用户名: 密码: 验证码:
腐植酸基铁矿球团粘结剂的构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:粘结剂是生产铁矿球团的关键性辅助原料,其性能优劣直接关系到球团矿质量的好坏。腐植酸类物质是含有羧基、羟基以及苯环结构的有机高分子聚合物,已成功应用于直接还原球团的生产。目前,腐植酸基粘结剂在铁精矿表面的作用机理尚不完全明确。此外,由于对粘结剂的物化特性特别是其结构特征缺乏系统的认识和研究,尚未建立粘结剂的结构与性能关系。
     本论文利用我国不同低阶变质煤资源(褐煤和风化煤),制备出了以黄腐酸、胡敏酸为功能组分的腐植酸基粘结剂;采用红外光谱(FTIR)、环境扫描电镜(ESEM)、原子力显微镜(AFM)、热重-差热(TG-DSC)、X射线光电子能谱(XPS)等手段,深入研究了粘结剂功能组分的性质及其在铁矿表面的吸附行为;运用量子化学中的密度泛函理论(DFT),定量计算了粘结剂与不同类型铁精矿中铁矿物作用的能量判据△ETRT,揭示了粘结剂分子空间因素对其亲固能力的影响;根据粘结剂功能组分的结构与性能关系,建立了铁矿球团用腐植酸基粘结剂的技术要求。本论文的主要结论如下:
     (1)黄腐酸和胡敏酸之间的理化性质存在明显差异。黄腐酸分散性好、芳构化程度低、分子量小,而含氧官能团含量较高。胡敏酸的非极性芳香官能团含量高,而含氧官能团含量较低。胡敏酸的热稳定性好,热分解区间较宽。
     (2)黄腐酸和胡敏酸在铁精矿表面发生化学吸附,且前者的吸附作用较强。黄腐酸、胡敏酸在铁精矿表面的吸附符合Freundlich式和二级动力学模型,理论最大吸附量分别为8.92×10-3mg·cm-2和2.70×10-3mg·cm-2。吸附黄腐酸或胡敏酸后,铁精矿中Fe2p3/2的电子结合能变化量分别为-1.12eV和-0.57eV,净脱附热分别为-87.0J·g-1和-26.7J·g-1。粘结剂功能组分在铁精矿表面呈网状、纤维状或堆簇状吸附。黄腐酸的存在能够促进胡敏酸在铁精矿表面的吸附。
     (3)DFT计算表明,羧基的亲固能力大于酚羟基。随着极性基团数量的增加,粘结剂的亲固能力提高。对粘结剂分子来说,非极性芳香烃基越大,其化学作用越强,但其静电力作用越弱。
     粘结剂主要通过化学作用与矿物表面发生亲固反应。粘结剂与矿物晶胞表面的亲固能力从强到弱依次为FeTiO3、Fe3O4、Fe2O3.对于粘结剂与矿物晶胞表面之间的作用力来说,正配键共价作用△E2RT对能量判据△TRT的贡献最大,静电力作用△E1RT的贡献最小。
     (4)黄腐酸的吸附性能、粘结性能与其光密度比(E4/E6)呈负相关性。黄腐酸分子量越大或芳构化程度越高,其吸附、粘结性能越强。胡敏酸的吸附性能、粘结性能与其E4/E6呈正相关性。胡敏酸分子量越小或芳构化程度越低,其吸附、粘结性能越强。腐植酸分子量过大或过小均不利于其吸附、粘结性能。当黄腐酸、胡敏酸的分子量分别接近600Da和1500Da时,二者的吸附、粘结性能最好。当黄腐酸、胡敏酸的分子量为最优值时,腐植酸分子量趋于1410~1490Da。
     铁矿球团用腐植酸基粘结剂的技术要求为:1)腐植酸的E4/E6接近3.86;2)腐植酸含量(容量法)为40%~50%;3)适宜的胡富比因铁精矿类型不同而异,对于普通磁铁精矿、钒钛磁铁精矿、赤铁精矿来说,最佳胡富比分别接近8:2、7:3和6:4。
     (5)针对普通磁铁精矿、钒钛磁铁精矿和赤铁精矿,制备出3种腐植酸基粘结剂。粘结剂用量为0.75%的球团矿的抗压强度超过膨润土用量为2.0%的球团矿,与膨润土球团相比铁品位提高1.0%以上、冶金性能相当。图88幅,表44个,参考文献198篇
Abstract:Binder is indispensable in the production of iron ore pellets, which can dramaticly influence the quality of finished products. Humic substances as a type of organic macromolecule polymer consist of carboxyl groups and hydroxyl groups, which should be further researched because of their ideal adhesive molecular conformation. At present, functional mechanisms of humic substances on the surface of iron ore is not fully clear. Furthermore, structure-performance relationships of humic substances based binder have not yet been clearly established because of few researches on their physical and chemical properties especially on the structure characteristics.
     A type of humic substances based binders are prepared from lignite and weather coals. The binders mainly consist of two active fractions including fulvic acid and humic acid. The properties of binder active fractions and their functional mechanisms were studied by adopting infrared spectroscopy (FTIR), environment scanning electron microscope (ESEM), atomic force microscope (AFM), thermogravimetric-differential thermal analysis (TG-DSC) and X-ray photoelectron spectroscopy (XPS) et.al; The energy criterion△ETRT between binder and target minerals were calculated using the density functional theory (DFT), molecular functional assembly and binder molecular model; And most of all, the technical requirements for humic substances based binder are proposed based on the structure-performance relationships of binder active fractions. The main conclusions of this research are summaried as follows:
     (1) There are obvious differences in physical and chemical properties between binder active fractions (fulvic and humic aicds). Compared to humic acid, Fulvic acid is characterized by better dispersibility, relatively low degree of aromatization and small molecular weight but relatively high content of oxygen-containing functional groups. Humic acid processes good thermal stability and wider thermal decomposition range.
     (2) Chemical adsorption occurs between binder active fractions and iron concentrate surface, indicating the adsorption of fulvic acid is stronger. The adsorption of binder is more accord with Freundlich model and second order kinetics. The theoretical maximum adsorption amount of fulvic and humic acids is respectively8.92×10-3mg·cm-2and2.70×10-3mg·cm-2. Electronic binding energy variation of Fe2p3/2after adsorption of fulvic and humic acids are-1.12eV and-0.57eV, respectively. The net desorption energy of fulvic and humic acids is respectively-87.0J/g and-26.7J/g. The active fractions adsorbs on the surface of iron concentrates in the shape of net, fibrous or clusters. The adsorption of humic acid can be enhanced by fulvic acid.
     (3) DFT calculation demonstrates that, compared to phenolic hydroxyl group, carboxyl group performs better solid-affinitive capability. The solid-affinitive capability of binder increases with the increase of the number of polar groups. For binder molecule, the enlargement of non-polar aromatic hydrocarbon can enhance the capacity of chemical adsorption, but also result in decrease of electrostatic forcing.
     Reagent active equation and energy criterion demonstrates that binder molecule adsorbs on mineral surface with chemical reaction as deciding effort. The order of solid affinitive capability of binder with three target minerals follows FeTiO3> Fe3O4> Fe2O3. For interaction between binder and target minerals, the contribution of positive covalent coordination bond△E2RTT to energy criterion△ETRT is biggest, while electrostatic forcing△E1RT is smallest.
     (4) The adsorption and subsequent binding strengths are negative correlation with E4/E6of fulvic acid. The performance of fulvic acid is increased with increasing its molecular weight. The adsorption and binding strengths are positive correlation with E4/E6of humic acid. The performance of humic acid is increased with decreasing its molecular weight. The molecular weight which is too large or too small is unfavorable to the adsorption and binding strengths of humic substances. The performance of active fractions performs better when the molecular weight of fulvic acid and humic acids is respectively600Da and1500Da. The idea range of molecular weight of humic substances is from1410Da to1490Da.
     The technical requirements for humic substances based binder are proposed by following:1) E4/E6of humicsubstances should be close to3.86;2) The content of humic substances should be in the range of40%to50%;3) For magnetite, V-Ti containing magnetite and hematite, the mass ratio of humic acid to fulvic acid should be close to8:2,7:3and6:4.
     (5) For magnetite, V-Ti containing magnetite and hematite concentrates, three kinds of binders are prepared. Compared to those pellets prepared with2.0%bentonite, the pellets with0.75%novel binder are characterized by1.0%higher TFe grade, better compression strength and the similar metallurgical properties.
引文
[1]张寿荣.21世纪前期钢铁工业的发展趋势及我国面临的挑战[J].见:2007中国钢铁年会论文集,北京:冶金工业出版社,2007:1-7.
    [2]王丽娟.关于钢铁工业发展循环经济规划目标的研究[J].冶金经济与管理,2008,(6):10-12.
    [3]全钰嘉.钢铁冶金百科全书[M].北京:冶金工业出版社,2001:472~477.
    [4]Kotobu Nagai. Science and technology of steel in the century [J]. In:ASIA STEEL'2000. The Chinese Society for Metals, Beijing,2000:21-35.
    [5]袁文.2007年全球粗钢产量达到13.435亿吨[J].冶金管理,2008,(1):17-18.
    [6]国际钢铁协会.粗钢产量[DB/OL]. http://www.worldsteel.org/index.php, 2011.
    [7]国际钢铁协会.粗钢产量[DB/OL]. http://www.worldsteel.org/index.php, 2012.
    [8]陈芳.中国钢铁工业发展报告[R].中国钢铁工业协会,2008,3,12.
    [9]李士琦.冶金工程技术学科的研究现状与发展前景[J].中国冶金,2008,1:4-7.
    [10]中国金属学会.冶金工程技术学科发展报告[R].北京:中国科学技术出版社,2009,4.
    [11]邓虹峰.炼铁工艺创新对钢铁工业发展的影响[J].冶金经济与管理,2008,(1):35-39.
    [12]王维兴.高炉炼铁精料的内涵[J].中国冶金,2001,51(2):20-24.
    [13]叶匡吾.精料、炼铁和降低钢铁产品成本[J].烧结球团,2003,28(7):1-3.
    [14]王维兴.炼铁炉料结构技术的发展[J].中国钢铁业,2006,(8):24-25.
    [15]沙永志.国外炼铁技术发展综述[C].见:2007年钢铁学术会议论文集,成都:2007,1-5.
    [16]刘文权.对我国球团矿生产发展的认识和思考[J].炼铁,2006,25(3):10-14.
    [17]叶匡吾.欧盟高炉炉料结构评述和中国球团生产的进展[J].中国冶金,2005,15(10):1-3.
    [18]白胜庆.中国和世界钢铁企业发展新动态[J].发展动态,2008,(4):40- 42.
    [19]Sastry K V S, Fuerstenau D W. Role of binders during pelletization of iron ore concentrate-pellet growth and strength aspects [C]. Proceedings of 4th international Symposium on Agglomeration, Toronto,1985, p41.
    [20]Ripke S J. Advance in iron ore pellectization by understanding bonding and strengthening mechanisms [D]. America:Mechigan Technological University, 2002.
    [21]Lyons R G, Kundrat D M, Myers J C, Wise D A. Evaluation of taconite pellets made with an organic binder [C], Proceedings of 45th Ironmaking Conference, Washington,1986, p31.
    [22]Ball D F, Dartnell J, Grieve A, Wild R. Agglomeration of iron ores [D]. American Elsevier Publishing Company, New York,1973.
    [23]张汉泉.膨润土在铁矿氧化球团中的应用[J].中国矿业,2009,18(8):99-102.
    [24]Dennis L M, David J Englund. Development and production of organic-limestone pellets[C]. Iron-making conference proceeding,1989,715-732.
    [25]Haas A L, Aldinger J A, Zahl R K. Effectiveness of organic binders for iron ore pelletization[R], Report of Investigations, United States Bureau of Mines, No.9230,1989.
    [26]Allen A P, The role of binders in the agglomeration of minerals [C]. Proceedings of 5th International Symposium on Agglomeration, Brighton,1989, p215.
    [27]黄桂香.应用新型有机粘结剂制备氧化球团的研究[D].长沙:中南大学,2007,6.
    [28]Arkoska D, Sankcy E, Anderson. Application of organic binders in iron ore pelletizing and iron making[C]. Ironmaking Conference Proceedings,1995: 471-475.
    [29]葛英勇,季荣,袁武谱,赵再远.新型有机粘结剂GPS用于铁矿球团的研究[J].烧结球团,2008,33(5):10-14.
    [30]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南大学出版社,1995.
    [31]周取定.中国铁矿石烧结研究[M].北京:冶金工业出版社,1997:67-73.
    [32]吴钢生,边美柱,沈峰满.碱性含镁球团矿的应用及合理炉料结构研究 [J].钢铁,2006,41(12):19~21.
    [33]孔令坛.我国炼铁原料技术的进步和展望[J].炼铁,2002(5):20~23.
    [34]杨兆祥.炼铁原料技术[M].北京:冶金工业出版社,1988:76-78.
    [35]叶匡吾.努力推进我国球团矿的生产[J].烧结球团,2007,5:1-5.
    [36]周继程,郦秀萍,上官方钦,张春霞.我国烧结工序能耗现状及节能技术和措施[J].冶金能源,2010,29(2):23~26.
    [37]杨天均,黄典冰,孔令坛.熔融还原[M].北京:冶金工业出版社,1998.
    [38]谢建华,刘存杰.天津钢管还原铁厂的生产实践.见:2003年全国直接还原技术研讨会论文集,2003:42-45.
    [39]Jiang T, Qiu G Z, Xu J C, Zhu D Q, Singh R. Direct Reduction of Composite Binder Pellets and Use of DRI [M]. Electrotherm LTD, India,2007.
    [40]李蒙,任伟,陈三凤.国内外球团矿生产现状及展望[C].见:2004年全国球团技术研讨会论文集,大连,2004,8.
    [41]阎为群.国内球团生产技术的发展[J].江苏冶金,2007,35(3):22~24.
    [42]焦玉书,田嘉印,周伟.世界球团矿生产态势[J].球团技术,2010,2:1-7.
    [43]丁宁.球团矿-冶金矿山企业的新“蓝海”——国内冶金矿山企业球团矿开发的研究和探讨[J].中国矿业,2007,16(8):79-82.
    [44]李晓芹.内配碳在赤铁矿氧化球团制备中的行为研究[D],长沙:中南大学,2009,6.
    [45]叶匡吾.三种球团焙烧工艺的评述[J].烧结球团,2002(1):4~7.
    [46]徐亚军,李长兴,王纪英.链篦机—回转窑球团工艺的开发与应用[J].中国冶金,2005,15(4):17-20.
    [47]朱继民.采用新一代可循环钢铁流程工艺技术建设首钢京唐钢厂[J].见:2007年中国钢铁年会论文集,2007,11.
    [48]甄彩玲,余为.鄂州球团厂设计特点和生产实践[J].2008年全国炼铁生产技术会议暨炼铁年会论文集,2008:1275~1278.
    [49]张新兵,朱梦伟.膨润土对我国球团生产的影响[J].烧结球团,2003,128(6):3-7.
    [50]Kihlstedt P G. Agglomeration of iron ore concentrates into cold-bound balls[J].IXth IMPC,1970,307-317.
    [51]叶匡吾.关于我国球团矿质量问题的探讨[J].烧结球团,2005,30(5):1~4.
    [52]袁礼顺,煤气供热氧化球团回转窑结圈机理及预防措施的研究[D].中南 大学:2006,10.
    [53]王海涛,李光辉,范晓慧,黄柱成,姜涛.几种高炉炉料冶金性能的对比研究[J].钢铁,2006,41(1):1-5.
    [54]崔智鑫.脉石成分对铁矿球团还原膨胀性能的影响[D].长沙:中南大学2004,2.
    [55]Bowling k MCG. Effect of chemcal composition and ore grind on fired hematite pellets[J]. Ironmaking and steelmaking,1981,270(7):1995-2002.
    [56]杨大兵,张一敏,吴卫国.武钢金山店高品位球团矿制备研究[J].烧结球团,2003,28(3):12-15.
    [57]Jiang T, Zhang Y, Huang Z. Preheating and roasting characteristics of H-M concentrate pellets[J]. Ironmaking and Steehnaking,2008,35(1):21-26.
    [58]薛正良,周国凡,阳洪.粘结剂在生球抗爆方面的作用机理[J].1995,20(5):7-12.
    [59]薛正良.使用有机粘结剂降低球团矿中膨润土用量的研究[J].烧结球团,1993,6:19~23.
    [60]王昌安,熊守安,朱德庆.高压辊磨预处理铁精粉对生球性能的影响[J].烧结球团,2002,27(6):12-15.
    [61]张汉泉,戚岳刚.辊压机在改善铁矿球团质量中的应用[J].矿业工程,2005,3(1):37-39.
    [62]王昌安,王新继,张一敏,陈铁军.原料高压辊磨对球团氧化活化能的影响[J].钢铁研究,2005,(1):8-10.
    [63]Selin. Sintering and reduction properties of self-fluxing pellets for steelmaking via directly reduced iron [J]. Scandinavian Jounral of Metallurgy,1988,17: 201-213.
    [64]范晓慧,袁晓丽.铁精矿粒度对球团强度的影响[J].中国有色金属学报,2006,16(11):1966-1969.
    [65]吴钢生,边美柱,沈峰满.碱性含镁球团矿的应用及合理炉料结构研究[J].钢铁,2006,41(12):19-21.
    [66]范晓慧,甘敏,陈许铃.低碱度镁质氧化球团的试验研究[J].钢铁,2009,44(3):6-10.
    [67]Zisman W A, Fowkes F M. In Contact Angle, Wettability, and Adhesion[M]. Advances in Chemistry Series. Washington, D.C:American Chemical Society,1964.
    [68]Pauling L. The Nature of Chemical Bond [M]. Cornell University Press. Ithaca, New York,1966.
    [69]Lee L H. Adhesive Bonding [M]. Plenum Press, New York and London,1991.
    [70]Lee L H. Fundamentals of Adhesion [M]. Plenum Press, New York and London, 1991.
    [71]Hartshorn S R. Structural Adhesives-Chemistry and Technology [M]. Plenum Press, New York and London,1986.
    [72]吴人杰等.高聚物的表面与界面[M].北京:冶金工业出版社,1998.
    [73]Zhu R Z, Cui S W, Wang X S. Theoretical foundation of Zisman's empirical equation for wetting of liquids on solid surfaces [J]. European journal of physics,2010,2(3):251-256.
    [74]刘耀鹏.粘接最佳条件的分析讨论[J].粘接,2007,28(2):29-30.
    [75]Delenne J Y, Youssoufi M S El, Cherblanc F, Benet J C. Mechanical behaviour and failure of cohesive granular materials [J]. Int. J. Numer. Anal. Meth. Geomech,2004, (28):1577-1594.
    [76]Sergiy Antonyuk, Stefan Palis, Stefan Heinrich[J]. Breakage behaviour of agglomerates and crystals by static loading and impact. Powder Technology, 2011, (206):88-98.
    [77]Rumpf H. The strength of granules and agglomerates [J]. Agglomeration, New York, Interscience,1962,379-418.
    [78]BikaD , Tardos G, Panmai S, Farber L, Michaels J. Strength and morphology of solid bridges in dry granules of pharmaceutical powders [J]. Powder Technology,2005, (150):104-116.
    [79]Qiu G, Jiang T, Fa K, Zhu D, Wang D. Interfacial characterizations of iron ore concentrates affected by binders [J]. Powder Technology,2004,139:1-6.
    [80]姜涛,李宏煦,黄柱成.铁矿球团粘结剂分子结构设计的初步研究[J].烧结球团,1998,1:30-35.
    [81]Qiu G, Jiang Tao, Li H, Wang D. Functions and molecular structure of organic binders for ironore pelletization[J]. Colloids and Surfaces A:Physicochem, 2003,224:11-22.
    [82]Roorda H J, Burghardt O, Kortmann H A, Jipping M J, Kater T. Organic binder for iron ore agglomeration [J]. Proceedings of 11th International Mineral Processing, Congress, Cagliari,1975, p20.
    [83]Wada, Tsuchiya O. The role of hydrophile colloid in iron ore pelletization[C]. IXth Inter. Min. Proc. Cobgr, Pragure,1970,485-492.
    [84]傅菊英.含铁矿物成球性指数的K研究[J].烧结球团,1992,17(4):30-35.
    [85]肖琪.团矿理论与实践[M].长沙:中南工业大学出版社,1991.
    [86]傅守澄,傅菊英.铁精矿成球动力学研究[J].烧结球团,1982,7(5):1-6.
    [87]朱德庆.细磨精矿冷固成型机理研究及其在直接还原上的应用[D].长沙:中南工业大学,1994.
    [88]Kawatra S K, Halt J A. Binding effects in hematite and magnetite concentrates [J]. International Journal of Mineral Processing, Vol.99,2011, No. 1-4.
    [89]Kawatra S K, Ripke S J. Developing and understanding the bentonite fiber bonding mechanism [J]. Minerals Engineering,2001,14:647-659.
    [90]Kawatra S K, Ripke S J. Laboratory studies for improving green-ball strength in bentonite-bonded magnetite concentrate pellet [J]. International Journal of Mineral Processing,2003,72(1/4):429-441.
    [91]Kawatra S K, Ripke S J. Effects of bentonite fiber formation in iron ore pelletlzation [J]. International Journal of Mineral Processing,2002,65(3/4): 141-149.
    [92]Forsmo S P E, Apelqvist A J, Bjorkman B M T, Samskog P O. Binding mechanisms in wet iron ore green pellets with a bentonite binder [J]. Powder Technology,2006, (169):147-158.
    [93]李宏煦,王淀佐,胡岳华等.羧甲基淀粉钠提高球团强度的机理[J].中南工业大学学报,2001,32(4):351-354.
    [94]刘国根.直接还原冷固结球团HA型粘结剂及其原料特征的研究[D].长沙:中南大学,1997,7.
    [95]葛方红.国内外膨润土指标对铁矿球团性能影响的探讨[J].烧结球团,1996,17-23.
    [96]Goldstick T K. A survey of the literature pertinent to iron ore pelletizing[J]. Agglomeration, Knepper W A, Ed, Interscience-Wiley,1962, 1067-109.
    [97]GB/T 20973—2007.膨润土[S].
    [98]Ross J S. Bentonite. A challenge for Canadion industry [R]. CIM Bulletion, 1964,57:648-652.
    [99]陈开志.酸性白土在菱锰矿球团中的应用[J].中国锰业,1985,3:46-50.
    [100]傅坚,张仁.硅酸钠粘结剂冷固结球团冶炼试验[J].炼铁,1988,4:37-41.
    [101]范广全.铁精矿加氧化硼球团试验及其冶炼效果[J].烧结球团,1990,15(4):12-19.
    [102]Mohameda O A, Shalabia M E H, El-Hussinya N A, Khedrb M H, Mostafaa F. The role of normal and activated bentonite on the pelletization of barite iron ore concentrate and the quality of pellets [J]. Powder Technology,2003,130: 277-282.
    [103]陈淑祥,袁健,刘海彬.钙基膨润土钠化改型新方法研究[J].非金属矿,1999(4):27~29.
    [104]蒋冲,曹佳宏,石云良.桃源膨润土钠化改型研究[J].矿冶工程,2004(6):21-23.
    [105]罗太安,刘晓东.广丰膨润土钠化改型研究[J].非金属矿,2004(3):36-37.
    [106]曹朝真.铁矿球团用膨润土改性技术及工艺的研究[J].唐山:河北理工大学,2006.
    [107]Huang Y, Zhang Y, Han G, Jiang T, Li G. Investigation on sodium-modification of Ca-based bentonite via semidry process [J]. J. Cent. South Univ. Technol, 2010,17(6):1201-1206.
    [108]Kramer W E, Ward W J, Youngs R W. Organic additives for pelletizing iron ore[C]. Proceedings of 10th Biennial Conference, the Institute for Briqutting and Agglomeration, Albuquerque,1967, p65.
    [109]Roorda H J, Burghardt O, Kortmann H A, Jipping M J, Kater T. Production of fluxed iron ore pellets for direct reduction using cellulose binders [C]. Proceedings of 3rd International Symposium on Agglomeration, Nuremberg,1981, p31.
    [110]Haas A L, Aldinger J A, Nigro J C. Utilization of papermill sludges as binders for iron ore concentrate [R]. Report of Investigations, United States Bureau of Mines,1988, No.9257.
    [111]Adnan Goksel M, Ozturk Sadullah. Organic binders and their behaviors in iron ore pellets during firing[C]. Proceedings of 19th Biennial Conference, the Institute for Briquetting and Agglomeration, Baltimore,1985, p253.
    [112]Kater T, Steeghs H R. Organic binder for iron ore pelletization[C].57th Annual Meeting of the Minnesota Section, AIME and 4th Annual Mining Symposium, Duluth, USA,1984, p131.
    [113]Souza R P de, Mendonca C F de, Kater T. Production of acid iron ore pellet for direct reduction using an organic binder [J]. Mining Engineering,1984, (36): 1437.
    [114]Panigraby S C, Rigaud M. Substitution of bentonite with peat moss and its effects on pellet properties [C]. Proceedings of 4th International Symposium on Agglomeration, Toronto,1985, p75.
    [115]Heerema R H, Kortmann H, Kater T, Boogaard V C. Improvements of acid, olivine and dolomite fluxed iron ore pellets using an organic binder[C]. Proceedings of 5th International Symposium on Agglomeration, Brighton,1989, p227.
    [116]Suzuki S, Gomi S. New organic pellet binder from bituminous materials [C]. Symposium on Pellets and Granules, Australas Inst of Min and Metall, Newcastle, Aust,1994, p157.
    [117]别特鲁索夫.在生产铁矿球团时采用膨润土代用品的效果[J].国外钢铁,1996(4):1-3.
    [118]苏毅,刘谋盛,李国斌.聚乙烯醇粘结剂的应用研究[J].应用技术,2001,22(6):37~37.
    [119]杨永斌,黄桂香,姜涛.有机粘结剂替代膨润土制备氧化球团[J].中南大学报,2007,38(5):850~856.
    [120]杨大兵,张一敏,陈铁军,杨仕勇.WKD型粘结剂影响大冶铁精矿球团性能的研究[J].武汉科技大学学报(自然科学版),2003,26(2):101-125.
    [121]李宏煦.铁矿球团粘结剂的分子设计与初步应用[D].长沙:中南工业大学,1998.
    [122]翟芝明,胡菊英.有机粘结剂CL3在铁精矿球团中的应用研究[J].矿冶工程,1998,18(1):49-52.
    [123]王立涛,赵启然.KLP球团粘结剂用于承钢球团的试验研究[J].承钢技术,2002,3:40-43.
    [124]张若鹏.一种团球矿的廉价高效粘结剂及其制备方法[P].申请号/专利号:200810007964.
    [125]张振慧.一种铁矿球团有机粘结剂及其使用方法[P].申请号/专利号:200510124435.8.
    [126]曹立刚,王洪波,王杰.复合粘结剂(QNP)在包钢球团中的应用[J].烧结球团,2007,32(2):49-53.
    [127]郑银珠,彭志坚.铁矿球团复合粘结剂的试验研究[J].烧结球团,2009,34(5):28~33.
    [128]徐经沧,杨有育,刘仲辉等.复合粘结剂冷固结球团煤基直接还原新工艺[P].申请号/专利号:92111782.5.
    [129]李学曾.球团矿复合粘结剂及其工艺方法[P].申请号/专利号:98113838.1.
    [130]姜文平,金成垚.一种铁矿粉制备铁粉球的粘结剂及其制备的铁粉[P].申请号/专利号:200510134759.X.
    [131]钢铁研究总院.一种铁矿球团用粘结剂及其制备方法[P].申请号/专利号:200710304318.9.
    [132]马鞍山市金鑫建材有限公司.冶金球团复合粘结剂[P].申请号/专利号:201010505877.8.
    [133]王建忠.球团矿所用的复合型粘结剂[P].申请号/专利号:201010222478.0.
    [134]贺建峰,黄学英.济钢球团配加碱性复合粘结剂试验[J].山东冶金,2005,27(5):31~32.
    [135]刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):41-50.
    [136]李建.铁精矿复合粘结剂球团直接还原法工艺及机理研究[D].长沙:中南大学,2007,7.
    [137]郑平.煤炭腐植酸的生产和应用[M].北京:化学工业出版社,1991.
    [138]李善祥.我国煤炭腐植酸资源及其利用[J].腐植酸,2002,(3):7-13.
    [139]Peuravuori J, Zbankova P, Pihlaja K. Aspects of structural features in lignite and lignite humic acids[J]. Fuel Processing Technology,2006,87:829-839.
    [140]Schnitzer M, Khan S U. Humic Substances in the Environment [M]. Marcel Dekker Inc, New York,1972.
    [141]Thurman E M, Malcolm R L. Preparative isolation of aquatic humic substances [J]. Environ Sci Technol,1981,15(4):463-466.
    [142]Schnitzer M, Khan S U. Soil Organic Matter [M]. Elsevier Scientific Publishing Company, Amsterdam Oxford,1978.
    [143]曾宪成,成绍鑫.腐植酸的主要类别[J].腐植酸,2002,(2):4-6.
    [144]Thurman E M, Wersha R L, Malcolm R L, Pinckney D J. Molecular sizes of aquatic humic substances [J]. Organic Geochemistry,1982,4(1):27-35.
    [145]Weber W J Jr, Huang W L, LeBoeuf E J. Geosorbent organic matter and its relationship to the binding and sequestration of organic contaminants [J]. Colloids and Surfaces:A,1999,151(1-2):167-179.
    [146]Wilkomirski B, Malawska M. Characteristics of humic substances in peat of selected peatlands from north-eastern Poland [J]. Soil Sci Plant Nutr,2004, 50(6):931-934.
    [147]Allard B. A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit-Bound lipid, carbohydrate and amino acid distributions [J]. Geoderma,2006,130(1-2):77-96.
    [148]Peuravuori J, Simpson A J, Lam B, Zvba'nkova'P, Pihlaja K. Structural features of lignite humic acid in light of NMR and thermal degradation experiments [J]. Journal of Molecular Structure,2007, (826):131-142.
    [149]Sivakova L G, Lesnikova N P, Kim N M, Rotova G M. Physicochemical properties of the humic substances of peat and brown coal [J]. Solid Fuel Chem, 2011,45(1):1-6.
    [150]Trubetskoi O A, Trubetskaya O E. C-13-NMR analysis of components of chernozem humic acids and their fractions with different molecular sizes and electrophoretic mobilities [J]. Eurasian Soil Sci,2011,44(3):281-285.
    [151]柴岫.泥炭地学[M].地质出版社,1990.
    [152]尹善春.中国泥炭资源及其开发利用[M].北京:地质出版社.1991.
    [153]张则有.泥炭资源开发与利用[M].吉林科学出版,1992.
    [154]陈淑云.中国泥炭[M].东北师范大学出版社,1998.
    [155]戴和武,谢可玉[M].褐煤利用技术.北京:煤炭工业出版社,1998.
    [156]陈鹏.中国煤炭性质分类和利用.北京:化学工业出版杜,2009.
    [157]马秀欣,赵宏波.我国泥炭、褐煤和风化煤的资源优势及其应用领域[J].中国煤炭,2004,30(9):47-56.
    [158]中科院山西煤炭化学研究所.腐植酸钠[M].北京:中国标准化出版杜,1995.
    [159]冯元琦.腐植酸与可持续发展[J].腐植酸,2004,(1):1-6.
    [160]王高伟,胡光洲,孔倩,董洁.煤炭腐植酸的基本性能及其工农业应用[J].煤炭技术,2007,26(11):111~113.
    [161]Weber W J Jr, Tang J X, Huang Q G. Development of engineered natural organic sorbents for environmental applications:1. materials, approaches, and characterizations [J]. Environ. Sci. Technol,2006,40(5):1650-1656.
    [162]Trckova M, Matlova L, Hudcova H, Faldyna M, Zraly Z, Dvorska L, Beran V, Pavlik I N. Peat as a feed supplement for animals:A review[J]. Vet. Med, 2005,50(8):361-377.
    [163]Kuhnert M, Bartels K P, Kroll S, Lange N. Veterinary pharmaceuticals containing humic-acid for therapy and prophylaxis for gastrointestinal-diseases of dog and cat[J]. Monatsh. Veterin armed,1991,46:4-8.
    [164]化工部化肥司、中国腐植酸协会.腐植酸在煤粉成型中的应用[J].1990,8.
    [165]袁文斌.苏联冶金工业概况[J].冶金部情报研究所,1984.
    [166]玛瑙山锰矿冷粘结球团试验报告[J].长沙黑色冶金矿山研究院,1976.
    [167]陈文敏,刘淑云.煤质及化验知识问答[M].北京:化学工业出版杜,2008.
    [168]Stevenson F J. Humus Chemistry:Genesis, Composition, Reactions[M].1st ed. Wiley, New York, NY,1992.
    [169]Bemmelen R W V. Landwirtsch. J M. Soil organics[J]. Versuchssta,1888, 35,69.
    [170]Authur W A. Physical Chemistry of Surface (Third Edition) [M]. John Wiley & Sons, New York,1976.
    [171]Ibarra J V, Miranda J L. Detection of weathering in stockpiled coals by Fourier transform infrared spectroscopy[J]. Vibrational Spectroscopy,1996,10:311-318.
    [172]Ibarra J V, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry,1996,24:725-735.
    [173]Myers D. Surfaces, Interfaces and Colloids [M]. John Wiley & Sons, New York, 1999.
    [174]Robert J G, Robert R S. Surface and Colloid Science [M]. Vol.11:Experimental Methods, Plenum Press, New York,1979.
    [175]Vincent Crist B. Handbooks of Monochromatic XPS Spectra[M].XPS International, Inc,1999.
    [176]柳全元,陈秀枝,张晓峰.用ESCA研究丁铵黑药浮选黄铁矿的作用机理[J].金属矿山,1998,4:16-19.
    [177]Jozsef T, Adsorption:theory, modeling, and analysis[M]. CRC/Marcel Dekker, 2002.
    [178]许时.矿石可选性研究[M].北京:冶金工业出版社,1989,215-218.
    [179]王淀佐.浮选药剂作用原理与应用[M].北京:冶金工业出版社,1994.
    [180]徐光宪,黎乐民,王德民,量子化学:基本原理和从头计算法[M].科学出版社,1980.
    [181]陈建华,王进明,龙贤灏.硫化铜矿物电子结构的第一性原理研究[J].中 南大学学报:自然科学版,2011,42(12):3612-3617.
    [182]Reich M, Becker U. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite[J]. Chemical Geology,2006,225(3-4):278-290.
    [183]李玉琼,陈建华,陈晔.黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J].中国有色金属学报,2011,21(4):919-926.
    [184]陈建华,钟建莲,李玉琼.黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性[J].中国有色金属学报,2011,21(7):1719-1727.
    [185]Von Oertzen G U, Skinner W M, Nesbitt H W. Ab initio and XPS studies of pyrite (100) surface states[J]. Radiation Physics and Chemistry,2006,75(11): 1855-1860.
    [186]Chen J H, Wang L, Chen Y, et al. A DFT study of the effect of natural impurities on the electronic structure of galena[J]. International Journal of Mineral Processing,2011,98(3-4):132-136.
    [187]Blanchard M, Alfredsson M, Brodholt J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution:A DFT study[J]. Geochimica et Cosmochimica Acta,2007,71(3):624-630.
    [188]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计[M].中南大学出版社,1996.
    [189]汪云华,彭金辉.钒钛磁铁矿制取还原铁粉工艺及改进途径探讨[J].金属矿山,2006,1:20-23.
    [190]刘松利,白晨光,胡途等.钒钛铁精矿内配碳球团高温快速直接还原历程[J].重庆大学学报,2011,34(1):60-65.
    [191]苏勉曾.固体化学导论[M].北京大学出版社,1987.
    [192]Chen Y, Chen J H, Guo J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals Engineering, 2010,23(14):1120-1130.
    [193]Volkov V B, Zhogolev D A. Parameters for semi-empirical molecular calculation swith complete neglect of differential overlap[J]. Plenum Publishing Corporation,1980,584-602.
    [194]Kujawinski E B, Freitas M A, Zang X etal. The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter[J]. Org. Geochem,2002,33:171-180.
    [195]Ronald Beckett, Zhang Jue, Calvin J. Giddings. Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation[J]. Environ. Sci. Technol, 1987,21(3):289-295.
    [196]刘国根,邱冠周.粘结剂制备过程中抽提工艺因素的研究[J].矿产综合利用,2001,(3):23-26.
    [197]Jiang Tao, Han Guihong, Zhang Yuanbo et al. Improving extraction yield of humic substances from lignite withanthraquinone in alkaline solution[J]. J. Cent. South Univ. Technol,2011,18:68-72.
    [198]Zhang Yuanbo, Han Guihong, Jiang Tao et al. Structure characteristics and adhesive property of humic substances extracted with different methods[J]. J. Cent. South Univ. Technol,2011,18:1041-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700