用户名: 密码: 验证码:
破乳—分置式MBR工艺处理特低渗透油田采出水的效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油的需求量不断攀升而储量不断下降,使得特低渗透油田的开发已成为未来石油工业的主要发展方向。特低渗透油藏由于渗透率低,注水过程极易发生堵塞,对水质要求较高,而现有的采出水处理工艺难以满足这一回注水水质处理要求。本文针对大庆油田开发生产面临的技术问题,研发了高效稳定的特低渗透油田采出水回注处理工艺,并对其处理机理进行了深入研究。
     针对大庆外围特低渗透油田采出水的水质特性,研发了“破乳-分置式MBR(膜生物反应器)工艺”。对破乳除油处理的影响因素进行探讨,确定了无机盐对特低渗透油田采出水破乳的机理,在此基础上制备了新型破乳絮凝剂,并对运行条件进行了优化。优化了分置式MBR工艺的控制参数,并进行了动力学特性研究,考察了采出水中含有的表面活性剂及絮凝剂对系统运行及膜污染的影响及作用机理。最终对破乳-分置式MBR工艺进行了技术经济分析。具体研究成果如下:
     无机盐对特低渗透油田采出水乳状液破乳有重要影响。对无机盐破乳过程进行了模拟,确定了无机盐对特低渗透油田采出水乳状液破乳的主要机理为:无机盐电离后与油珠表面电荷以及采出水中的表面活性剂之间相互作用,导致Zeta电位发生变化,当电荷中和起主要作用时,Zeta电位下降,双电层被压缩,乳状液即被破坏。进一步推导出了特低渗透油田采出水乳状液的破乳絮凝动力学方程。
     制备了以聚硅酸硫酸铝、Ca2+以及微量的聚丙烯酰胺为主要成分的复合型破乳絮凝剂HXN。并对其操作条件进行优化:HXN投药量为4~6mg/L,搅拌强度控制在60~100r/min,搅拌时间为15~25min,沉淀时间35min。通过对大庆特低渗透油田采出水进行现场试验表明:破乳后出水平均含油量为7.8mg/L,SS平均为51.4mg/L,处理效果良好稳定。
     通过考察含油量、COD以及悬浮固体含量和粒径中值的变化,对系统运行条件进行优化:水力停留时间为6h,污泥停留时间25d,污泥浓度控制在3800~4300mg/L,曝气强度(以DO计)为3mg/L;膜组件的进水压力介于0.07~0.12MPa之间,浓缩液出口压力为0.06~0.08MPa。通过研究MBR工艺处理特低渗透油田采出水的有机物降解和微生物增殖规律,建立了相应的动力学模型。
     表面活性剂和絮凝剂对分置式MBR工艺处理采出水的效果以及对膜污染有一定的影响。由于特低渗透油田采出水中表面活性剂含量较低,在MBR工艺中对含油量和COD的去除影响不大,而对于膜污染的影响有利有弊,因此在分置式MBR工艺中可不单独对其进行处理。絮凝剂的投加则对于污染物的去除率均有所提高,其主要贡献是对于一些难生物降解的胶体物质和乳化油的去除,从而大大提高了去除效果的稳定性,降低了膜组件的负荷。投加絮凝剂后,污泥絮体粒径有所增大,同时活性污泥混合液中SMP降低,从而减轻膜孔的堵塞,改善膜污染。向生物反应器中投加絮凝剂PAC对污染物去除的改善效果较佳,投药量以20~30mg/L为宜。
     采用破乳-分置式MBR工艺处理大庆外围特低渗透油田采出水,并进行抗冲击负荷试验,结果表明出水满足特低渗透油田采出水回注指标要求:出水含油量为2.04~4.11mg/L,SS为0.36~0.97mg/L,粒径中值平均为0.7μm,且出水中未检测出硫酸盐还原菌,铁细菌和腐生菌均少于30个/mL。对运行成本进行核算,处理每特低渗透油田采出水成本为5.97元/m3。由此可见破乳-分置式MBR工艺对特低渗透油田采出水的处理是高效经济稳定的。
     从工艺运行、投资成本、运行成本和管理维护等方面,对大庆油田常规的物化处理工艺和破乳-分置式MBR工艺进行了技术经济比较。总的来说,破乳-分置式MBR在运行成本、出水水质以及抗冲击负荷能力方面要优于物化处理工艺。
Petroleum is facing with declining reserves as a result of increasing demand.Extra-low permeability oilfield exploitation has been a primary developingdirection. Because of low porosity and permeability, extra-low permeability oilfieldis prone to form rock stratum locking damage during water flooding. Therefore,higher quality injection water is demanded. The existing produced water disposalprocesses are difficult to meet the standard of extra-low permeability oilfieldreinjection water quality. Based on Daqing Oilfield exploitation correlated technicalproblems, the article aims to develop a highly efficient and stable produced waterdisposal process for extra-low permeability oilfield and investigate thecorresponding mechanism.
     The demulsification–recirculated MBR (Membrane Bioreactor) process isdeveloped by analyzing the produced water quality of extra-low permeabilityoilfield. The influencing factors of demulsification have been investigated and themain mechanism of demulsification is confirmed. According to the results, newflocculant is developed and its operating conditions are optimized. Operatingcondition parameters of recirculated MBR are obtained and relevant kineticsresearch is carried out. The impacts of surfactant and flocculant on quality ofproduced water and membrane fouling mechanism are investigated. Finally, thispaper conducts the technical and economical analysis on the demulsification–recirculated MBR. The main results are as follows:
     Inorganic salts are believed to be the principal influence factor ondemulsification. Inorganic salts demulsification process is simulated based onexperimental results and the main mechanism of demulsification is confirmed:inorganic salts interact with oil bead surface charges as well as surfactants inproduced water after ionization, thus Zeta electric potential changes. When chargeneutralization plays a leading role, Zeta electric potential decreases and electricdouble layer is compressed, thus emulsion is destroyed. Moreover, demulsification-flocculation kinetics equation of produced water in extra-low permeability oilfieldis deduced.
     Flocculant HXN, with the main components of poly-silicate aluminum sulphate (PSAS), Ca2+and a trace of polyacrylamide, has been developed and itsoperating condition has been optimized without regulating temperature or pH value:reagent concentration is4~6mg/L, stirring intensity is60~100r/min, stirring timeis12~25min, settling time is35min. Field test shows good treatment efficiencies:the average oil content is7.8mg/L, average SS is51.4mg/L.
     Through investigating the variations of oil content, COD and suspended solidcontent and average diameter, the system optimum operating condition is obtained:the hydraulic retention time is6h, sludge retention time is25d, sludgeconcentration is3800~4300mg/L, aeration strength (measured by DO) is3mg/L;feed water pressure of membrane module is about0.07~0.12MPa, outlet pressure ofconcentrated liquid is about0.06~0.08MPa. Furthermore, relevant kinetics equationhas been established by studying the organic matter degradation and biomassaccumulation in recirculated MBR.
     Surfactant and flocculant have impacts on treatment efficiency of producedwater and membrane fouling in recirculated MBR. With regard to the low surfactantcontent, the removal of oil and COD is influenced slightly while it has both positiveand negative impacts on membrane fouling, thus surfactant can be neglected duringrecirculated MBR process. Flocculant contributes to the removal of COD, oil andsuspended solid. Its principal contribution may be the removal of colloidalsubstance and emulsified oil which are non-biodegradable. This improves thestability of process removal efficiencies greatly and reduces the load of membranemodule simultaneously. After the addition of flocculant, the sludge floc sizeincreases and SMP (soluble microbial products) decreases, which reduce themembrane pore blocking and membrane fouling to some extent. The pollutantsremoval efficiency is increased after the addition of PAC with20~30mg/L in thebioreactor.
     The extra-low permeability oilfield produced water has been treated bydemulsification–recirculated MBR process and the shock load test has been carriedout. The result shows that effluent water quality meets the produced waterreinjection index of extra-low permeability oilfield: oil content is2.04~4.11mg/L,SS is0.36~0.97mg/L, average particle size is0.7μm, no sulfate-reducing bacteriaare detected, iron bacteria and saprophytic bacteria contents are below30cfu/mL.Operation cost evaluation illuminates that treating produced water will cost 5.97RMB/m3. Thus it can be seen that demulsification–recirculated MBR process isan efficient and economical treatment method for extra-low permeability oilfieldproduced water.
     Finally, this paper compares the traditional physicochemical process in DaqingOilfield to demulsification–recirculated MBR process on the basis of processoperation, investment cost, operating cost and maintenance both technically andeconomically. In general, demulsification–recirculated MBR process is superior tophysicochemical process on operating cost, removal efficiency and shock loadcapacity.
引文
[1]江怀友,李治平,钟太贤,等.世界低渗透油气田开发技术现状与展望[J].特种油气藏,2009,16(4):13-17.
    [2]国家能源局.国家能源科技“十二五”规划[R].北京:国家能源局.2011:18-33.
    [3]胡文瑞.中国低渗透油气的现状与未来[J].中国工程科学,2009,11(8):29-37.
    [4]肖锦.低渗透油田回注污水的强化絮凝技术及其机理[J].应用科技,2009,17(21):19-23.
    [5]李英媛.油田采出水处理与节能减排[J].油气田地面工程,2008,27(8):44.
    [6]李金林,齐建华,刘中民.国外油田采出水会注处理工程介绍[J].给水排水,2008,34(6):52~55.
    [7]吕慧超,左岩.油田回注水处理技术及其发展趋势[J].工业用水与废水,2009(2):15-16.
    [8] Mccormack P, Jones P, Hetheridge M J, et al. Analysis of Oilfield ProducedWaters and Production Chemicals by Electrospray Ionisation Multi-stage MassSpectrometry (ESI-MSn)[J]. Wat. Res,2001,35(15):3567-3578.
    [9] Lu J R, Wang X L, Shan B T, et al. Analysis of Chemical CompositionsContributable to Chemical Oxygen Demand (COD) of Oilfield ProducedWater [J]. Chemosphere,2006,62:322-331.
    [10]赵立合,李柏林,陈忠喜,等.油田采出水的特性及其影响因素分析[J].辽宁化工,2007,36(10):714-717.
    [11]陈进富.油田采油污水的CODCr构成分析[J].工业水处理,2002,8(22):29-31.
    [12]张学佳,纪巍,王宝辉,等.油田采出水处理技术进展[J].工业安全与环保,2007,33(4):13-16.
    [13] Tellez G T, Nirmalakhandan N, Gardea-Torresdey J L. Comparison of Purgeand Trap GC/MS and Spectrophotometry for Monitoring PetroleumHydrocarbon Degradation in Oilfield Produced Waters [J]. Microchem. J,2005,81:12-18.
    [14]杨正明,邱勇松,张训华,等.注入水的水质对特低渗透油藏开发井网的影响[J].特种油气藏,2002,9(4):36-39.
    [15]黄战卫,毕凯,包军,等.油田采出水的改性回注处理工艺研究[J].西安石油大学学报,2010,25(6):38-41.
    [16]袁新平.纯化油田回注水改性处理可行性研究[J].石油钻采工艺,2004,26(增刊):68-70.
    [17] SY/T5329-2012.中华人民共和国石油天然气行业标准.碎屑岩油藏注水水质推荐指标及分析方法,2012:34~36.
    [18]戴赏菊.高效加压溶气气浮工艺在炼油污水处理中的应用[J].石油化工环境保护.2006,26(2):26-27.
    [19]杜华,冯志刚,蒋林时等.油冲击对炼油废水生物活性污泥性能的影响[J].辽宁石油化工大学学报.2006,26(2):23-27.
    [20]刘成宝,陈志刚,刘曦.应用膨胀石墨动态吸附处理油田污水[J].水处理技术.2007,33(5):58-60.
    [21] Wang Y. Improvement of Biodegradability of Oil Field Drilling WastewaterUsing Ozone [J]. Ozone Sci. Eng.2004,(26):309-315.
    [22] Doyle D H, Brown A B. Produced Water Treatment and Hydrocarbon Removalwith Organoclay [C]. SPE Annual Technical Conference and Exhibition,Dallas, Texas, USA:1–4October,2000.
    [23] Carvalho M S, Clarisse M D, Lucas E F, et al. Evaluation of the PolymericMaterials (DVB Copolymers) for Produced Water Treatment [C]. SPEInternational Petroleum Exhibition and Conference, Abu Dhabi, UAE:13–16October,2002.
    [24] Li F, Wu X, Wu J, et al. Kinetic Study of Adsorption of Oil from OilfieldProduced Water using Modified Porous Ceramics Filtration Media in ColumnMode [C]. Bioinformatics and Biomedical Engineering, ICBBE: The2ndInternational Conference, Shanghai, China:16–18May,2008.
    [25] Liu S, Zhao X, Dong X, Miao B, et al.Treatment of Produced Water fromPolymer Flooding Process using a New Type of Air Sparged Hydrocyclone [C].SPE Asia Pacific Health, Safety and Environment Conference and Exhibition,Kuala Lumpur, Malaysia:19–21September,2005.
    [26] Lang K, Managing Produced Water [OL]. http://www.pttc.org/technologysummaries/statev6no4.htm,2000.
    [27] Sorensen J A, Boysen J, Boysen D, et al. Field Application of theFreeze/Thaw Evaporation (FTE) Process for the Treatment of Natural GasProduced Water in Wyoming[OL]. http://www.osti.gov/servlets/purl/791058-6iLoKQ/native,2002.
    [28]林畅,贺高红,李祥村等.冷冻解冻法破除液体石蜡W/O乳状液[J].化工学报,2006,57(4):824-831.
    [29] Dallbauman L, Sirivedhin T. Reclamation of Produced Water for BeneficialUse [J]. Sep. Sci. Technol.2005,(40):185–200.
    [30] Lefebvre O, Moletta R. Treatment of Organic Pollution in Industrial SalineWastewater: a Literature Review. Water Res.2006,40:3671–3682.
    [31] Ma H, Wang B, Electrochemical Pilot-scale Plant for Oil Field ProducedWastewater by M/C/Fe Electrodes for Injection[J]. Hazard. Mater.2006, B132:237–243.
    [32] Li G, An T, Nie X, et al. Mutagenicity Assessment of Produced Water duringPhotoelectrocatalytic Degradation [J]. Environ.Toxicol. Chem.2007,26:416–423.
    [33] Adams M, Campbell I, Robertson P K J. Novel Photocatalytic ReactorDevelopment for Removal of Hydrocarbons from Water [J]. Int. J.Photoenergy2008:1–6.
    [34] Yang Z G., Zhang N S. Treatment of Produced Wastewater by FlocculationSettlement-Fenton Oxidation–Adsorption Method [J]. Xi’an Shiyou Univ. Nat.Sci. Ed.2005,20:50–53.
    [35] Baldoni-Andrey P, Lesage N, Segues B, et al. Impact of High Salinity ofProduced Water on the Technical Feasibility of Biotreatment for E&P OnshoreApplications [C]. SPE International Health, Safety&Environment Conference,Abu Dhabi, UAE:2–4April,2006.
    [36] Ng H Y, Ong S L, Ng W J. Effects of Sodium Chloride on the Performance of aSequencing Batch Reactor [J]. Environ. Eng.2005,131:1557–1564.
    [37] Zhao X, Wang Y, Ye Z, et al. Oil Field Wastewater Treatment in BiologicalAerated Filter by Immobilized Microorganisms [J]. Process Biochem.2006,41:1475–1483.
    [38] He Y, Jiang Z W. Treating Oilfield Wastewater: Technology Review[J]. Filtr.Sep.June,2008,14–16.
    [39] Xu P, Drewes J E, Heil D. Beneficial Use of Co-produced Water throughMembrane Treatment: Technical-economic Assessment [J]. Desalination,2008,225:139–155.
    [40] Li L, Liu N, McPherson B, et al. Influence of Counter Ions on the ReverseOsmosis through MFI Zeolite Membranes: Implications for Produced WaterDesalination [J]. Desalination,2008,228:217–225.
    [41] Qiao X, Zhang Z, Yu J, et al. Performance Characteristics of a HybridMembrane Pilot-scale Plant for Oilfield Produced Wastewater [J]. Desalination,2008,225:113–122.
    [42] Cakmakce M, Kayaalp N, Koyuncu I. Desalination of Produced Water fromOil Production Fields by Membrane Processes [J]. Desalination,2008,222:176–186.
    [43]程海鹰,张洁,梁利平.采油污水处理现状及其深度处理技术[J].工业水处理.2003,23(8):5-8.
    [44]张雷,李思强,苗月.采用微絮凝-过滤工艺处理油田采出水[J].化工环保,2010,30(2):56-58
    [45] Li G, Guo S, Li F. Treatment of Oilfield Produced Water by Anaerobic ProcessCoupled with Micro-electrolysis [J]. J. Env. Sci.2010,22,(12):1875–1882.
    [46]吴志良,程汉东.微生物与膜过滤复合技术在处理油田污水的研究及现场试验[J].东华理工大学学报(自然科学版),2008,31(4):365-368.
    [47]黄战卫,毕凯,包军等.油田采出水的改性回注处理工艺研究[J].西安石油大学学报(自然科学版),2010,25(6):38-43.
    [48] Jeganathan J, Nakhla G, Bassi A. Oily Wastewater Treatment using a NovelHybrid PBR–UASB System. Chemosphere,2007,67:1492–1501.
    [49]李影.新型含油污水处理工艺用于特低渗透油田[J].油气田地面工程,2008,27(4):24-25.
    [50]梁文义.大庆油田采出水回注处理工艺技术的创新及应用[J].水处理技术,2008,34(6):62-65.
    [51] Khristov K, Czarnecki J. Emulsion Films Stabilized by Natural and PolymericSurfactants [J]. Cur. Opin. Col&Int. Sci,2010,15:324-329.
    [52] Jung S, Maurer D, Johnson L A. Factors Affecting Emulsion Stability andQuality of Oil Recovered from Enzyme-assisted Aqueous Extraction ofSoybeans [J]. Bior Techn,2009,100:5340-5347.
    [53] Rangsansarid J, Fukada K. Factors Affecting the Stability of O-W Emulsion inBSA Solution Stabilization by Electrically Neutral Protein at High IonicStrength [J]. J. Coll. Int. Sci,2007,316:779-786.
    [54] Hong A, Fane A G, Burford R. Factors Affecting Membrane Coalescence ofStable Oil-in-water Emulsions [J]. J. Membr Sci.2003,222:19-39.
    [55] Pal R. Viscosity Models for Multiple Emulsions [J]. Food Hydr.2008,22:428-438.
    [56] Berton C, Genot C, et al. Effect of Lateral Heterogeneity in MixedSurfactant-stabilized Interfaces on the Oxidation of Unsaturated Lipids inOil-in-water Emulsions [J]. J. Coll. Int. Sci.2012,377:244-250.
    [57] Kang W, Jing G, Zhang H, et al. Influence of Demulsifier on Interfacial Filmbetween Oil and Water. Coll. Surf,2006,272:27-31.
    [58] Mukhopadhyay S, Ghosh S K, Juvekar V A. Mathematical Model for Swellingin a Liquid Emulsion Membrane System [J]. Desalination,2008,232:110-127.
    [59]刘晓敏,赵立新,蒋明虎,等.处理含油污水的水力旋流器配套工艺[J].大庆石油学院学报.2002,26(4):65-68.
    [60] Jiang M, Zhao L, et al. Effect of Geometric and Operating Parameters onPressure Drop and Oil-water Separation Performance for Hydrocyclones [C].12thinternational offshore and polar engineering conference. Kitakyushu,Japan:2005,(1):102-106.
    [61]夏福军,邓述波,张宝良.水力旋流器处理聚合物驱含油污水的研究[J].工业水处理.2002,22(2):14-17.
    [62] Kumar K, Nikolon A D, Wasan D T. Mechanisms of Stabilization ofWater-in-crude-oil Emulsion [J]. Ind Eng Chem Res,2001,40(14):3009-3014.
    [63]蔡永伟,谢伟,吕效平,等.驻波场原油破乳脱水的研究[J].石油炼制与化工,2005,36(5):13-17.
    [64] Ye G X., Peng F, et al. Application of Ultrasound in Dewatering of Crude Oil
    [C]. Beijing: WCU/UI,2005.
    [65]韩萍芳,祁高明,吕效平.正交实验及量纲分析研究超声波原油破乳[J].化学工程,2004,32(1):42-46.
    [66]秦国鲲.影响原油超声波破乳效果的因素[J].油气地质与采收率,2005,12(4):76-78.
    [67] Ye G, Lu X, Han P, et al. Application of Ultrasound on Crude Oil Pretreatment.Chem. Eng. Proc,2008(47):2346–2350.
    [68]曹福,吴克明,王文斌,等.絮凝气浮法处理含油乳化液的研究[J].工业安全与环保,2004,30(4):10-12.
    [69] Al-Shamrani A A, James A, Xiao H. Destabilisation of Oil–water Emulsionsand Separation by Dissolved Air Flotation [J]. Wat. Res.2002,(36):1503-1512.
    [70]夏立新,曹国英,陆世维.无机盐对乳状液破乳效果的影响[J].石油学报(石油加工),2003,19(4):94-97.
    [71]万里平,赵立志.气田水无机混凝剂的筛选实验研究[J].石油与天然气化工,2002,31(6):331-336.
    [72]孙小冬.高分子破乳剂及其在大庆油田的应用实验[J].化学工程师,2004,2:18-20.
    [73]顾惕人,朱瑶,李外郎,等.表面化学[M].北京:科学出版社,2001:62-181.
    [74]郭继香,李明远,刘娜,等.生物破乳剂处理油田采出水的实验研究[J].精细化工,2005,22(Suppl.):97-100.
    [75] Freitas A M, Sharma M M. Detachment of Particles from Surfaees: an AFMStudy [J]. Coll. Int. Sci,2001,233(l):73-82.
    [76] Binks B P,Lumsdon S O. Influence of Particle Wettability on the Type andStability of Surfactant-free Emulsion [J]. Langmuir,2000,16(23):8622-8631.
    [77]夏立新,刘泉,汪舰,等.固体粒子稳定的乳状液研究进展[J].化学研究与应用,2007,19(10):1065-1069.
    [78] Zeng Y, Yang C, Zhang J, et al. Feasibility Investigation of Oily WastewaterTreatment by Combination of Zinc and PAM in Coagulation or Flocculation[J]. J. Haz. Mat.,2007,147:991-996.
    [79] Yang Z, Gao B, Li C, et al. Synthesis and Characterization of HydrophobicallyAssociating Cationic Polyacrylamide [J]. Chem. Eng. J.,2010,161:27-33.
    [80] Bratskaya S, Avramenko V, Schwarz S. Enhanced Flocculation of Oil-in-waterEmulsions by Hydrophobically [J]. Coll. Surf.,2006,275:168-176.
    [81]陈锋,杨总.乳状液破乳方法综述[J].石油化工应用,2009,28(2):1-3
    [82]阎军,毛宗强,何向明.静电场和离心力场联合分离水/油型乳状液[J].化工学报,1998,49(1):17~26.
    [83]沈江南,黄万抚.乳状液膜旋流静电综合力场连续破乳器研究[J].水处理技术,2005,31(4):35-37.
    [84]黄万抚,沈江南.乳状液旋流脉冲高压静电综合力场连续破乳器[P].中国ZL,01277410.3.
    [85]李可彬.一种乳状液破乳的新方法——涡旋电场法[J].环境科学学报.1996,16(4):482-487.
    [86]范永平,王化军,张强.原油微波辐射破乳技术的研究进展[J].石油化工,2005,34(增刊):838-840.
    [87]牛春庆,武艳丽.微波分离技术处理乳状液[J].国外油田工程,2001,17(5):40-42
    [88]王鹏,田艳,张威等.微波辐射处理乳化废水的研究[J].哈尔滨工业大学学报,2007,39(8):1233-1235.
    [89]刘晓艳,楚伟华,戴春雷等.油水乳液的微波分离[J].大庆石油学院学报,2005,29(3):98-101.
    [90] Li K L, Xia L X, Li J, et al. Salt-assisted Acid Hydrolysis of Starch toD-glucose under Microwave Irradiation. Carbohydrate Res.,2001,331:9-12.
    [91]黄霞,曹斌,文湘华,等.膜—生物反应器在我国的研究与应用新进展[J].环境科学学报,2008,28(3):416-432.
    [92] Yang W B, Cicek N, Ilg J. State of the Art of Membrane Bioreactors: WorldWide Research and Commercial Applications in North America [J]. MembrSci.2006,270:201-211.
    [93]张军,王宝贞,聂梅生. MBR污水处理与回用工艺的经济分析和评价[J].给水排水,2001,27(6):9-11.
    [94]程钟.膜生物反应器在废水处理中的研究及应用[J].环境研究与监测,2006,19(3):53-55.
    [95] Stephenson T, et al.膜生物反应器污水处理技术[M].张树国,李咏梅译.北京:化学工业出版社,2003.
    [96] Zhang G J, Ji S L, Gao X, et al. Adsorptive Fouling of Extracellular PolymericSubstances with Polymeric Ultrafiltration Membranes [J]. Journal ofMembrane Science.2008,(309):28-35.
    [97]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京:化学工业出版社,2003.
    [98] Shuang L G., Yan Z, Cui L. Effect of Solution Chemistry on the FoulingPotential of Dissolved Organic Matter in Membrane Bioreactor Systems [J]. JMembr. Sci,2007,(11):1-33.
    [99] Gnirss R. Dittrich J. Micorfiltration of Municipal Wastewater for Disinefetionand Advanced Phosphorus Removal: Results form Ttrials with DifferentSmall-scale Pilot Plnats [J].Wat. Environ. Res.2002.72(5):602-609.
    [100]俞开昌.气水二相流微滤膜—生物反应器膜污染控制机理研究[D].北京:清华大学,2003.
    [101] Kim I S, Jang N J. The Effect of Calcium on the Membrane Biofouling in theMembrane Bioreactor (MBR)[J]. Wat. Res,2006,(40):2756-2764.
    [102] Mohammadi T, Madaeni S S, Moghadam M K. Investigation of MembraneFouling [J]. Desalination,2002,(153):155.
    [103]张绍园,王菊思,姜兆春.膜生物反应器水力停留时间的确定及其影响因素分析[J].环境科学,1997,18(6):35-38.
    [104]郑祥,樊耀波.影响MBR处理效果及膜通量的因素研究[J].中国给水排水,2002,18(1):19-22.
    [105]张悍民,王宝贞.淹没式中空纤维膜过滤装置中曝气强度对系统的影响[J].水处理技术,2001,27(2):93-95.
    [106]刘锐,黄霞,王志强,等.一体式膜-生物反应器的水动力学特性[J].环境科学,2000,21(05):47-50.
    [107]王志伟,吴志超,顾国维,等.平板膜生物反应器操作条件对膜污染特性的影响[J].膜科学与技术,2005,25(5):26-31.
    [108] Bouhablia E H, Ben A R, Bisson H. Fouling Characterization in MembraneBioreactors [J]. Sep. Purif. Technol,2001,22:123-132.
    [109]邹联沛,王宝贞等. SRT对膜生物反应器出水水质的影响研究[J].中国给水排水,2000,16(7):16-18.
    [110] Lee J, Ahn W, Lee C. Comparison of the Filtration Characteristics betweenArrached and Suspended Growth Microorganisms in Submerged MembraneBioreactor [J]. Wat Res,2001,35(10):2435-2445.
    [111] Cleck N. Long Term Performance and Characterization of a MembraneBioreactor in the Treatment of Wastewater High Molecular Weight [D]. Diss.Univ. Cinc.1999.
    [112] Kargi F, Ahmetuygur. Nutrient Removal Performance of a Sequencing BatchReactor as a Function of the Sludge Age [J]. Env Microbial Technol,2002(31):842-847.
    [113]邢传宏,钱易,孟耀斌等.错流式膜生物反应器处理生活污水及其生物学研究[J].环境科学,1997,18(6):23-26.
    [114] Wisniewski C. Membrane Bioreactor for Water Reuse [J]. Desalination,2007,203:15–19.
    [115] Ravanchi M T, Kaghazchi T, Kargari A. Application of Membrane SeparationProcesses in Petrochemical Industry: a Review [J]. Desalination,2009,235:199–244.
    [116] Tam L S, Tang T W, Lau G N, et al. A Pilot Study for Wastewater Reclamationand Reuse with MBR/RO and MF/RO Systems [J]. Desalination,2007,202:106–113.
    [117] Qin J, Oo M H, Tao G, et al. Feasibility Study on Petrochemical WastewaterTreatment and Reuse Using Submerged MBR [J]. J. Membr. Sci,2007,293:161–166.
    [118] Pendashteh A R, Abdullah L C, Fakhru’l-Razi A, et al. Evaluation ofMembrane Bioreactor for Hypersaline Oily Wastewater Treatment [J]. Proc.Saf. Env Prot.,2012,9:45–55.
    [119] Soltani S, Mowla D, Vossoughi M. Experimental Investigation of Oily WaterTreatment by Membrane Bioreactor [J]. Desalination,2010,250:598–600.
    [120]樊耀波.膜生物反应器净化石油化工污水的研究[J].环境科学学报,1997,17(1):68-74.
    [121]冯超群,魏强,王锋. MBR工艺在含油废水处理中的应用[J].中外能源,2011,16(5):115-118.
    [122]闫广彬.水解酸化-MBR处理稠油污水的实验研究[D].青岛,中国海洋大学:2011.
    [123]田慧颖,张兴文,张捍民,等. MBR-BAF处理采油废水研究[J].膜科学与技术,2004(4):44-47.
    [124]李勇,崔峰.中空纤维膜生物反应器处理炼厂浮选池出水试验研究[J].油气田环境保护,2002,12(2):14-16.
    [125]彭若梦,王艳. A/O膜生物反应器处理炼油废水并回用[J].中国给水排水,2002,18(8):78-80.
    [126]王连湘,李国一,乐毅,等.微孔膜生物反应器在港口含油洗涤废水处理工程中的应用[J].交通环保,2002,23(6):22-24.
    [127]郭东红.我国油田化学品的现状与发展前景.精细与专用化学品.2007,15(13):1-4.
    [128] Dong J H, Tian Y, Su X Y, et al. Factors Leading to Instability of Extra-lowPermeability Oilfield Produced Water by Water Characteristic Analysis[C]. Int.Conf. Consum. Electron.2011:1284-1288
    [129]罗澜,张路,赵濉等.大庆原油活性组分的分离、分析及界面活性[J].油田化学,2000,17(2):156~158.
    [130]徐志成,安静仪,张路,赵濉,俞稼镛.原油乳状液油-水界面上活性物的结构和活性[J].石油学报(石油加工),2003,19(5):1-6.
    [131]苏欣颖.特低渗透油田采出水油水乳状液稳定性及破乳技术研究[D].哈尔滨:哈尔滨工业大学,2008:36-37
    [132] Jarusutthirak C, Amy G. Role of Soluble Microbial Products (SMP) inMembrane Fouling and Flux Decline [J]. Env. Sci. Techn,2006,40(3):969-974.
    [133]杨元晖.影响膜生物反应器膜过滤过程的因素[J].机电设备,2003,3:35-37.
    [134]孙孝龙,普红平.新型废水处理技术-膜分离生物反应器(MBR)[J].环境科学与技术,2003,26(5):49-51.
    [135] Qin L, Zhang G, Meng Q, et al. Enhanced Submerged Membrane BioreactorCombined with Biosurfactant Rhamnolipids: Performance for Frying OilDegradation and Membrane Fouling Reduction [J]. Bior. Techn,2012,126:314-320.
    [136] Li Z K, Wrenn B A. Effects of Ferric Hydroxide on the AnaerobicBiodegradation Kinetics and Toxicity of Vegetable Oil in FreshwaterSediments [J]. Water Res,2004,38:3859-3868.
    [137] Scholz, W, Fuchs, W. Treatment of Oil Contaminated Wastewater in aMembrane Bioreactor. Water Res,2000,34,3621-3629.
    [138] Singh G, Song L. Influence of Sodium Dodecyl Sulfate on Colloidal FoulingPotential during Ultrafiltration [J]. Colloids Surf. A: Physicochem. Eng.Aspects,2006,281:138-146.
    [139] Sun C, Leiknes T, Weitzenbock J, et al. The Effect of Bilge Water on aBiofilm–MBR Process in an Integrated Shipboard Wastewater treatmentsystem [J]. Desalination,2009,236:56–64
    [140] Sun C, Leiknes T, Weitzenbock J, et al. Development of a Biofilm-MBR forShipboard Wastewater Treatment: The Effect of Process Configuration [J].Desalination,2010,250:745–750
    [141]唐利,邱江平,李旭东,等.复合混凝剂对MBR工艺中污泥性能的影响研究[J].中国给水排水,2009,25(13):121-125.
    [142] Song K G, Kim Y, Ahn K H, Effect of Coagulant Addition on MembraneFouling and Nutrient Removal in a Submerged Membrane Bioreactor [J].Desalination,2008,221:467-474.
    [143] Zahid W M, El-Shafai S A. Impacts of Alum Addition on the TreatmentEfficiency of Cloth-media MBR [J]. Desalination,2012,301:53-58.
    [144] Leiknes T. The Effect of Coupling Coagulation and Flocculation withMembrane Filtration in Water Treatment: A Review [J]. J. Envir. Sci,2009,21:8-12.
    [145]赵英,顾平,刘志阳.高分子絮凝剂对膜生物反应器的影响[J].给水排水,2008(34):181-184.
    [146] Song K, Kim Y, Ahn K. Effect of Coagulant Addition on Membrane Foulingand Nutrient Removal in a Submerged Membrane Bioreactor [J]. Desalination,2008,221:467-474.
    [147] Lesjean B, Gnirss R, Adam C. Process Configurations Dapted to MembraneBioreactors for Enhanced Biological Phosphorous and Nitrogen Removal [J].Desalination,2002,149:217~224
    [148]邹联沛,薛罡,王宝贞.膜生物反应器中化学除磷的研究[J].中国给水排水,2002,18(11):19~21.
    [149]郑祥,刘俊新.膜生物反应器的技术经济分析[J].给水排水.2002,28(3):105-108.
    [150]刘锐.一体式膜-生物反应器的水动力学特性[J].环境科学,2000,21(5):47-50.
    [151]郑祥,朱小龙,樊耀波.膜生物反应器处理毛纺废水的中试研究[J].环境科学,2000,22(4):79-82.
    [152]顾平.中空膜生物床处理生活污水的中试研究[J].中国给水排水,2000,16(3):5-8.
    [153]付婉霞,冯翠敏.一体式膜生物反应器用于中水处理的经济效益分析[J].给水排水,2002,28(8):53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700