用户名: 密码: 验证码:
斑岩型铜钼矿的浮选新药剂与新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铜钼资源中大部分属于多金属复杂矿,依靠现有浮选药剂和浮选工艺,往往不能实现多金属铜钼矿资源的综合高效回收,因此,迫切需要进行新型捕收剂和浮选工艺的研究与开发。
     论文以正己酰氯为原料合成了N,N-二正烷基-N'-烷基酰基硫脲(简称DU),合成条件为:正己酰氯:KSCN:仲胺:PEG-400(摩尔比)=1:1.08:1.10:0.03,取代反应时间为4h,加成反应时间为2h,反应温度为20℃,产品为固体,产率为96.94%,纯度为91.10%,收率为88.31%。以苯甲酰氯为原料合成了系列N-(烷氧基丙基)-N’-苯甲酰基硫脲(简称MU),合成条件为:苯甲酰氯:KSCN:胺:PEG-400(摩尔比)=1:1.50:1.10:0.03,取代反应时间1h,加成反应时间1h,反应温度为20℃,产品为固体,产率为80.13%,纯度为83.28%,收率为76.73%。采用紫外吸收光谱、红外光谱、核磁共振氢谱和碳谱等分析测试方法对酰基硫脲产品进行了结构表征。采用紫外光谱和红外光谱分析,考察了酰基硫脲产品与金属离子的作用;采用紫外光谱分析考察了溶液pH值、捕收剂初始浓度等因素对DU在不同粒级黄铜矿表面吸附的影响。通过无捕收剂、中性油和非极性离子等浮选研究,从Pearson软硬酸碱理论、量子化学计算、分子轨道理论、红外光谱、界面化学性能参数、接触角、表面能、界面作用、矿物浮选行为,以及工艺流程与药剂试验研究等方面着手,从捕收剂复配的角度,以合成的DU和MU为基本原料,合成了CSU-300复配捕收剂。
     德兴斑岩型铜钼矿等可浮研究表明:在一段磨矿条件下铜钼的等可浮选,粗选的磨矿细度为-0.074mm为65%,粗选石灰用量1000g/t(pH=9.0),捕收剂CSU-300的用量为64g/t,获得含钼0.294%,含铜15.32%的钼铜粗精矿,钼的回收率达79.43%,铜的回收率为83.23%。铜钼混合精矿精选试验表明:硫化钠用量为300g/t,硫化钠精选铜钼分离工艺比空白精选铜钼分离工艺能更好地实现一段磨矿钼的等可浮选,获得含钼为1.22%和铜25.92%的铜钼粗精矿,钼回收率为83.85%,钼富集比高达142倍。硫化钠精选铜钼分离工艺选钼能大幅增加钼的选别指标,其铜和金的选别指标也优于混合浮选和快速浮选两种现场生产工艺流程。与混合浮选和快速浮选相比,钼回收率增加23.68%和14.72%,钼的富集比增加3.3~2.8倍。铜的总回收率提高1.56%和2.5%;金的回收率提高3.11%和3.96%。等可浮选钼新工艺的工业试验表明:对于含铜0.381%、含钼0.0064%的原矿,获得了含铜25.47%、含钼0.655%钼粗精矿,钼回收率为77.06%,钼一段富集比为101.72;铜一段总回收率为87.56%,硫一段总回收率为76.35%。与同期磨1工段0~1#系统对比,铜、硫、金的一段浮选指标均有所改善;与同期磨2和磨3工段选钼指标对比,钼回收率提高了24.35个百分点,钼富集比提高了62.83。对等可浮选钼新工艺产生的钼粗精矿进行了铜钼分离闭路试验结果表明,采用CSU-300捕收剂等可浮选钼工艺,由于钼粗精矿品位较高,并且未受黄药等强力捕收剂的作用,铜钼分离比较容易。在硫化钠总用量为18.5kg/t,水玻璃用量1.2kg/t,煤油130g/t的药剂条件下,可以获得钼品位48.83%、含铜0.83%的钼精矿,钼回收率90.55%;铜精矿品位27.08%,铜回收率99.96%。
     对多宝山斑岩型铜钼矿,在粗磨情况下,采用钼铜等可浮,合适的一段磨矿细度为-0.076mm(-200目)占68%左右;捕收剂CSU-300用量为30~40g/t;起泡剂2#油用量为14g/t;抑制剂石灰用量为1.5kg/t;兼顾中矿返回对浮选过程的影响,在等可浮选作业中,捕收剂、起泡剂匹配关系是CSU-300:35g/t,2#油:14g/t。强化选铜合适的再磨细度是-0.045mm(-325目)为96%,采用丁基黄药与丁胺黑药(3:1)为捕收剂,铜钼等可浮选-强化选铜试验方案,获得铜28.77%、钼0.80%的铜钼混合精矿,钼回收率达90.71%以上;得到了铜的品位为15.88%,回收率9.77%的铜精矿,铜精矿合并后,铜品位达26.36%,回收率达86.76%。铜钼分离试验表明:合适的再磨细度为-0.045mm(-325目)占98%,适宜的硫化钠用量在1000g/t,适宜的六偏磷酸钠用量为250g/t(50×5)。采用摇床进行精选后,钼精矿品位为48.63%,其中含铜为0.73%,钼的回收率为87.40%;得到了含碳为18.6%、钼为3.31%、铜为1.30%的碳钼中矿,相对于原矿而言,该部分碳钼中矿产率小(0.036%)。扩大连选试验研究表明:采用推荐流程与药剂制度下,铜品位28.26%、钼品位0.13%、金品位8.38g/t和银品位102.52g/t的铜精矿,铜、金和银回收率分别为92.60%、78.31%和63.58%;以及含钼为48.55%、铜为0.78%的钼精矿,钼综合回收率可达70.65%以上;另外获得产率较低的含碳为19.25%、钼为5.19%和铜为1.93%的碳钼中矿。10t/d规模的半工业试验研究表明:在推荐流程与药剂制度下,得到含铜为24.33%、钼为0.19%、金为8.91g/t和银为150.56g/t的铜精矿,其中铜、金和银回收率分别为72.79%、65.55%和60.11%;含钼为47.14%和铜为0.88%的钼精矿,钼综合回收率可达71.52%,钼的富矿比达到4000倍;产率相对低的含碳为18.76%、钼为4.93%和铜为2.98%的碳钼中矿。
Most of the copper-molybdenum resources in China are multi-metal complex ores, however, the existing flotation reagents and flotation processes for copper-molybdenum polymetallic complex sulphide ores often fail to achieve appropriate comprehensive recovery of resources. Therefore, it is an urgent need to research and develop new collectors and flotation processes.
     N,N-di-n-alkyl-N'-alkyl acylthiourea (DU) was synthesized using n-hexanoyl chloride as a raw material, and the synthesis conditions were as following:n-hexanoyl chloride:KSCN:secondary amine:PEG-400(molar ratio)=1:1.08:1.10:0.03, substitution reaction of4h, addition reaction of2h, reaction temperature of20℃. The product is a solid product with productivity of96.94%, purity of91.10%, and yield of88.31%. N-(alkoxy-propyl)-N'-benzoyl-thiourea (MU) was synthesized using benzoyl chloride as a raw material, and the synthesis conditions were as following:benzoyl chloride:KSCN:amine:PEG-400(molar ratio)=1:1.50:1.10:0.03, substitution reaction of1h, addition reactions of1h, the reaction temperature of20. The product is a solid product with productivity of80.13%, its was purity83.28%, and the yield was76.73%. UV absorption spectroscopy, infrared spectroscopy,1H NMR and I3C NMR were taken to characterize the acylthiourea products. UV spectra and infrared spectroscopy means were performed to investigate the interaction of acylthiourea and metal ions; the effect of pH, initial concentration of acylthiourea on the adsorption of acylthiourea on the surface of chalcopyrite with different size fractions were studied with UV spectroscopy analysis. According to flotation without collectors, or with neutral oil and non-polar ion collectors, the flotation behaviors and performance of copper-molybdenum ores were investigated based on Pearson hard and soft acid-base theory, quantum chemistry, molecular orbital theory and with infrared spectroscopy, interfacial chemical performance parameters, contact angle, surface energy and interface action analyses. Base on the results of flotation process and agent studies, compound collector CSU-300was invented, using DU and MU as raw materials.
     The flotation results of Dexing porphyry copper-molybdenum ore showed that Cu-Mo rougher concentrate containing15.32%Cu,0.294%Mo, recovers of Cu83.23%and Mo79.43%was achieved under the condition of rougher grinding fineness-0.074mm65%, roughing lime dosage1000g/t (pH=9.0), the amount of the CSU-300collector64g/t. The concentration result of the Cu-Mo of Dexing Cu-Mo ore indicated that the separation process with sodium sulfide is better than the bank one which can get the Cu-Mo rough concentrate with the index of1.221%Mo,25.92%Cu, the recovery of Mo83.85%,enrichment ratio142. The sodium sulfide cleaning separation process of Cu-Mo not only can improve the beneficiation index of Mo sharply, but also the beneficiation index of Cu and Au are both better than mixing flotation or partly mixing flotation. Compared to mixing flotation or flash flotation, Mo recovery rate was enhanced23.68%,14.72%respectively and enrichment ratio raised3.3to2.8times. The recovery of Cu increased1.56%,2.5%respectively, Au3.11%,3.96%. The industrial tests of flotability ranking flotation of Mo indicated that under the condition of0.381%Cu, Mo0.0064%of Dexing mine, the Mo concentrate could be achieved with Mo0.655%, Cu25.47%, Mo enrichment ratio101.72, the recovery of Mo77.06%. A section total recovery of copper was87.56%, sulfur76.35%. Comparing with the same period in grinding section1#, system0-1#, the flotation indexes of copper, sulfur, gold both have been improved; Comparing with flotation indexes of Mo in grinding section2#and3#of the same period, Mo recovery rate has raised24.35%, Mo enrichment ratio raised62.83. The Cu-Mo Separation test under the small closed-circuit experiment of Mo concentrate produced by preferential flotation of Mo process has been investigated. The result indicated that CSU-300collector used in the preferential flotation of Mo process can make Cu-Mo Separation much easier, due to higher molybdenum rougher concentrate grade and unaffected xanthate the role of other powerful collector. Under the flotation conditions of sodium sulfide18.5kg/t, sodium silicate1.2kg/t, kerosene130g/t, the technical indexes were obtained:the Mo concentrate assays48.83%, Cu0.83%, recovery of Mo90.55%; the copper concentrate assays27.08%, recovery of Cu99.96%.
     For copper-molybdenum mine in Duobaoshan mine in kibbled case, molybdenum, copper and other floating appropriate period of grinding fineness-0.076mm (-200mesh) accounted for about68%; the dosage of CSU-30030~40g/t;2#oil frother14g/t; lime dosage1.5kg/t; considering the influence on the flotation process mixed by mid-core, the matching relationship is CSU-300:35g/t,2oil:14g/t. The ore is floated by the bulk flotation, then concentrates copper by strengthening flotation, the indexes of Cu-Mo mixed concentrate copper grade28.77%molybdenum0.80%and recovery of the Mo90.71%are achieved as well as Cu concentrate contains15.88%Cu, the recovery of Cu9.77%under the condition of rougher grinding fineness-0.0454mm96%, the mixture collector of butyl xanthate butylamine and black drug (3:1). When copper concentrate was mixed, copper grade is26.36%, the recovery86.76%.In order to realize the separation of the Cu-Mo of Duobaoshan copper mine, the Cu-Mo mix concentrate should be re-ground and the reasonable fineness is45μm-98%. In a dosage of Na2S is1000g/t and (NaPO3)6250g/t (50×5).The Mo concentrate containing48.63%Mo,0.73%Cu, the recovery of Mo87.40%as well as C-Mo middling with18.6%C,3.31%Mo,1.30%Cu. Compared with ore, the yield of this middling is less (0.036%). The industrial test results of Duobaoshan Cu-Mo ore indicate that the Cu concentrate can be achieved with the index of Cu grade28.26%, Mo0.13%, Au8.38g/t, Ag102.52g/t and the Mo concentrate contain Cu0.78%, Mo48.55%, Ag recovery63.58%, Cu92.60%, Au78.31%and comprehensive recovery of Mo up to70.65%by under the program flowsheet and the recommended reagent system. At the same time, the C-Mo middling with C19.25%, Mo5.19%, Cu1.93%was obtained. The results of semi-industrial test with the scale of10t/d indicate that the Cu concentrate and the Mo concentrate can be achieved with the index of Cu grade24.33%, Mo0.19%, Au8.91g/t, Ag150.56g/t, Cu recovery72.79%, Au65.55%, Ag60.11%and Mo grade47.14%, Cu0.88%, Mo recovery71.52%, Mo enrichment ratio4000respectively under the program flowsheet and the recommended reagent system. At the same time, the C-Mo middling with C18.76%, Mo4.93%, Cu2.98%was obtained.
引文
[1]Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:Characteristics, distribution, and tectonic controls[J]. Economic Geology,2005,100(5):801-818.
    [2]芮宗瑶,黄崇轲,齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984:1-350.
    [3]孙兴家.辉钼矿的工艺矿物性质[J].有色金属(选矿部分),1982(5):54-58.
    [4]G Alejandra Camacho-Bragado, Jose Luis Elechiguerra, Miguel Jose Yacaman. Characterization of low dimensional molybdenum sulfide nanostructures[J]. Materials Characterization,2008,59(3):204-212.
    [5]周立辉.钼矿选矿工艺与药剂研究[D].长沙:中南大学,2000.
    [6]吴熙群,李世伦,谢珉.西藏玉龙铜矿硫化矿选矿工艺流程的研究[J].矿冶,2000(4):32-37.
    [7]呼振峰.某复杂铜镍硫化矿选矿试验[J].现代矿业,2011(11):13-16.
    [8]Smith R W. Liquid and solid wastes from mineral processing plants [J]. Mineral Processing and Extractive Metullargy Review.1996,16(1):1-22.
    [9]罗惠华,罗廉明,王玉林,等.Y-98捕收剂选金、铜的试验研究[J].金属矿山,2001(3):30-32.
    [10]陈卫新.硫化铜优先浮选的新药剂[J].国外选矿快报,1994(8):13-20.
    [11]熊道陵,陈湘清,蒋玉仁.含钙物质对黄铜矿和黄铁矿浮选行为的影响[J].湖南有色金属,2004,20(6):8-10.
    [12]王忠成.优先浮选提高里伍铜矿铜的回收率[J].四川有色金属,2002(1):40-42.
    [13]王立刚,刘万峰,孙志健,等.蒙古某铜钼矿选矿工艺技术研究[J].有色金属(选矿部分),2011(1):10-13.
    [14]彭会清,熊晨曦,文勤.安徽某难选硫化铜矿石浮选试验研究[J].金属矿山,2006(12):26-28,70.
    [15]田锋,胡保栓,孙运礼,等.难选铜硫矿石部分优先浮选新工艺研究[J].矿产综合利用,2012(3):10-14.
    [16]王世辉.某铜矿铜锌分离新工艺和新药剂的研究[J].有色金属,2011,63(2):214-218.
    [17]周少珍.永平铜矿铜硫等可浮工艺的改造实践[J].有色金属(选矿部分),1998(6):4-6.
    [18]吴熙群,戴芳蓉.含锌铜硫矿石分选研究[J].矿冶,2003,12(1):26-30.
    [19]龚恩毅,周晓文,陈江安.辉钼矿综合回收选矿试验[J].现代矿业,2011(3):87-89.
    [20]刘旭,何章兴,王晖,等.CSU-23捕收剂浮选辉钼矿试验研究[J].中国钼业,2009,33(5):11-13.
    [21]张丽荣.辉钥矿电位调控浮选分离技术研究[D].沈阳:东北大学,2008.
    [22]赵伟,宋翔宇,李翠芬,等.河南某难选辉钼矿选矿工艺研究[J].矿产保护与利用,2010(3):31-35.
    [23]李莹,宋翔宇,高志,等.新型捕收剂GR-713选别某辉钼矿应用研究[J].矿产保护与利用,2012(3):27-29.
    [24]邱丽娜,戴惠新.钼矿的浮选工艺及药剂现状[J].现代矿业,2009(7):22-23.
    [25]王志明.钼镍矿综合处理的方法[P].中国:CN101338365A,2009-05-17.
    [26]杨松荣.对白乃庙铜矿铜钼分离流程的探讨[J].有色矿山,1989(2):25-28.
    [27]骆兆军,张文彬.难选氧化铜矿的多硫化钠硫化浮选研究[C].昆明:云南科技出版社,第四届全国青年选矿学术会议论文集,1996,184-188.
    [28]杨金林,张红梅,何廷树,等.多金属难选钼矿综合回收试验研究[J].矿业快报,2005,21(9):15-17.
    [29]黄济存.氮气在铜钼分选上的作用[J].有色矿山,1994(1):61-63.
    [30]张军成.铜钼矿石的选矿及铜钼分离工艺[J].矿业快报,2006,25(8):13-16.
    [31]杨鹏,刘树贻,陈荩.脉动高梯度磁选分离难选铜钼混合精矿的研究[J].矿冶,1994(2):31-35.
    [32]周旭日,李春菊,周育军.浮选柱一浮选机联合处理铜钼混合精矿的研究[J].矿产保护与利用,2005(3):37-39.
    [33]李迎国,曹进.某大型斑岩型铜钼矿选矿试验研究[J].有色金属(选矿部分),2005(1):14-17.
    [34]王秋霞,李琦,马化龙,等.难选铜钼矿铜钼分离新工艺研究[J].有色金属(冶炼部分),2003(5):18-20.
    [35]冯仲云.烃油XY与煤油的钼粗选对比试验[J].中国钼业,2006,30(2):15-17.
    [36]万宏民,赵笑益,秦靖,等.DH油在辉钼矿浮选中的应用[C].有色金属工业科技创新-中国有色金属学会第七届学术年会论文集,2008:187-190.
    [37]任骊东.选钼捕收剂的应用研究与实践[J].中国钼业,2006,30(3):18-20.
    [38]朱一民.辉钼矿浮选药剂[J].国外金属矿选矿,1998(11):7-11.
    [39]李长忱,李枢本.硫单甘酯浮选辉钼矿工业试验[J].有色金属(选矿部分),1984(1):56.
    [40]黄济存.浮选药剂PF-100的研究[J].有色金属(选矿部分),1986(6):26-31.
    [41]王永斌.胺基乙基黄原酸氰乙酯化合物和制备方法及其捕收剂.中国:102464600A[P].2012-05-23.
    [42]曾湘晖,曹文仲,占昌朝.烷基硫氨酯系列捕收剂的合成及性能研究[J].化工时刊,2006,20(3):19-21.
    [43]谭鑫.乙硫氨酯合成的新工艺研究[D].长沙:中南大学,2011.
    [44]Bishop M D, Gray L A. Catalytic synthesis of thionocarbamates from xanthates and amines[P]. US:5041599,1991-08-20.
    [45]J R Gardner, R Woods. An Electrochemical Investigation of the Natural Floatability of Chalcopyrite[J]. International Journal of Mineral Processing, 1979,6(1):1-16.
    [46]Buck AN, Woods R. Investigation of the Surface Oxidation of Sulfide a Mineral via ESCA and Electrochemical Techniques[C]. Proceedings of an Engineering Foundation Conference. New York:Engineering Foundation,1983:3-17.
    [47]Susana Britoe Abreu, William Skinner. Predicting the surface chemistry contribution to the flotation recovery of chalcopyrite by ToF-SIMS[J]. Minerals Engineering,2011,24(2):160-168.
    [48]Norbert M Bikales. Cyanoethyl Alkylxanthate Esters[P]. US:3226416, 1965-12-28.
    [49]M Beji, H Sbihi, A Baklouti, et al. Synthesis of F-alkyl N-sulfonyl carbamates and thiocarbamates[J]. Journal of Fluorine Chemistry,1999,99(1):17-24.
    [50]Unger, Kim North. Alkyl mercaptans as collector additives in froth flotation[P]. South African:ZA8503956,1986-1-29.
    [51]Wang S S, Magliocco L G. Process of alkoxy and aryloxy isothiocyanate preparation[P]. US:5194673,1993-03-16.
    [52]Lewellyn M E, Wang S S, Strydom P J. Novel process of alkoxy and aryloxy isothiocyanate preparation[P]. US 4778921,1988-10-18.
    [53]Fu Yun-lung, Strydom P J. Process for the production of isothiocyanate derivatives[P]. US:4659853,1987-04-21.
    [54]Kulkarni S V, Desai V C. Process for manufacture of N-alkoxy (or aryloxy) carbonyl isothiocyanate derivatives in the presence of N,N-dialkylarylamine catalyst and aqueous solvent[P]. US:6184412,2001-02-06.
    [55]Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society.1963,85(22):3533-3539.
    [56]Glembotskii A V. Theoretical principles of forecasting and modifying collector properties[J].Tsvet. Metal,1977,50(4):61-65.
    [57]G Hangone, D Bradshaw, Z Ekmekci. Flotation of a copper sulphide ore from Okiep using thiol collectors and their mixtures[J]. The Journal of The South African Institute of Mining and Metallurgy,2005,105:199-206.
    [58]周为吉,刘如意.含砷铅锌矿选矿工艺研究及生产实践[J].矿产保护与利用,1998(5):32-35.
    [59]Di Biase, Stephen A, Bush, et al. Froth flotation of ores by using carbamates collectors[P]. US:P5015368,1991-05-14.
    [60]王淀佐,顾帼华,刘如意.方铅矿-石灰-乙硫氮体系电化学调控浮选[J].中国有色金属学报,1998,8(2):322-326.
    [61]彭会清,秦磊,胡海祥,等.新型硫化矿捕收剂PLQ1的合成及选铜试验研究[J].矿业研究与开发,2011(2):38-40,66.
    [62]李文风,陈雯.一种新型硫化矿捕收剂-二甲基二硫代氨基甲酸丙烯腈酯的合成及应用[J].金属矿山,2010,39(7):55-56,86.
    [63]胡建强,杜占合,姚俊兵.二丁基二硫代氨基甲酸酯的合成及其性能评定[J].石油化工腐蚀与防护.2006,23(6):10-12.
    [64]何晓娟,张新普,张军,等.一种亚甲基双(二丁基二硫代氨基甲酸酯)的用途.中国:102019232A[P].2011-04-20.
    [65]朱一民.异丁基铵黑药的合成及浮选效果[J].金属矿山,2010,39(9):68-70.
    [66]V A Chanturiya, T N Matveeva, L B Lantsova. Investigation into Products of Dimethyl Dithiocarbamate and Xanthate Sorption on Sulfide Minerals of Copper-Nickel Ores[J]. Journal of Mining Science,2003,39(3):281-286.
    [67]翟爱峰,刘炯天.硫化铜矿物实验室试验浮选过程模型的建立与优化[J].有色金属(选矿部分),2012(5):44-48.
    [68]刘广义,钟宏,戴塔根.乙氧羰基硫代氨基甲酸酯弱碱性条件下优先选铜[J].中国有色金属学报,2006,16(6):1108-1114.
    [69]Liu Guangyi, Zhong Hong, Dai Taigen. The separation of Cu/Fe sulfide minerals at slightly alkaline conditions by using ethoxylcarbonyl thionocarbamates as collectors:theory and practice[J]. Minerals Engineering,2006,19(13): 1380-1384.
    [70]Guangyi Liu, Hong Zhong, Tagen Dai. Investigation of the selectivity of ethoxylcarbonyl thionocarbametes during the flotation of copper sulfides[J]. Minerals and Metallurgical Processing,2008,25(1):19-24.
    [71]袁露,钟宏,刘广义,等.N,N'-二乙氧羰基-O,O'-烷基二硫氨酯的合成及表征[J].高等学校化学学报,2011,32(7):1541-1544.
    [72]栾和林.新型捕收剂PAC系列产品的研制与应用[J].有色金属,1998,50(3):33-39.
    [73]栾和林.新型捕收剂PAC铜锌分选性能初探[J].有色金属(选矿部分),1997(5):28-32.
    [74]王玲,杨军臣,栾和林,等.采用捕收剂PAC提高里伍铜矿浮选指标[J].有色金属,2002,54(2):70-73.
    [75]Hope G A, Buckley F M, Munce C G, Woods R. Gold enhanced spectro electro-chemical investigation of 2-mercaptobenzothiazole, isopropyl xanthate and butylethoxycarbonylthiourea adsorption on minerals [J]. Minerals Engineering,2007,20(10):964-969.
    [76]Nagaraj D R, Lewellyn M E, Wang S S, et al. New sulfide and precious metals collectors for acid, neutral and mildly alkaline circuits [C]. In:Forssberg, E.(Ed.), Proceedings of the XVIth International Mineral Processing Congress, Stockholm Elsevier, Amsterdam,1988:1221-1232.
    [77]Nagaraj D R, Basilio C I, Yoon R H. The chemistry and structure-activity relationship for new sulphide collectors [M]. In:Dobby, G S., Rao, S. R.(Eds..), Proceedings of the International Symposium on Processing of Complex Ores, Halifax, August 20-24. Pergamon Press, London,1989:157-166
    [78]Fairthorne G, Fornasiero D, Ralston J. Interation of thionocarbamate and thiourea collectors with sulfide minerals:a flotation and adsorption study [J]. International Journal of Mineral Processing,1997,50(4):227-242
    [79]D Fornasiero, D Fullston, C Li, et al. Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution[J]. International Journal of Mineral Processing,2001,61(2):109-119.
    [80]刘广义,钟宏,戴塔根,等.提高德兴铜矿高氧化率矿石铜金钼回收率的研究[J].矿冶工程,2005,25(5):23-26.
    [81]刘广义,钟宏,戴塔根,等.中碱度条件下乙氧羰基硫脲浮选分离铜硫[J].中国有色金属学报,2009,19(2):389-396.
    [82]刘广义,钟宏.硫化矿浮选捕收剂及二酰基双硫脲应用方法和制备方法[P].中国:CN101337206,2009-01-07.
    [83]钟宏,刘广义,王帅.双酯基二异硫氰酸酯衍生物在硫化矿浮选中的应用及 其制备方法[P].中国:CN101337205,2009-01-07.
    [84]钟宏,刘广义,袁露,等.一种浮选捕收剂及其制备方法[P].中国:CN101698161A,2010-04-28.
    [85]刘广义,钟宏,袁露,等.一种矿物浮选捕收剂[P].中国:CN101757985A,2010-06-30.
    [86]朱建光,朱一民.2011年浮选药剂进展[J].有色金属(选矿部分),2012(3):65-73.
    [87]王德庭.高效捕收剂CSU-A在德兴大山选矿厂的应用实践[J].湖南有色金属,2011,27(5):13-15,62.
    [88]欧乐明,冯其明,沈刚.捕收剂CSU-A与黄铜矿作用机理[J].中南工业大学学报(自然科学版),2003,34(6):603-605.
    [89]程新潮,周高云,李绍民.新选择性铜捕收剂BK-330的应用研究[J].有色金属(选矿部分),2006(4):37-40.
    [90]孙志健,程新朝,新型捕收剂BK-330优先浮选黄铜矿的研究[J].矿冶工程,2007(2):5-8.
    [91]程新朝,周高云,李绍民,新捕收剂BK-330优化选矿流程结构的研究[J].矿冶工程,2007(1):22-27.
    [92]陈经华.捕收剂BK310浮选钼矿石[J].有色金属(季刊),2008,60(3):92-94.
    [93]叶力佳.安徽某低品位铜钼矿石的选矿试验研究[J].有色金属(选矿部分),2009(1):4-7.
    [94]徐秋生.F药剂代替煤油选钼实践[J].有色金属(选矿部分),2006(6):40-47.
    [95]张美鸽,刘迎春,李九州,等.YC捕收剂及其各馏分对辉钼矿的试验研究[J].金属矿山,2006(11):45-46.
    [96]李崇德,周兵仔,董家辉,等.铜捕收剂EP浮选永平铜矿石的工业应用[J].有色金属(选矿部分),2006(3):46-49.
    [97]方夕辉,邱廷省,熊淑华,等.用高效捕收剂QF提高某金铜矿金回收率的研究[J].矿业研究与开发,2006,26(1):34-36.
    [98]代淑娟,孟宇群,陈宏,等.提高某镍业公司选厂镍精矿品位的研究[J].金属矿山,2006(6):40-43.
    [99]钟宏,刘广义,夏柳荫,等.一种用于斑岩铜钼矿浮选的组合捕收剂及其浮选方法[P].中国:CN101844107A,2010-09-29.
    [100]D. Malhotra, R. M. Roweand, A. K. Bhasin. Evaluation of collectors for molybdenite flotation[J]. Miner. Metall. Process,1986,3(3):184-186.
    [101]朱建光,杜新路,王升鹤.N-132选钼捕收剂浮辉钼矿试验[J].中国矿山工 程,2000,29(4):30-32.
    [102]周立辉,蒋玉仁,薛玉兰,等.几种辅助捕收剂对某难选钼矿浮选指标的影响[J].有色矿山,2000,29(3):24-27.
    [103]张美鸽,张学武,俞国庆,等.新型捕收剂TBC选钼试验研究[J].有色金属(选矿部分),2005(2):42-44.
    [104]刘旭,何章兴,王晖,等.CSU-23捕收剂浮选辉钼矿试验研究[J].中国钼业,2009,33(5):11-13.
    [105]王选毅,陈晓青,余江鸿,等.选钼新药剂BK4的选矿试验研究[J].甘肃冶金,2006,28(4):12-14.
    [106]李崇德,周兵仔,申其鸿.汤家坪钼矿浮选工艺流程研究[J].有色金属(选矿部分),2006(6):6-10.
    [107]喻连香.南方某钼矿的选矿试验研究[J].中国钼业,2007,31(3):14-16.
    [108]张树宏.某钼矿浮选工艺试验研究[J].矿产综合利用,2008(1):10-14.
    [109]邹霓,高玉德,王国生.广东某钼矿浮选试验研究[J].矿产综合利用,2009,(6):6-9.
    [110]蔡小华,张国林.无溶剂一锅法合成1,4-二氢吡啶[J].有机化学,2005,25(8):930-933.
    [111]王积涛,袁耀锋,许育明,等.N-二茂铁甲酰基-N'-对乙酰基苯基硫脲的晶体及分子结构[J].化学学报,1996(1):32-37.
    [112]王积涛,袁耀锋,许育明,等.酰基硫腮分子内氢键与取代基效应的定量关系[J].高等学校化学学报,1995,16(8):1233-1236.
    [113]刘邦瑞.浮选理论基础(三)捕收剂在矿物表面的化学吸着及捕收作用机理[J].云南冶金,1980(6):45-50.
    [114]陈立.辉钼矿浮选体系中的界面相互作用研究[D].长沙:中南大学,2007.
    [115]Luner P E, Oh E. Characterization of the surface free energy of cellulose ether films [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,181(1-3):31-48.
    [116]Hollander A. On the Selection of Test Liquids for the Evaluation of Acid-Base Properties of Solid Surfaces by Contact Angle Goniometry[J]. Journal of Colloid and Interface Science,1995,16(2):493-496.
    [117]Morra M. Some Reflection on the Evaluation of the Lewis Acid-Base Properties of Polymer Surfaces by Wetting Measurements [J]. Journal of Colloid and Interface Science,1996,182(1):312-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700