用户名: 密码: 验证码:
单板层积材力学性能与无损检测可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了考察单板层积材的力学性能与可靠性,本文运用了纵波传播法、纵向共振法、弯曲振动法等无损检测方法、复合材料力学分析、计算机模拟及静态力学试验等方法来进行研究。主要内容包括:不同压缩率的桦木、杨木、樟子松单板层积材、不同组坯的桦木与杨木单板层积材、不同单板厚度的樟子松单板层积材、不同环境相对湿度下杨木与樟子松单板层积材,建立单板层积材力学性能预测公式,探讨ANSYS程序分析单板层积材力学性能的可行性,分析了各种无损检测动态杨氏模量与静态弯曲弹性模量(MOE)及静曲强度(MOR)间的线性关系,分析了各种无损检测方法的可靠性与不同因素影响下单板层积材的结构可靠性。
     在不同压缩率影响下单板层积材性能研究中,考察了压缩率对桦木、杨木、樟子松单板层积材力学性能的影响并分析了原因;在对单板层积材力学性能研究中,从复合材料力学角度分析单板层积材的力学性能;建立了单板层积材力学性能的计算公式;分析了树种、压缩率对单板层积材可靠性的影响,以及不同因素下不同使用工况的单板层积材结构可靠性。在不同组坯影响下单板层积材性能研究中,对杨木和桦木制作的单板层积材进行力学试验研究,主要研究不同组坯对单板层积材垂直加载的MOE与MOR的影响,共运用了复合材料力学、计算机模拟和静力学试验三种分析方法,运用了蒙特卡洛法对不同组坯单板层积材的可靠性进行了评估。在对不同单板厚度单板层积材性能研究中,考察了单板厚度对樟子松单板层积材力学性能的影响并分析了原因;分析了各种无损检测的动态杨氏模量与静态弯曲弹性模量及静曲强度间的线性关系;并研究了各种无损检测方法的可靠性。在不同环境相对湿度影响下单板层积材性能研究中,考察了环境相对湿度对杨木、樟子松单板层积材力学性能的影响并分析了原因:分析了环境相对湿度对各种无损检测的动态杨氏模量与静态弯曲弹性模量及静曲强度间线性关系的影响,运用模糊数学与经典数学对无损检测回归分析结果进行了对比分析。
     本研究结果归纳如下:
     (1)对于不同压缩率单板层积材的研究表明:复合材料力学分析方法可用于压缩率对单板层积材力学性能影响的分析,运用分析得到的力学性能参数与单板层积材压缩率的关系式求得单板层积材力学性能指标MOE与MOR,其分析结果与静力学试验结果相接近。当压缩率不太大时,桦木、杨木和樟子松三个树种单板层积材的MOE与MOR随着压缩率的增长而增长,符合本文研究的力学模型;通过微观结构分析可知,当压缩率较大时,部分单板层积材在热压的过程中,由于压力作用部分细胞出现了压溃现象,使其力学性能降低。各树种单板层积材在不同压缩率时所表现出来的可靠性不一致,而加载方向不同时也不一致。
     (2)对于不同组坯单板层积材的研究表明:运用复合材料力学、有限元分析程序及静力试验,对桦木与杨木不同组坯单板层积材的力学性能与可靠性进行了分析。每种组坯单板层积材的MOE与MOR理论分析结果、计算机模拟结果与试验结果都非常接近,复合材料力学与ANSYS软件分析适用于单板层积材的力学性能分析。在桦木与杨木单板用量相同的情况下,单板层积材的MOE是比较接近的,正常使用极限状态可靠性也较接近;桦木单板放置于顶底层的单板层积材强度要高于杨木单板置于顶底层的单板层积材强度,极限状态可靠性要大一些。
     (3)对于不同单板厚度单板层积材的研究表明:运用弯曲振动(面内、面外)、纵向共振、纵波传播四种无损检测的方法,检测了单板层积材的力学性能。不同单板厚度樟子松单板层积材动态模量结果与静态弯曲弹性模量、静曲强度有密切线性相关性,垂直加载方向与平行加载方向的相关性系数都远大于相关系数1%分位的临界值,线性相关性最好的是与静力试验加载方向同向的弯曲振动检测方法。这四种无损检测方法均可用于樟子松不同单板厚度单板层积材的静态弯曲弹性模量、静曲强度检测。直接使用无损检测结果与弹性模量或静曲强度回归方程得到的力学性能指标结果并不可靠,选择回归分析的95%置信区间下限方程的可靠性有所提高,能够满足工程实际要求。樟子松单板层积材主要力学性能指标MOE与MOR均随着单板厚度的增大而降低。
     (4)对于不同环境湿度下单板层积材的研究表明:将上述四种无损检测方法运用于不同环境湿度下的杨木、樟子松单板层积材力学性能的检测,除樟子松单板层积材垂直加载方向纵波传播无损检测方法外,其它杨木与樟子松单板层积材的每种动态杨氏模量结果与静态弹性模量或静曲强度之间的线性相关性较好,四种方法都可用于杨木或樟子松单板层积材的力学性能检测。各种无损检测方法结果回归分析的模糊贴近度与相关性系数大小变化是一致的,检验线性回归分析时贴近度可做为参考。单板层积材的力学性能都随着相对湿度的增长而降低,特别是相对湿度由60%增长到70%时下降最为明显;相对湿度由40%增长到70%时,杨木单板层积材的力学性能下降了21%-37%,樟子松单板层积材的力学性能下降了25%-41%。相对湿度对单板的强度有一定的影响,但是对于胶层的剪切强度没有明显的影响;相对湿度对单板层积材力学性能的影响主要因素来源于湿度影响下木材的力学性能变化。
In order to investigate mechanical properties and reliability of laminated veneer lumber (LVL), the longitudinal transmission, longitudinal vibration, flexural vibration, etc non-destructive testing (NDT) methods, composite material mechanics analysis, computer simulation and static mechanical tests were utilized. The main contents including:different compression ratio LVL made from birch, poplar and pine, different assembly pattern LVL made from birch and poplar, the pine LVL of different thickness veneer and the poplar and pine LVL in different relative humidity. The presuppositions model of LVL mechanical properties were found. The feasibility that ANSYS program analyze mechanical properties of LVL were discussed, The linear relationship between the dynamic modulus of various non-destructive testing and static bending modulus of elasticity (MOE) and modulus of rupture (MOR), the reliability of various non-destructive testing methods and LVL mechanical properties with different factors influence were analyzed.
     For different compression rate, the effects of compression rate on the birch, poplar and pine LVL mechanical properties were investigated and the reasons were analyzed for that. For the mechanical properties of laminated veneer lumber, the composite material mechanics were utilized to analyze LVL mechanical properties. The effects of tree species and compression ratio on the reliability of LVL were analyzed. The reliability of LVL was analyzed with different factors under different loads using the method of advanced first order and second moment (AFOSM). For different assembly pattern, LVL panels made from poplar and birch veneers were tested for mechanical properties. The effects of the assembly pattern on the MOE and MOR of the LVL with vertical load testing were investigated. Three analytical methods were used:composite material mechanics, computer simulation, and static testing. The reliability of the different LVL assembly patterns was assessed using the method of Monte-Carlo. For different veneer thickness, the effects of veneer thickness on the pine LVL mechanical properties were investigated and the reasons were analyzed for that. The linear relationships between various dynamic modulus and MOE or MOR were analyzed. And the reliability of various NDT was analyzed. For different relative humidity, the effects of relative humidity on the poplar and pine LVL mechanical properties were investigated and the reasons were analyzed for that. The effects of relative humidity on linear relationships between various dynamic modulus and MOE or MOR were analyzed. And NDT regression analysis results were compared with the fuzzy mathematical analysis and the classical mathematical analysis results.
     The results were summarized as follows:
     (1) For LVL of different compression ratio:The composite material mechanics analysis method can be used to analyze the effect of compression ratio on mechanical properties of LVL The theoretical results of MOE and MOR of LVL could be obtained from formula between mechanical properties parameters and compression ratio, its analysis results were consistent with the statics experimental results. The MOE and MOR of birch, poplar and pine LVL were increased with compression rate increasing when the compression rate was not very large, and it accord with the mechanical model was found in this paper. There were some horizontal cracks and some small compression failure were found through the microscopic structure analysis, so the mechanical properties reduced, the major reson was that the pressing load was larger during hot pressing. The reliability of three species LVL were not consistent in different compression rate and loading direction.
     (2) For different assembly pattern:Three analytical methods were used to analyze the mechanical properties and reliability of LVL:composite material mechanics, computer simulation, and static testing. The MOE and MOR results of theoretical analysis and computer simulation of each LVL assembly pattern were very close to the test results. The composite material mechanics and ANSYS simulation analyses were appropriate for the LVL mechanical property analysis. When the veneer dosages were the same, the MOE of each LVL assembly pattern was very close, and the serviceability limit state reliabilities were close as well. The strength limit state reliability was different, however, with the reliability of LVL with birch veneers on the outer surface being greater. Although the veneer dosages were the same, the strength of LVL with birch veneers on the top and bottom were much greater than the strengths of LVL with poplar veneers on the top and bottom. A good assembly pattern can improve the utility value of wood and provide a better strength-to-price ratio.
     (3) For the studies of different thickness of veneer LVL:Four NDT methods were used to test the mechanical properties of LVL, including the longitudinal transmission, longitudinal vibration, flexural vibration(in and out plane). The linear correlation between various dynamic modulus results and MOE or MOR were strong, the linear correlation coefficients of vertical and parallel load were much larger than the threshold of1%sub-bit. The method of best linear correlation was flexural vibration in same direction with the static test loading.Therefore the NDT methods can be used for MOE and MOR test of pine LVL with different thickness of veneer in this study. The theoretical result of LVL mechanical properties index that was obtained using the regression equation between NDT results and static results was not reliable. But its reliability was improved as choice of regression analysis equation of the95%confidence interval lower limit, and it can meet the engineering requirements basically. The MOE and MOR of pine LVL decreased with increase of veneer thickness.
     (4) For LVL in different relative humidity environments:The linear correlation between various dynamic modulus results and MOE or MOR were better, except the longitudinal transmission on pine LVL with vertical load, when hereinbefore four NDT methods were used to test poplar and pine LVL mechanical properties in different relative humidity environments, the NDT methods can be used for MOE and MOR test of poplar and pine LVL in different relative humidity. The size relationship of each NDT method fuzzy neartude was same with the size relationship of correlation coefficient, the fuzzy neartude can be as a reference for the feasibility analysis linear regression results on LVL NDT. The mechanical properties of poplar and pine LVL decreased with relative humidity increased, the most obvious decrease occurred from60%to70%. The mechanical properties of poplar LVL decreased in21%~37%and pine LVL decreased in25%~41%, as relative humidity increased from40%to70%. The effect of relative humidity on mechanical properties of pine LVL was greater. The origin of effect of relative humidity on LVL mechanical properties was the change of wood, because the strength of veneer changed as relative humidity increased, but the shear strength of layer was no decrease.
引文
[1]李坚.木材保护学.哈尔滨:东北林业大学出版社,1999:148-160
    [2]F. de Souza, C. H. S. Del Menezzi and G. Bortoletto Junior. Material properties and nondestructive evaluation of laminatedveneer lumber (LVL) made from Pinus oocarpa and P. kesiya. Eur. J. Wood Prod.,2011,69:183-192
    [3]Ramazan Kurt and Muhammet Cil. Effects of press pressure on glue line thickness and properties of laminated veneer lumber glued with melamine urea formaldehyde adhesive. BioResources,2012,7(3):4341-4349
    [4]S. R. Shukla and D. Pascal Kamdem. Properties of laboratory made yellow poplar (Liriodendron tulipifera) laminated veneer lumbereffect of the adhesives. Eur. J. Wood Prod.,2009,67(4):397-405
    [5]S. R. Shukla and D. Pascal Kamdem. Properties of laminated veneer lumber (LVL) made with low density hardwood species:effect of the pressure duration. Holz Roh Werkst,2008, 66(2):119-127
    [6]Bekir Cihad Bal and Ibrahim Bektas. The effects of some factors on the impact bending strength of laminated veneer lumber. BioResources,2012,7(4):5855-5863
    [7]李光哲.单木质复合材料的研究进展.木材加工机械,2010,(1):41-45
    [8]陈剑平,张建辉.国内外单板层积材应用现状.林业机械与木工设备,2012,40(8):12~14
    [9]张冬梅,林利民,王春明,闫超,李晓秀,徐兰英,唐伟.木结构建筑用落叶松单板层积材生产工艺及其性能评价.林业机械与木工设备,2008,36(2):44~46
    [10]刘文珽.结构可靠性设计手册.北京:国防工业出版社,2008:445
    [11]Ramazan Kurt. Suitability of three hybrid poplar clones for laminated veneer lumber manufacturing using melamine urea formaldehyde adhesive, BioResources,2010,5(3): 1868-1878.
    [12]Manuel Chiachio, Juan Chiachio and Guillermo Rus. Reliability in composites-A selective review and survey of current development. Composites Part B:Engineering, 2012,43 (3):902-913
    [13]尤凤翔,黄克亚.复合材料层合板非线性系统的随机响应分析.玻璃钢/复合材料,2012,4:60~64
    [14]Hirofumi Ido, Hirofumi Nagao, Hideo Kato, Atsushi Miyatake and Yasushi Hiramatsu. Strength properties of laminated veneer lumber in compression perpendicular to its grain. Journal of Wood Science,2010,56(5):422-428
    [15]孙建平,朱晓冬,王逢瑚.木质复合材料振动信号处理与性能无损评价.北京:科学 出版社,2011:1~17
    [16]胡英成,顾继友,王逢瑚.木材及人造板物理力学性能无损检测技术研究的发展与展望.世界林业研究,2002,15(4):39~46
    [17]于子绚,江泽慧,王戈,张文福,陈复明.湿热耦合环境下竹束单板层积材的力学性能.中南林业科技大学学报,2012,32(8):127-130
    [18]张占宽,刘君良.密实型杨木强化单板层积材制造工艺及应用前景分析.林业机械与木工设备,2005,33(7):28~30
    [19]王春明,任海清,赵荣军,林利民,孟黎鹏,贾潇然.结构用杨木单板层积材力学性能特征值的研究.林业机械与木工设备2012,40,(12):27-29
    [20]罗建举,蒋汇川,李宁,唐贤明.桉木单板层积材生产工艺的优化.林业科技开发,2011,25,(4):25~28
    [21]Zhang, H. J., Chui, Y.H., and Schneider, M. H. Compression control and its significance in the manufacture and effects on properties of poplar LVL.Wood Sci.and Tech,1994,28(4): 285-290
    [22]Chui Y H. Effects of resin impregnation and process parameters on some properties of poplar LVL. Forest Prod.J,1994,44(7/8):74-78
    [23]Fonselius, M.. "Effect of size on the bending strength of laminated veneer lumber," Wood Science and Technology.1997,31(6):399-413
    [24]Jianhua Pu. Nondestructive Evaluation of Modulus of Elasticity of Southern Pine LVL: Effect of Veneer Grade and Relative Humidity. Wood & Fiber Sci,1997,29(3):249-263
    [25]Tang, R. C. and Pu, J. H. Edgewise bending properties of laminated veneer lumber:Effect of veneer grade and relative humidity. For. Prod. J.1997,47(5):64-70.
    [26]中田欣作,杉本英明,井上雅文Development of compressed wood fasteners for timber construction I.Mechanical properties of phenolic resin impregnated compressed laminated veneer lumber.木材学会志,1997,43(1):38~45
    [27]中田欣作,杉本英明,井上雅文Development of compressed wood fasteners for timber construction II.Lateral resistance of drift-pin joints with compressed LVL plates in loading parallel to the grain木材学会志,1998,44(4):247~254
    [28]中田欣作,杉本英明,井上雅文Development of compressed wood fasteners for timber construction III.Bearing characteristics of compressed LVL plate with a drift-pin.木材学会志,2000,46(1):37~46
    [29]杜国兴.意杨单板层积材热压工艺研究南京林业大学学报,199l,15(1):58~63
    [30]徐咏兰,华毓坤.不同结构杨木单板层积材的蠕变和抗弯性能.木材工业,2002,16(6):10~12
    [31]赵丹,李晓秀,顾玉成,李显力.单板厚度对杨木单板层积材强度性能的影响.林业科技,2001,26(2):40~42
    [32]Hayashi Tomoyuki and Miyatake Atsushi. Tensile Strength Properties of Glued Laminated Wood and Laminated Veneer Lumber with Butt-Joints. Journal of the Society of Materials Science,2003,52(4):341-346
    [33]Evangelos J Biblis.Edgewise flexural properties and modulus of rigidity of different sizes of southern pine LVL and plywood.Forest Products Journal,2001,51(1):81-84
    [34]金维洙,贾娜.单板层积梁弯曲蠕变特性.东北业大学学报,2007,35(10):30-32
    [35]朱一辛,关明杰.杨木单板的湿热处理对单板层积材性能的影响.林业科技,2008,33(1):40~43
    [36]孟凡丹,余养伦,祝荣先等.浸胶量对纤维竹单板层积材物理力学性能的影响.木材工业,20ll,25(2):1~7
    [37]胡英成.木质复合材料的动态特性与无损检测.哈尔滨:东北林业大学出版社,2004:321~26
    [38]Yingcheng Hu, Tetsuya Nakao, Takahisa Nakai, Jiyou Gu, Fenghu Wang. Dynamic properties of three types of wood-based composites, Journal of Wood Science,2005,151(1): 7-12
    [39]Narayanamurti, D., Devarajan, V. S., and Mohan, G. D. Interrationship between the modulus of elasticity and modulus of rupture of 3 ply ply-wood with various defects. Holzforschung und Holzverwertung,1977,29 (2):32-39
    [40]Dunlop J I. Testing of particle board by acoustic techniques. Wood Science and Technology, 1980,14(1):69-78
    [41]Greubel D. Untersuchungen zur zerstorungsfreien prufung von spanplatten. Holz als Roh-und Werkstoff,1989,47 (7):273-277
    [44]Shyamasunder K, Aswathanarayana, BS. Naidu, and Venugopa, M.. Nondestructive evaluation of modulus of elasticity and modulus of rigidity of plywood by sonic methods. Ninth International Symposium on Nondestructive Testing of Wood-Madison,1994:113-16
    [45]Greubul, D. and Wissing, S..Zerstorungsfreie messung des biege-E-moduls und schubmoduls von spanplatten durch biegeschwingungen. Holz als Roh-und Werkstoff. 1995,53(1):29-37
    [46]Bekhta, P., Niemz, P., and Kucera, L. J.. Untersuchungen einiger Einflussfaktoren auf die Schallausbreitung in Holzwerkstoffen. Holz als Roh-und Werkstoff.2002,60 (1):41-45
    [47]Niemz, P., Kucera, L. J. and Pohler, E. Vergleichende untersuchungen zur bestimmung des dynamischen E-moduls mittels schall-laufzeit-und resonanzfrequenzmessung. Holzforschung und Holzverwertung.1997,49 (5):91-93
    [48]王志同,曹志强,袁卫国.用应力波非破损检测技术检测中密度纤维板弹性模量的研究.木材工业,1995,9(5):17~2l
    [49]胡英成,王逢瑚,刘一星,中尾哲也.利用振动法检测胶合板的抗弯弹性模量.木材工业,2001,15(2):3-8
    [50]胡英成,王逢瑚,刘一星,中尾哲也.刨花板动态剪切弹性模量的无损检测.东北林业大学学报,200l,29(2):17-20
    [5l]胡英成.木质复合材料的动态特性研究.东北林业大学博士学位论文,1997
    [52]朱晓冬,王逢瑚,孙建平.单板层积材动态弹性模量的无损检测.东北林业大学学报,2008,36(2):30-32
    [53]Yafang Yin, Hirofumi Nagao, Xiaoli Liu and Takashi Nakai. Mechanical properties assessment of Cunninghamia lanceolata plantation wood with three acoustic-based nondestructive methods. Journal of Wood Science,2010,56(1):33-40
    [54]Rackwitz R and Fiessler B. Structural reliability under combined random load sequences. Computers and Structures,1978,9(5):489-494
    [55]赵东元.可靠性工程与应用.北京:国防工业出版社,2009:46-47
    [56]Y. Murotsu, M. Miki and S. shao. Reliability design of fiber reinforced composites. Structural Safety,1994,15(1-2):35-49
    [57]Wetherhold and Robert C. Probability techniques for reliability analysis of composite materials. New York:State University of New York. Buffalo,1994:4260-4400
    [58]M. R. Gurvich and R. B. Pipes. Probabilistic analysis of multi-step failure process of a laminated composite in bending.Composite Science and Technology,1995,55(4):413-421
    [59]H. K. Jeong and R. A. Shenoi. Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation.Computers and Structures,2000,76(1-3):219-235
    [60]S. C. Lin. Reliability predictions of laminated composite plates with random system parameters.Probabilistic Engineering Mechanics,2000,15(4):327-338
    [61]N. Kogiso and Y. Murotsu. Reliability analysis of Laminated composite plate with initial imperfection.Trans JSME, Ser. A,2000,66(648):1483-1490
    [62]Lin S C and Kam T Y. Probabilistic failure analysis of transversely loaded laminated composite plates using first-order second moment method. Journalof Engineering Mechanics,2000,126(8):812-820
    [63]Dan M. Frangopol and Sebastien Recek. Reliability of fiber-reinforced composite laminate plates. Probabilistic Engineering Mechanics,2003,18(2):119-137
    [65]Nian-Zhong Chen and C. Guedes Soares. Spectral stochastic finite element analysis for laminated composite plates. Coputer Methods in Applied Mechanics and Engineering, 2008,197(51-52):4830-4839
    [66]X. Liu and S. Mahadevan. Ultimate strength failure probability estimation of composite structures. Journal of Reinforced Plastics and Composites,2000,19(5):403-426
    [67]S. Mahadevan, X.Liu and Q. Xiao. A probabilistic progressive failure model of composite laminates. Journal of Reinforced Plastics and Composites,1997,16(11):1020-1038
    [68]T. Y. Kam and E. S. Chang. Reliability formulation for composite laminates subjected to first-ply failure. Composite Structures,1997,38(1):447-452
    [69]Dan M Frangopol and Sebastien Recek. Reliability of fiber-reinforced composite laminate plates. Probabilistic Engineering Mechanics,2003,18(2):119-137
    [70]C C Chamis. Probabilistic smiulation of multi-scale composite behavior. Theoretical and Applied Fracture Mechanics,2004,41(1-3):51-61
    [71]羊妗,马祖康.庄力舟.采用多级优化技术进行复合材料结构可靠性优化设计.航空学报,1993,14(8):408~411
    [72]李强,周则恭.纤维增强复合材料的可靠性分析.太原重型机械学院学报,1993,14(2):7~14
    [73]宋云连,李树军,王善.加强纤维复合材料板结构的可靠性分析.哈尔滨工程大学学报,1999,20(3):63~71
    [74]孙秦,白金泽.一种复合材料梁架结构的强度可靠性分析.应用力学学报,2002,(3):5-9
    [75]陈念众,张圣坤,孙海虹.复合材料船体纵向极限强度可靠性分析.中国造船,2002,43(2):29~35
    [76]王向阳,陈建桥,张谢东.纤维增强复合材料层合板的概率逐步失效分析.武汉理工大学学报,2004,28(6):863~865
    [77]陈建桥,魏俊红,葛锐.模糊约束下复合材料的可靠性优化分析.武汉理工大学学报,2006,28(8):20~22
    [78]Jorge E. Hurtado, Diego A. Alvarez and Juliana Ramirez. Fuzzy structural analysis based on fundamental reliability concepts. Computers and Structures,2012,112(12):665-683
    [79]Prashant M. Pawar, Sung Nam Jung, and Babruvahan P. Ronge. Fuzzy approach for uncertainty analysis of thin walled composite beams. Aircraft Engineering and Aerospace Technology,2011,84(1):13-22
    [80]赵海龙,高宗战,刘伟,岳珠峰.复合材料与金属榫槽粘接结构强度可靠性分析.机械设计,2010,27(8):6l-64
    [8l]王聪.无损检测结果可靠性的控制要素.陕西省第十一届无损检测年会论文集,2008,: 139-143
    [82]Charles J. Hellier. Handbook of Nondestructive Evaluation. NewYork:McGraw-Hill. 2003.1-27
    [83]Don E. Bray, Roderick K. Stanley. Nondestructive Evaluation:a tool in design, manufacturing, and service. NewYork:CRC press.1997:56-68
    [84]A.A. Carvalho, J.M.A. Rebello, M.P.V. Souza, L.V.S. Sagrilo and S.D. Soares. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry. International Journal of Pressure Vessels and Piping,2008,85(11):745-751
    [85]Moumouni Moussa Idrissou. Reliability in Interpreting Non-Destructive Testing (NDT) Results of Concrete Structures. A project report of the degree of Master of Engineering of Universiti Teknologi Malaysia.2006:46-60
    [86]Fangchao Cheng and Yingcheng Hu. Reliability analysis of timeber structure design of poplar lumber with nondestructive testing methods. Bioresources.2011; 6(3):3188-3198
    [87]胡庸,王建国,吴佳晔(译).混凝土无损检测技术的可靠性及其提高方法.四川理工学院学报(自然科学版).2009,22(5):8-ll
    [88]黄松军.强化杉木单板层积材工艺研究.北京林业大学硕士论文,2008:22-24
    [89]陶俊林,蒋平,余作生.木材静压大变形本构关系研究.力学与实践,2000,22(5):25-27
    [90]陈志勇,祝恩淳,潘景龙.复杂应力状态下木材力学性能的数值模拟.计算力学学报,2011,28(4):629-634
    [91]George Z. Voyiadjis and Peter I. Kattan. Mechanics of Composite Materials with MATLAB. New York:Springer Berlin Heidelberg,2006:9-23
    [92]贡金鑫,魏巍巍.工程结构可靠性设计原理.北京:机械工业出版社.2007:76-112
    [93]邓铁军.结构工程施工系统可靠性理论及其应用的研究.湖南:湖南大学出版社,20ll:20
    [94]Stewart M.G A human reliability analysis of reinforced concrete beam construction. civil Engineering Systems.1992,9(3):227-247
    [95]W. M. Cheung Raymond, Wilson H. Tang. Reliability of deteriorating slopes. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(5):135-139
    [96]彭伟功,李春光,杨德钦.可靠性理论在建筑施工安全领域的应用研究.中国安全生产科学技术,2009,5(4):115-119
    [97]George Ossman, Mehmet Emre Bayraktar and Qingbin Cui. Consistency and Reliability of Construction Arbitration Decisions:Empirical Study. Journal of Management in Engineering.2010,26(2):56-64
    [98]Cheng Su, Zhaoshuan Chen and Zhihui Chen. Reliability of construction control of cable-stayed bridges. Proceedings of the ICE-Bridge Engineering.2011,164(1):15-22
    [99]Reinprecht, L., and Joscak, P.. "Reinforcement of model-damaged wooden elements. Part 1. Local perforation of wooden elements and their gap-filling treatment" Drevarsky Vyskum.1994,39(4):1-21
    [100]DeVallance, D. B., Funck, J. W., and Reeb, J. E.. "Evaluation of laminated veneer lumber tensile strength using optical scanning and combined optical-ultrasonic techniques". Wood Fiber Sci.2011,43(2):169-179
    [101]Huirong Jia and Torgeir MOan. Comparative reliability analysis of ships under vector-load processes. Journal of Marine Science and Technology.2009,14(4):485-498
    [102]陈烈民,杨宝宁.复合材料的力学分析.北京:中国科学技术出版社,2010:10-53
    [103]刘新东,刘伟.复合材料力学基础.西安:西北工业大学出版社,2010:20-61
    [104]Ronald, F. and Gibson.. Principles of Composite Material Mechanics, Boca Raton:CRC Press,2011:158-190
    [105]Bodig, J. and Jayne, B. A.. Mechanics of wood and wood composites, New York:Van Nostrand and Reinhold,1982:88-102
    [106]王金龙,王清明,王伟章ANSYS12.0有限元分析与范例解析.北京:机械工业出版社.20ll:46~98
    [107]Schenk, C.A. and Schueller, G.I.. Uncertainty Assessment of Large Finite Element Systems, Astria:Springer,2005:36-63
    [108]F. Tzika and I. E Stamatelatos. Monte Carlo Simulations for Non-Destructive Elemental Nalysis of Large Samples by Neutron Activation Analysis.4th international conference on NDT,2007,11-14
    [109]A. E. Ismail, A. K. Ariffin, S. Abdullah and M. J. Ghazali. Probabilistic Assessments of the Plate Using Monte Carlo Simulation. Materials Science and Engineering,2011, 17(1):12-29
    [110]Serrano, E., Gustafsson, P., and Larsen, H.. Lamination effect and finger oints analysed by fracture mechanics. International Wood Engineering Conference,1996,4:295-302
    [111]Yingeheng Hu, Tetsuya Nakao, Takahisa Nakai, Jiyou Gu, Fenghu Wang. Study on Dynamie Properties of Wood-Based Composite. Abstracts of 53rd annual meeting of the JaPan wood researeh soeiety, Fukuoka,2003,3:75
    [112]Yingeheng Hu, Tetsuya Nakao, Takahisa Nakai, Jiyou Gu, Fenghu Wang. Produetion and vibration properties of wood plastic plywood(WPPW). Proeeedings of the 16th international wood maehining seminar,2003,8:414-420
    [113]Yingcheng Hu, Tetsuya Nakao, Takahisa Nakai, Jiyou Gu, Fenghu Wang. Prediction of Dynamic Young's Modulus of Wood-Based Composite. Abstracts of 15th annual meeting of Chugoku Shikoku branch of the japan wood research society, Higashi-Hiroshima, 2003,9:78-79
    [114]Yingcheng Hu, Tetsuya Nakao. Nondestructive test and prediction of modulus of elasticity of veneer-overlaid particleboard composite, Wood Science and Technology,2005, 139(6):439-447
    [115]Yingcheng Hu, Tetsuya Nakao, Takahisa Nakai, Jiyou Gu, Fenghu Wang. Vibrational properties of wood plastic plywood, Journal of Wood Science,2005,151(1):13-17
    [116]何晓群,刘文卿.应用回归分析(第三版).北京:中国人民大学出版社,2011:18-40
    [117]北京交通大学概率统计课程组.概率论与数理统计.上海:科技出版社,2010:339-340.
    [118]高谦,吴顺川.土木工程可靠性理论及其应用.北京:中国建材工业出版社,2007:92-112
    [119]周兰美.LVL用刨切单板切削力与质量研究.东北林业大学硕士论文.2004:8-13
    [120]Florent Eyma, Pierre-Jean Meausoone, Patrick Martin. Strains and cutting forces involved in the solid wood rotating cutting process. Journal of Materials Processing Technology,2004,148(2):220-225
    [121]申明倩.木质单板类人造板胶合性能的研究.中南林学院硕士论文.2004:27-33
    [122]李坚.木材科学研究.上海:科技出版社,2009: 143-151
    [123]Xing C, Wang S, Pharr G.M, and Groom L.H. Effect of thermo-mechanical refining pressure on the properties of wood fibers as measured by nanoindentation and atomic force microscopy, Holzforschung,2008,62(2):230-236
    [124]刘焕荣,刘君良,柴宇博.不同因素对竹/木复合强化单板层积材MOR和MOE的影响.林业工业,2007,34(1):2l-23
    [125]刘一星.木质资源材料学.北京:中国林业出版社,2004:58-59
    [126]J.M.Dinwoodie, D.J.Robson, B.H.Paxton, and J.S.Higgins. Creep in chipboard. Part 8: The effect of steady-state moisture content,temperature and level of stressing on the relative creep behaviour and creep modulus of a range of boareds. Wood Science and Technology,1991,25(3):225-238
    [127]J.S.Mundy, P.W.Bonfield, J.M.Dinwoodie, and B.H.Paxton. Modelling the creep behaviour of chipboard:The rheological approach. Wood Science and Technology,1998, 32(4):261-272
    [128]http://cdc.cma.gov.cn/shishi/world.jsp?stprovid=%D6%D0%B9%FA&station=54511
    [129]朱一辛,关明杰,张晓冬.竹材增强杨木单板层积材冲击性能的研究.南京林业大学学报:自然科学版,2005,29(6):99-102
    [130]朱一辛,张心安,关明杰,张晓冬.环境温湿度对竹材增强LVL力学性能的影响.南京林业大学学报:自然科学版,2006,30(11):37-40
    [131]Lei Zhao, Xinling Shi, Yufeng Zhang and He Sun. A Fuzzy Neartude Based Approach to Simulate the Two-Compartment Pharmacokinetic Model. Proceedings of the 2012 International Conference on Information Technology and Software Engineering,2013, 210:649-656
    [132]冯启磊,曾文艺.模糊最小一乘线性回归.北京师范大学学报(自然科学版),2008,44(4):348~353
    [133]张国立.模糊数学基础及应用.北京:化学工业出版社,2011:239-248
    [134]李向阳,蒋莉,张志民.湿热环境对损伤分层复合材料夹层板屈曲性能的影响.复合材料学报,2000,17(4):110-113
    [135]关明杰,朱一辛,张晓冬.湿热条件对木竹复合胶合板弯曲性能的影响.南京林业大学学报:自然科学版,2005,29(6):106-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700