维三维随机地分布于沥青胶浆之中,利用傅里叶变换红外光谱分析仪分析得知纤维与沥青之间只是简单地物理吸附或缠绕,没有发生化学组分的变化。
     第三,通过TRLL、CPN和AAPA三种车辙试验研究发现,聚丙烯腈纤维之间以“桥接”和“搭连”等方式三维随机分布于混合料之中,起到增粘、稳定、加筋等作用,显著地改善了沥青混合料的高温抗车辙性能,而且TRLL与和AAPA车辙试验之间的相关性更好。通过简支梁低温弯曲试验发现,由于聚丙烯腈纤维的阻裂及应力分散作用,沥青混合料的低温抗裂性能得到改善。通过浸水马歇尔试验看到,由于聚丙烯腈纤维的增粘及减小空隙率的作用,纤维沥青混合料的水稳定性能显著提高。而且聚丙烯腈纤维对沥青混合料性能改善的最佳掺量为0.3%。
     第四,利用伯格斯模型研究了聚丙烯腈纤维沥青胶浆和纤维沥青混合料的粘弹特性,并得到了纤维沥青胶浆和纤维沥青混合料的伯格斯模型的拟合参数;通过试验证实伯格斯模型可以较好地描述纤维沥青胶浆和纤维沥青混合料的粘弹特性的力学行为。
     最后,通过试验段的铺筑,获得了较好的效果,并得到了聚丙烯腈纤维沥青混合料路面施工要求,与普通沥青混合料路面施工比较干拌时间需延长10s~15s,施工温度需提高10℃~15℃。
To improve road performance of asphalt mixture pavement, it is very important means that new materials, new equipments and new technology are used to reduce damages of asphalt pavement and prolong its life in the process of reforming backward technique of asphalt pavement. Polyacrylonitrile fiber as a new type of adding material has the characteristics of high strength, high absorption, chemical property stable and good dispersion. It can improve significantly high temperature resisting deformation and low temperature anti-cracking property to prolong the life of pavement. So polyacrylonitrile fiber has a good application prospect.
     This paper systemically studied the application of polyacrylonitrile fiber in asphalt mixture, the main content as follows:
     First, the morphology of polyacrylonitrile fiber was analyzed:the length and the thickness are relatively uniform, length about6mm, diameter about18μm. Its cross-section is approximated to be circular. The fiber along its length has rough and clear texture. The two ends of fiber have noticeable projections. Secondly, by oil absorbency test, water absorbency test and high temperature test, the suitability of the fiber and asphalt mixtures was analyzed. The results show that fibers have good oil absorbency and lower water absorbency. At220℃high temperature, the morphology, chemical composition and strength of polyacrylonitrile fiber remain hardly unchanged. This shows that the suitability between the fiber and asphalt mixtures is very good.
     Second, the influence of polyacrylonitrile fiber on performance of asphalt mortar was studied by cone penetration test, bending beam rheological test and dynamic shear rheological test. To start with, temperature sensitivity of asphalt mortar is reduced by adding fibers effectively. And fibers can play tackifying and thickening active roles in asphalt mortar. Simultaneously, the shear strength of asphalt mortar is increased clearly. So high temperature performance of asphalt mortar is improved effectively. At low temperatures, the strength and the resisting transformation of polyacrylonitrile fiber asphalt mortar are reinforced apparently. But the malleability of fiber asphalt mortar is reduced slightly. There are good relativity between rheological parameter G*、δ、G'、G"、G*/sinδ and the temperature. And the ratio of renewable elastic part of fiber asphalt mortar is increased by adding fibers. And rutting resistance factor G*/sin5of fiber asphalt mortar is raised clearly, this shows that rutting resistance performance at high temperature is improved obviously. By SEM and FTIR, it is discovered that fibers are randomly distributed throughout asphalt mortar, and physical absorption or binding happens in the interfaces between fibers and asphalt, and the chemical species of asphalt remain unchanged.
     Third, by three rutting tests of TRLL, CPN and AAPA, it is discovered that polyacrylonitrile fibers may improve rutting resistance performance of asphalt mixture at high temperature apparently. Polyacrylonitrile fibers distribute randomly in asphalt mixture by way of "bridging" and "the lap" and play tackifying, stabilizing and reinforcing roles.Tthere are good relativity between TRLL and AAPA. it is discovered that by beam bending test at low temperature anti-cracking performance of fiber asphalt mixture may be improved clearly because of the roles of crack resistance and stress dispersion of fibers. It is discovered that by immersion Marshall Test the performance of resisting damage of water of fiber asphalt mixture may be improved significantly because of the roles of tackifying and reducing void ratio of fibers. And the optimum containing of polyacrylonitrile fiber in asphalt mixture is0.3%.
     Fourth, viscoelasticities of polyacrylonitrile fiber asphalt mastic and polyacrylonitrile fiber asphalt mixture were studied using the Burgers model, and the fitting parameters of the Burgers model of fiber asphalt mastic and fiber asphalt mixture were obtained. Tests show that the Burgers model is valid to describe the mechanics behavior of viscoelasticities of fiber asphalt mastic and fiber asphalt mixture.
     Finally, application in test roads has received prominent effects. And the construction requirements of polyacrylonitrile fiber asphalt pavement are obtained. With the construction of normal asphalt pavement, dry mixing time of fiber asphalt mixture must extend10seconds to15seconds, and the construction temperature of fiber asphalt pavement must be increased by10degrees to15degrees.
引文
[1]谭发茂.改善沥青路面使用性能的途径与方法[J],市政技术,2003(3):165-172
    [2]马敬坤.国内外沥青路面大中修最新技术[J],中外公路,2004(6):4-7
    [3]黄晓明,邓学钧.路面设计原理与方法[M],北京:人民交通出版社,2001,21-23
    [4]王哲人,张登良.沥青路面[M],北京:人民交通出版社,1998,34-36
    [5]沙庆林.高速公路沥青路面的早期破坏现象及预防[M],北京:人民交通出版社,2001,57-60
    [6]沙庆林.高等级公路半刚性基层沥青路面[M],北京:人民交通出版社,1998,123-126
    [7]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993,203-205
    [8]史建方,刘中林.高等级公路沥青混凝土路面新技术[M].北京:人民交通出版社,2002,412-430
    [9]E.Brown Prithvi S. Kandhal. PerformaneeTestingforHotMixAsPhalt[C]. NCTA RePor tNovember,2001:450-468
    [10]陈志春,林先福.沥青的纤维增强改性及其改性剂的研究[J],公路,1999(1):37-40
    [11]沈金安.沥青及沥青混和料的路用性能[M].北京:人民交通出版社,2001,75-82
    [12]李又瑛,彭波.纤维在沥青混合料中应用研究[J],中南公路工程,2003(6):44-46
    [13]孙雅珍,赵颖华.新型纤维增强沥青路面的研究[J],华东公路,2004(4):63-66
    [14]Hoope. Theory of Meehanieal Properties of Fiber Strengthened Materials [J]. Meeh. Phy. Solids,1965(4):189-198
    [15]Dow. Stress and Strain Fields in short Fiber Reinforeed Composite[J]. Fiber Sei.Teeh,1974(7):129-130
    [16]Kwang w Kim. Young S Doh. Reflection cracking resistance of strengthened asphalt concretes[J]. Construction and Building Materials,1999 (13):104-107
    [17]Reed B Freemam. James L Burati.JR. Polyester fibers in asphalt paving mixtures[J], AAPT,1996(6):214-217
    [18]SERFASS JP. Application and behavior of fiber modified asphalt[J]. AAPT, 1995(6):302-305
    [19]M.AREN CLEVEN. Investigation of the Properties of Carbon Fiber Modified Asphalt Mixtures[J]. Civil Engineering Michigan Technological University,2003 (21):103-107
    [20]Brian D.Prowell. P.E. Design, Construction, and Early Performance of Hot Mix Asphalt Stabilizer and Modifier Test Sections. In Cooperation with the U.S. Department of Transportation Federal Highway Administration,2001
    [21]J.P.Serfass, J.Samanos. Fiber-Modified Asphalt Concrete Aracteristics, Applications and Behavior [J]. A APT,1996(65):228-229
    [22]Asphalt Institute Superpave performance Based Asphalt Binder Specification Testing. SP-1.Asphalt Institute.2001
    [23]那滨,杨晓丰.玻璃纤维在沥青路面中的应用[J],交通科技与经济,2003(4):23-29
    [24]徐培华.公路工程混和料配合比设计与试验技术手册[M].北京:人民交通出版社,2002,134-136
    [25]赵书林,王恩清.玄武岩连续纤维及其复合材料[J].纺织工程,2006(4):36-39
    [26]吕伟民,李海军.纤维在SMA混合料中作用机理分析与试验研究[J].石油沥青,1998(12):99-104
    [27]王锐佳,张争奇.纤维材料对SMA性能的影响[J].重庆交通学院学报,2002(12):58-61
    [28]赵海滨,杨军.福塔纤维改善沥青混合料的性能研究[J].纤维复合材料,2004(04):24-28
    [29]徐蕾.聚酯纤维材料在高速公路养护中的应用分析[J].公路,2004(12):101-105
    [30]张勇强,罗乙.聚酯纤维材料在沥青混凝土桥面铺装上的应用[J].公路,2003(05):76-81
    [31]程云虹,王宏伟,王元.纤维增强混凝土抗渗性试验研究[J].公路,2010(7):45-49
    [32]王建华.麻纤维用于混凝土(砂浆)抗裂性能的研究[D].青岛大学,2005
    [33]汪传生,侯垣圻,李真.短纤维增强橡胶复合材料在轮胎中应用的研究概况[J].橡塑技术与装备,2009(10):16-19
    [34]郭晓魁,宋玉恒.碳纤维加固T形桥梁技术研究及应用[J].河北工业大学学报,2008(06):49-53
    [35]周均立,徐博书.聚酯纤维在软土路基中的应用[J].盐城工学院学报(自然科学版),2011(2):67-71
    [36]Tamburro D.A. etal. The effect of short chrysotile asbestos fibers on the structural properties of asphaltic pavenents[J]. Proc.Ass.Asph.Pav. Technol.,1962(31): 151-175
    [37]Zuehlke, G H. Marshall and Flexural Properties of Bituminous Pavement Mixtures Containing Short Asbestos Fibers[J]. Highway Research Record, 1963(10):231-242
    [38]Kietzman J H. Performance of asbestos—asphalt pavement surface course with high asphalt contents[R].Highway Research ReCord#24,1963.
    [39]Keller Jr.T, Mills,D.R. Effectiveness of Synthetic Fibre-Reinforced Asphaltic Concrete Overlays in Delaware[J]. Delaware Department of Transportation.1982 (11):132-135
    [40]Samanos.J,Serfass,J.P. Fiber-Modified Asphalt Concrete Characteristics, Applications and Behavior[J]. Journal of the Association of Asphalt Paving Technologists,1996(65):.193-230
    [41]Krokosky, E.M., Tons, E.. A Study of Welded Wire Fabric Strip Reinforcement in Bituminous Concrete Resurfacing[J]. Proceedings of the Association of Asphalt Paving Technologists,2003(29):43-80
    [42]Hwang S, Song PS, Sheu BCc. Strength Properties of Nylon and Polypropylene-Fiber-Reinforced Concretes [J]. Cement and Concrete Research, 2005(35):1546-1150
    [43]John A. Dngelo. Superpave Mix Design Tests Methods and Requirements[J]. APWA International Public Works Congress,2004(13):103-115
    [44]J.Bilal. Designing Airfield Pavement for Heavy Jumbo Jets[C]. FAA Wordwide Airport Technology Transfer Conference,2004:432-443
    [45]Stephen F Brown. Achievements and Challenges in Asphalt Pavement Engineering[C]. Eighth International Conference on Asphalt Pavement, 1997:267-278
    [46]Halit Ozen. Investigation of Rutting Performance of Asphalt Mixtures Containing Polymer Modifiers[J]. The Construction and Building Materials,2007(21): 328-337
    [47]David Newcomb. Influence of Roofing Shingles on Asphalt Concrete Mixtures Properties [J]. Department of Civil and Mineral Engineering University Of Minnesota,2007(3):243-248
    [48]Saad Abo-Qudais, Ibrahem Shatnawi. Prediction of Bituminous Mixture Fatigue Life Based on Accumulated Strain[J]. Construction and Building Materials, 2007(21):1370-1376
    [49]Serkan Tapkin. the Effect of Polypropylene Fibers on Asphalt Performance[J]. Building and Environment,2008(43):1065-1071
    [50]Mohamed Rehan Karim, Abdelaziz Mahrez. Fatigue and Deformation Properties of Glass Fiber Reinforced Bituminous Mixes[J]. Journal of the Easten Asia Society for Transportation Studies,2005(6):113-117
    [51]Boucher J.L, Brown S.F., Rowlett R.D..Proceedings of the Conference on the United States Strategic Highway Research Program:Sharing the Benefits. Asphalt Modification.1990:181-203
    [52]Antrim J.D, Bushing H.W.. Proceedings of the Association of Asphalt Paving Technologists [J]. Fiber Reinforce Bituminous Mixtures,1968:629-659
    [53]Lytton R.L,Button J.W. Evaluation of Fabrics, Fibers and Grids in Overlays[C]. the Sixth International Conference on the Structural Design of Asphalt Pavements.1987:1365-1371
    [54]Rebecca S, Jiang Yi. Mcdaniel. Application of Cracking and Seating and Use of Fibers to Control Reflection Cracking[J]. Transportation ResearchRecord,1999: 150-159
    [55]Maurer Dean A., Grald M. Field Performance of Fabrics and Fibers to Retard Reflective Cracking[A]. the Transportation Research Record,1989:13-23
    [56]Brown E. R., Cooley L. A., Watson D. E. Evaluation of open-graded friction course Mixtures containing cellulose fibers[J].Transportation Research Record, 2002, (1723):19-25.
    [57]Ludwig, Dipl.-Ing, Steve B. B. The influence to the mechanical properties of bituminous mastic and, thus to open grain asphalt using synthetic fibers [C]. A APT 12th Interactional Flexible Pavernents Conferenee.2003:1-9.
    [58]Toney A.C. Fiber reinforced asphalt pavements:City of Tacoma[R]. Sponsor:Federal Highway Administration, Olympia, WA. Washington Div. Washington State Dept. of Transportation, Olympia, Oet,1987:28.
    [59]King H.W., Harders O, King G N.. Influenee of asphalt grade and polymer concentration on the high temperature performance of Polymer modified asphalt[J]. Asphalt Paving Technologies,1992 (61):29-66
    [60]Samanous J.,Serfass J P. Fiber-modified asphalt concrete characteristics, application and behavior [J]. Journal of the Association of Asphalt Paving Technologists,1996 (65):193-230
    [61]Jamshid M, Kuo S S. Accelerated Pavement Performance testing of ultra—thin fiber reinforced concrete overlay, recycled concrete aggregate and patching materials [J]. Construction and Building Materials,2002(4):120-128
    [62]Serfass,J.P. Fiber-Modified Asphalt Concrete Characterist[J], Applications and Behavior, the Journal of the Association of Asphalt Paving Technologists, 1996(65):183-220
    [63]Kuo S S. Accelerated Pavement Performance testing of ultra — thin fiber reinforced concrete overlay, recycled concrete aggregate and patching materials [J]. Construction and Building Materials,2002(4):130-132.
    [64]Jeng Y S. Performance evaluation of fiber reinforced asphalt concrete [R]. Sponsor:Federal Highway Administration, Columbus, OH, Ohio Div. Ohio Dept. of Transportation, Columbus, March,1994:129-135
    [65]胡长顺,张争奇.纤维加强沥青混凝土几个问题的研究和探讨[J].西安公路交通大学学报,2001(21):29-32
    [66]张争奇,陈华鑫,胡长顺.纤维沥青混合料低温抗裂性能[J].华南理工大学学报,2004(32):82-86
    [67]张争奇,陈华鑫,胡长顺.纤维沥青混合料配合比设计方法初探[J].公路,2003(6):78-82
    [68]王永财,张争奇.纤维沥青胶浆对沥青混合料高低温性能的影响[J].长安大学学报,2006(26):1-5
    [69]黄彭.木质素纤维在沥青混合料中的应用[J].西安建筑科技大学学报,2005,37(1):104-107.
    [70]彭波,袁万杰.纤维增强沥青混合料性能的研究[J].重庆交通大学学报,2002.(21):27-30
    [71]彭波,戴经梁.沥青博尼维纤维加强沥青混合料性能研究[J].公路交通科技,2002(2):25-29
    [72]袁万杰,.彭波.纤维增强沥青混合料性能的研究,重庆交通大学学报,2002(12):78-82
    [73]彭波,关宁锋,苟国涛.纤维沥青混合料特性的试验研究[J].中外公路,2006(21):128-130
    [74]彭波,李文瑛,戴经梁.纤维在沥青混合料中应用的研究[J].中南公路工程,2003(28):197-99
    [75]彭波,田丽.纤维对沥青混凝土性能影响的研究[J].西北公路,2001(4):8-10
    [76]张远航,吴国雄,孟巧娟.纤维沥青混合料水稳定性评价方法研究[J].重庆交.通大学学报(自然科学版),2008(4):244-247
    [77]何雨微,陈明宇.纤维稳定剂对排水沥青混合料水稳定性的影响[J].国外建材科技,2008(6):95-98
    [78]汤寄予,高丹盈,韩菊红.玄武岩纤维对沥青混合料水稳定性影响的研究[J].公路,2008(1):188-195
    [79]Chen Jianshui, Lin Kuyi. Mechanism and behavior of bitumen strength reinforcement using fibers[J]. Journal of Materials Seienee,2005 (40):87-95
    [80]Neitzel M, Edelmann K.. Flow Behavior of Glass Fiber Reinforced Thermoplastics[J]. Kunststoffe Plast Europe,1997(12):13-14
    [81]M.R. Gurvich, A.T. Dibenedetto. Evaluation of the Statistical Parameters of a Weibull Distribution[J], Journal of Materials Science,1997(34):3711-3716
    [82]R. R.Mueller. H. D. Wagner, A. Lustiger, C.N. Marzinsky. Interlamellar Failure at Transcrystalline Interfaces inGlass/Polypropylene Composites[J], Composites Science and Technology,1993 (8):129-135
    [83]付力强,张锐.SBS与纤维在沥青及沥青混凝土中改性效果对比分析[J].公路交通科技,2007(24):26-29
    [84]王永财.沥青胶浆对沥青混合料高低温性能的影响[J].长安大学学报,2006(26):1-5
    [85]张登良,武贤慧.纤维增强沥青混凝土低温性能研究[J].公路交通科技,2005(22):7-9.
    [86]冯德成,林平东.纤维加筋材料在寒冷地区道路的适用性研究[J].哈尔滨工业大学学报,2004(10):112-117
    [87]李刚,郭乃胜,赵颖华.聚醋纤维沥青混凝土的低温抗裂性能分析[J].沈阳建筑工程大学学报(自然科学版),2004(01):1-3
    [88]郭乃胜.纤维掺量对沥青混凝土抗压回弹模量的影响分析[J].公路,2006(12):136-139
    [89]郭乃胜,张洪涛.纤维沥青混凝土的等效劲度模量[J].公路交通科技,2006,23(9):23-26.
    [90]赵颖华,郭扬.单周期荷载作用下纤维沥青路面的动态响应[J].大连海事大学学报,2007(3):118-123
    [91]孙略伦,赵颖华.纤维沥青混凝土的动态参数试验研究[J].公路交通科技,2007(10):87-91
    [92]赵颖华.车辆荷载作用下纤维沥青路面响应分析[J].公路交通科技,2008(5):137-141
    [93]徐静,刘家平,史林.木质素纤维的特点及其在工程中的应用[J].江苏建筑,2007(5):38-42
    [94]李海军.纤维在SMA混合料中作用机理分析与试验研究[J].石油沥青,1998,12(4):1-8
    [95]靳明,袁万杰.纤维增强沥青混合料性能的研究[J].重庆交通大学学报,2002,21(4):27-30
    [96]戴经梁,李文瑛.沥青博尼维纤维加强沥青混合料性能研究[J].公路交通技术,2002(2):25-29
    [97]廖卫东,薛永杰.聚酯纤维对SMA性能影响的研究[J].公路,2004(4):124-126
    [98]吴少鹏,张登峰.聚合物纤维改性沥青混凝土的研究[J].武汉理工大学学报,2003,25(12):47-49.
    [99]罗福兰,杨红辉.德兰尼特纤维沥青混合料路用性能研究[J].中外公路,2004,24(4):132-133
    [100]周立刚.德兰尼特沥青道路专用增强纤维在公路养护工程中的应用[J].公路,2002(9):140-141
    [101]邹桂莲,张肖宁.应用DSR评价沥青胶浆路用性能的研究[J].哈尔滨建筑大学学报.2001,34(3):112-115
    [102]宁金成,孙久民.玻璃纤维沥青碎石混合料应用研究[J].河南科学,2005(2):255-258
    [103]袁万杰,彭波.纤维增强沥青混合料性能的研究[J].重庆交通学院学报,2002(12):39-43
    [104]安军.玻璃纤维增强PE工程塑料性能及界面研究[J].高分子材料科学与工程,1996(5):81-86
    [105]姜肇中,邹宁宇.玻璃纤维应用趋势[M].北京:中国石化出版社.,2004
    [106]杨红辉,郝培文.木质素纤维沥青混合料路用性能研究[J].公路交通科技,2003 20(04):10-15
    [107]吕伟民.沥青混合料设计原理与方法.上海:同济大学出版社,2001
    [108]张晓冰,李黎.玻璃纤维格栅在沥青罩面中的应用[J].国外公路,1997,17(02):46-49
    [109]SERFASS JP. Application and behavior of fiber modified asphalt[J]. AAPT, 1995(6):342-348
    [110]Hwang S, Song PS, Sheu BCc. Strength Properties of Nylon and Polypropylene-Fiber-Reinforced Concretes [J]. Cement and Concrete Research,2005(35):1546-1150
    [111]Halit Ozen. Investigation of Rutting Performance of Asphalt Mixtures Containing Polymer Modifiers [J]. The Construction and Building Materials, 2003(24):432-439
    [112]Toney C. A. Fiber reinforced asphalt pavements:City of Tacoma[R]. Sponsor:Federal Highway Administration, Olympia, WA. Washington Div. Washington State Dept. of Transportation, Olympia, Oet,1987:28.
    [113]Jamshid M, Kuo S S.. Accelerated Pavement Performance testing of ultra-thin fiber reinforced concrete overlay, recycled concrete aggregate and patching materials[J]. Construction and Building Materials,2002(4):120-128
    [114]A.T. Dibenedetto, M.R. Gurvich. Evaluation of the Statistical Parameters of a Weibull Distribution[J], Journal of Materials Science,1997 (23):3711-3716
    [115]Keller Jr.T, Mills,D.R. the Effectiveness of Synthetic Fibre-Reinforced Asphaltic Concrete Overlays in Delaware[J]. Delaware Department of Transportation,.1982(27):321-327
    [116]Vlachovicova Z., KrishnanJ.M. Creep characteristics of asphalt modified by radial styrene-butadiene-styrene copolymer[J]. Construction and Building Materials,2007,21(3):567-577
    [117]Szydlo A, Monismith C L. Asphalt mixes deformation sensitivity to change in rhcological parameters[J]. Journal of Materials in Civil Engineering,2005(2):l-9
    [118]Masad E A,Abbas A R. Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes[J]. Journal of Materials in Civil Engineering, 2004:133-139.
    [119]Kim Y R. Viscoelastic constitutive model for asphalt concrete under cyclic loading[J]. Journal of Engineering Mechanics.1998(1):32-40.
    [120]Masad E, Tashman L. A microstructure-based viseoplastic model for asphalt conerete[J]. International Journal of Plasticity,2005(21):1659-1685
    [121]Lu Y..Numerical approach of visco-elastoplastic analysis for asphalt mixtures[J]. Comp Struct,1998(69):139-147
    [122]Scarps A..3D finite model for asphalt conerete response simulation[J]. Int J Geomech 2002,2(3):305-330
    [123]Harvey J T, Blab R. Modeling measured 3D tire contact stress in a viscoelastoc FE Pavement model[J]. Int J Geomech,2002,2(3):271-290
    [124]郑健龙,应荣华.伯格斯粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报,1995,11(3):42-52.
    [125]田小革,郑健龙.沥青混合料热粘弹性本构模型的试验研究[J].长沙理工大学学报(自然科学版),2004,1(1):1-7
    [126]许志鸿,彭妙娟.沥青路面永久变形的非线性本构模型研究[J].中国科学G辑:物理学力学天文学,2006,36(4):315-326
    [127]周晓青,邵腊庚..基于直接拉伸试验的沥青混合料粘弹性损伤特性研究[J]. 土木工程学报,2006,38(4):25-28
    [128]黄晓明,封基良.沥青粘结料粘弹性参数确定方法的研究[J].中国公路学报,2006,23(5):16-22
    [129]郭忠印,郑健龙.环境条件下沥青路面热粘弹性温度应力计算[J].长安大学学报,2003,31(2):150-155.
    [130]李一鸣.沥青混合料的松弛劲度模量研究[J].石油大学学报,1995(1):17-22
    [131]侯金成.纤维沥青混合料粘弹性能研究[D].硕士学位论文.,辽宁::海事大学2007
    [132]周进川,王随原.SBS改性混合料蠕变性能试验研究[J].公路交通科技,2006,23(12):13-16
    [133]延西利,张登良.沥青混合料线性流变模型的数值模拟[J].长安大学学报,1999,9(1):7-12.
    [134]吕伟民,黄卫东.沥青及沥青混合料流变性质与动稳定度的关系[J].同济大学学报,2001,28(4):401-404
    [135]李立寒,张南鹭.道路建筑材料[M].北京:人民交通出版社,2008
    [136]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2003
    [137]谭忆秋.沥青与沥青混合料[M].哈尔滨:哈尔滨工业大学出版社,2007
    [138]J.A.Deaeon, C.L.Monismith. Fatigue Response of Asphalt-Aggregate Mixes[C]. SHRP-A-404, Strategic Highway Researeh Program, Nation Researeh Couneil. 1994,47-56
    [139]公路沥青路面施工技术规范(JTG F40-2004).北京:人民交通出版社,2004
    [140]公路工程沥青与沥青混合料试验规程(JTJ 052-2000).北京:人民交通出版社,2000.
    [141]蔡四维.短纤维复合材料理论与应用[M].北京:国防工业出版社,1994:190-197
    [142]吴人洁.复合材料[M].天津:天津大学出版社,2000:321-346
    [143]延西利,封晨辉,梁春雨.沥青与沥青混合料的流变特性比较[J].长安大学学报(自然科学版),2002(22):5-8
    [143]AASHTO T315. Determining the rheological properties of asphalt binder using a dynamic shear rheometer(DSR). American association of state highway and transportation officials,2006
    [144]曹荣吉,贾渝.高性能沥青路面基础参考手册[M].北京:人民交通出版社,2005:21-27
    [145]CHEN J S, LIN K Y. Mechanism and behavior of bitumen strength reinforcement using fibers [J]. Journal of Materials Science,2005,40(1):87-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700