用户名: 密码: 验证码:
分子印迹固相萃取技术在海洋有机污染物和麻痹性贝毒分离检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术(Molecular Imprinting Technique, MIT)是一种制备高分子聚合物的新兴技术,合成的高聚物被称为分子印迹聚合物(Molecularly ImprintedPolymer, MIP),具有选择性高、稳定性好、耐酸碱、可重复使用等优点,已经在环境监测、食品安全、分离和色谱分析等领域得到广泛应用,其中,基于传统固相萃取而发展起来的分子印迹固相萃取技术(Molecularly Imprinted Solid-phaseExtraction,MISPE),是近年来分子印迹研究的热点之一。本文选取海洋环境中典型的有机污染物作为研究对象,制备相应的分子印迹材料,通过离线模式的固相萃取,联用高效液相色谱/质谱等手段,建立相应污染物及其微藻毒素的分析方法,为海洋环境中有机污染物和麻痹性贝毒的分离检测提供一种新的思路和途径。
     论文的主要研究内容如下:
     1)选取水产品养殖中已禁用的典型渔药-三苯甲烷类物质作为印迹目标,分别制备孔雀石绿和结晶紫分子印迹聚合物,优化聚合条件,利用扫描电镜、红外光谱和紫外光谱分析等手段,对聚合物的表面形貌、模板分子与功能单体之间的相互作用力及其分子识别机理等进行研究,同时对模板分子在聚合物上的吸附容量和选择识别性能进行考察,最后以该印迹聚合物作为固相萃取填料,自制印迹固相萃取小柱,离线模式下对天然海水和鱼虾样品中的孔雀石绿和结晶紫进行分离富集和检测。结果表明,自制分子印迹固相萃取小柱能去除样品中复杂基质的干扰,快速有效地对印迹目标实现分离富集,海水样品和鱼虾样品中均有三苯甲烷类物质检出,但浓度低于国家现行标准。
     2)近年来,随着近岸海水养殖的迅速发展,青岛胶州湾内的水产养殖规模和养殖密度日益增大,养殖水体已有恶化的趋势。磺胺嘧啶是水产养殖中已禁用的磺胺类抗生素的一种,但因其价格低廉,存在偷偷使用的现象。本文以传统的本体聚合法制备磺胺嘧啶印迹聚合物,并制成固相萃取小柱,将其用于胶州湾海水中磺胺嘧啶的测定,加标样品的回收率为79.17%-86.54%,相对标准偏差RSD是2.43%-4.32%(n=3),大面调查的七个海水样品中,从湾西部两个站位中检出磺胺嘧啶,海湾的东部和中部均没有磺胺嘧啶检出。
     3)随着毒素监测在国内的广泛开展,麻痹性毒素的分离纯化,引起了人们的日益重视。膝沟藻毒素GTX2,3是我国海域产毒赤潮藻种中较为常见的一种麻痹性贝毒,毒性较强,分离提取难度较大,价格昂贵,本文采用片段印迹,选取膝沟藻毒素的结构片段咖啡因作为虚拟模板,悬浮聚合法在水相中制备了分子印迹微球,通过扫描电镜和比表面积测定仪对印迹微球的形貌进行表征,利用平衡吸附实验对膝沟藻毒素GTX2,3在印迹微球上的分子识别能力进行考察,为下一步从产毒的微藻毒株中提取膝沟藻毒素提供了研究基础。
     以上一步实验中合成的咖啡因分子印迹微球为填料制备固相萃取小柱,在离线模式下联用HPLC,优化淋洗和洗脱条件,建立了膝沟藻毒素GTX2,3的分离提取、检测的方法,最后,从产毒微小亚历山大藻株和塔玛亚历山大藻株的藻细胞粗提液中分离提取膝沟藻毒素GTX2,3。结果表明,GTX2,3提取率大于80%,粗提液中的其他毒素成分(如C毒、GTX1,4)经过印迹固相萃取后已经检测不到,自制印迹固相萃取小柱提取效率较高,柱效稳定,印迹微球经再生处理后,可重复利用至少7次以上。
Molecularly imprinted polymers (MIPs) are synthetic materials with artificiallygenerated recognition sites able to specifically rebind a target molecule in preferenceto other closely related compounds. MIPs have been employed in fields where acertain degree of selectivity is required such as environmental monitoring, food safety,natural products separation and chromatographic analysis. However, nowadays theiruse in solid-phase extraction, so-called molecularly imprinted solid-phase extraction(MISPE), is by far the most advanced technical application of MIPs. This dissertationtakes typical marine organic pollutants and PSP toxins as the research objects. MIPswere prepared by molecular imprinting technology (MIT), used as solid-phaseextraction sorbents, and then combined to off-line analytical techniques for thedetection of typical marine pollutants and PSP toxins.
     As following was primary research to be acquired in the dissertation:
     1) Molecularly imprinted polymers were prepared by the bulk polymerizationusing triphenylmethane dyes (malachite green and crystal violet) as the templatemolecule. Systematic investigations of synthetic conditions were conducted. Thesurface morphology and recognition mechanism of the obtained polymers werestudied using scanning electron microscope, FT-IR and spectrophotometric analysis.MIPs showed high affinity to template molecule and were successfully applied asspecial solid-phase extraction sorbent for selective extraction of triphenylmethanedyes from natural seawater and seafood samples. An off-line MISPE method followedby HPLC with diode-array detection for the analysis of triphenylmethane dyes wasalso established. The extraction on MIPs column can successfully cleanupcomplicated matrix, allowing the extraction of the target with high selectivity.
     2) In this chapter, a highly selective sample cleanup procedure combined withMISPE was developed for the isolation of sulfadiazine in seawater samples fromJiaozhou Bay, China. The MIP was prepared using sulfadiazine as the templatemolecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The MIP was used as selective sorbentfor the solid-phase extraction of sulfadiazine. An off-line MISPE method followedby HPLC with diode-array detection for the analysis of sulfadiazine was established.Good linearity on MISPE column for sulfadiazine standard solutions was obtainedwithin0-200μg L1(R2>0.99). The recoveries of spiked seawater samples were in therange79.17%-86.54%. Finally, seven samples in Jiaozhou Bay were determined andthere was no sulfadiazine found except No.2and No.5sample. SDZ was found inwestern area of Jiaozhou Bay. This may be caused by the mariculture, and mostfarming locate in the western part of Jiaozhou Bay.
     3) Paralytic shellfish poisoning (PSP) is a potentially fatal human healthcondition that may occur after the consumption of PSP toxins contaminated shellfish.The toxins are produced predominantly by dinoflagellates. Gonyautoxins are commonof PSP toxins in China sea. In view of the high toxicity and cost of the target, dummyimprinting is a viable strategy for the synthesis of MIPs. In this chapter, molecularlyimprinted polymer microspheres (MIPMs) for gonyautoxins2,3were preparedthrough suspension polymerization method using caffeine as the dummy templatemolecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylateas the cross-linker and polyvinyl alcohol as the dispersive reagent. Systematicinvestigations of synthetic conditions were conducted and equilibrium bindingexperiments were performed. The surface morphologies of polymers were studied byusing SEM and BET. The results show that the obtained MIPMs showed high affinityto gonyautoxins2,3and this study will provide the research foundation for the nextseparation and isolation of gonyautoxins2,3from dinoflagellate Alexandrium.
     A new and selective sorbent for MISPE was developed for the isolation ofgonyautoxins2,3from dinoflagellate Alexandrium minutum and A. tamarense sample,and validated by HPLC coupled to fluorescence detection. The molecularly imprintedpolymer microspheres were prepared by precipitation polymerization using caffeineas the dummy template molecule and polyvinyl alcohol as the dispersive reagent. Theimprinted polymer microspheres exhibited high affinity, selectivity for gonyautoxins2,3and used as a selective sorbent for the solid-phase extraction of gonyautoxins2,3.An off-line MISPE method was established and good linearity on MISPE column forthe gonyautoxins2,3standard solutions was obtained within0-20μg L1(R2>0.99). Furthermore, the extract samples from A. minutum and A. tamarense were analyzed.The results showed the interferences matrix in the extract were obviously cleaned byMISPE. The extraction efficiency of gonyautoxins2,3exceeded80%. The obtainMIPMs could be used up to7times after a short regeneration step and maintainedtheir adsorption capacity at an almost constant value.
引文
[1] Polyakov M V. Adsorption properties and structure of silica gel. Russian Journal of PhysicalChemistry A. Focus on Chemistry,1931,2:799~905.
    [2] Pauling L. A theory of the structure and process of formation of antibodies. Journal of theAmerican Chemical Society,1940,62:643~657.
    [3] Dickey F H. The preparation of specific adsorbents. Proceedings of the National Academy ofSciences,1949,35:227~229.
    [4] Dickey F H. Specific adsorption. Journal of Physical Chemistry,1955,59:695~707.
    [5] Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolutionof racemates. Angewandte Chemie International Edition,1972,11:341~344.
    [6] Wulff G, Sarhan A. Uber die Anwendung von enzymanalog gebauten polymeren zurracemattrennung. Angewandte Chemie,1972,84:364~364.
    [7] Vlatakis G, Andersson L I, Müller R, et al. Drug assay using antibody mimics made bymolecular imprinting. Nature,1993,361:645~647.
    [8] Alexander C, Andersson H S, Andersson L I, et al. Molecular imprinting science andtechnology: a survey of the literature for the years up to and including2003. Journal ofMolecular Recognition,2006,19(2):106~180.
    [9] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors.Chemical Reviews,2000,100:2495~2504.
    [10] Ikegami T, Mukawa T, Nariai H, et al. Bisphenol A-recognition polymers prepared bycovalent molecular imprinting. Analytica Chimica Acta,2004,504:131~135
    [11] Sellergren B, Shea K J. Enantiomeric Resolution on Molecularly Imprinted PolymersPrepared with only Non-covalent and Non-ionic Interactions. Journal of Chromatography A,1990,516:313~322
    [12] Dhal P K, Amold F H. Template-Mediated Synthesis of Metal-Complexing Polymers forMolecular Recognition. Journal of the American Chemical Society,1991,113:7417~7418
    [13] Dickert F L, Besnbook H, Tortschanoff G. Molecular imprinting through van der waalsinteractions: Fluorescence detection of PAHs in water. Advance Material,1998,10(2):149~155.
    [14] Kirsch N, Alexander C, Whitcombe M J. Sacrificial spacer and non-covalent routes towardthe molecular imprinting of “poorly-functionalized” N-heterocycles. Analytica Chimica Acta,2004,504:63~71
    [15] Matsui J, Doblhoff-Dier O, Takeuchi T.2-(Trifluoromethyl) acrylic acid: a novel functionalmonomer in non-covalent molecular imprinting. Analytica Chimica Acta,1997,343:1~4
    [16] Boysen R I, Li S Y, Chowdhury J, et al. Selectivity optimisation of biomimetic molecularlyimprinted polymer thin films. Microelectronic Engineering,2012,97:81~84
    [17] Klein J U, Whitcombe M J, Mulholland F, et al. Template-mediated synthesis of a polymericreceptor specific to amino acid sequences. Angewandte Chemie International Edition,1999,38(13-14):2057~2060.
    [18] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction ofrecognition site functionality into polymers prepared by molecular Imprinting: synthesis andcharacterization of polymeric receptors for cholesterol. Journal of the American ChemicalSociety,1995,117:7105~7111
    [19] Qi P P, Wang J C, Wang L D, et al. Molecularly imprinted polymers synthesized viasemi-covalent imprinting with sacrificial spacer for imprinting phenols. Polymer,2010,51:5417~5423
    [20] Fujii Y, Matsutani K, Kikuchi K. Formation of a specific coordination cavity for a chiralamino-acid by template synthesis of a polymer Schiff base cobalt (III) Complex. Journal ofthe Chemical Society, Chemical Communications,1985,415~417
    [21] Takeuchi T, Mukawa T, Matsui J, et al. Molecularly imprinted polymers withmetalloporphyrin-based molecular recognition sites coassembled with methacrylic acid.Analytical Chemistry,2001,73(16):3869~3874.
    [22] Yilmaz E, Haupt K, Mosbach K. The use of immobilized templates-A new approach inmolecular imprinting. Angewandte Chemie International Edition,2000,39:2115~2118.
    [23] Liu L J, Zheng J J, Fang G J, et al. Improvement of the homogeneity of protein-imprintedpolymer films by orientated immobilization of the template. Analytica Chimica Acta,2012,726:85~92
    [24] Matsui J, Fujiwara K, Takeuchi T. Atrazine-selective polymers prepared by molecularimprinting of trialkylmelamines as dummy template species of atrazine. Analytical Chemistry,2000,72(8):1810~1813
    [25] Du W, Fu Q, Zhao G, et al. Dummy-template molecularly imprinted solid phase extractionfor selective analysis of ractopamine in pork. Food Chemistry,2013,139:24~30
    [26] Kubo T, Hosoya K, Sano T, et al. Selective separation of brominated bisphenol homologuesusing a polymer-based medium prepared by the fragment imprinting technique. AnalyticaChimica Acta,2005,549:45~50
    [27] Kubo T. Development and applications of fragment imprinting technique. Chromatography,2008,29:9~17
    [28] Kubo T, Hosoya K, Watabe Y, et al. On-column concentration of bisphenol a with one-stepremoval of humic acids in water. Journal of Chromatography A,2003,987(1-2):389~394
    [29] Kubo T, Hosoya K, Watabe Y, et al. Polymer-based adsorption medium prepared using afragment imprinting technique for homologues of chlorinated bisphenol a produced in theenvironment. Journal of Chromatography A,2004,102:37~41
    [30] Kubo T, Nomachi M, Nemoto K, et al. Chromatographic separation for domoic acid using afragment imprinted polymer. Analytica Chimica Acta,2006,577:1~7
    [31] Haginaka J, Takehira H, Hosoya K. Molecularly imprinted uniform-sized polymer-basedstationary phase for naproxen comparison of molecular recognition ability of the molecularlyimprinted polymers prepared by thermal and redox polymerization techniques. Journal ofChromatography A,1998,816:113~121
    [32] Haginaka J, Takehira H, Hosoya K, et al. Uniform-sized molecularly imprinted polymer for(S)-naproxen selectively modified with hydrophilic external layer. Journal of Chromato-graphy A,1999,849:331~339
    [33] Naka Y, Kaetsu I, Yamamoto Y, et al. Preparation of microspheres by radiation-inducedpolymerization. I. Mechanism for the formation of monodisperse poly (diethylene glycoldimethacrylate) microspheres. Journal of Polymer Science Part A: Polymer Chemistry,1991,29(8):1197~1202.
    [34] Ye L, Weiss R, Mosbach K. Synthesis and characterization of molecularly imprintedmicrospheres. Macromolecules,2000,33:8239~8245
    [35] Matsui J, Kato T, Takeuchi T, et al. Molecular recognition in continuous polymer rodsprepared by a molecular imprinting technique. Analytical Chemistry,1993,65:2223~2224.
    [36] Matsui J, Nicholls I A, Takeuchi T. Molecular recognition in cinchona alkaloid molecularimprinted polymer rods. Analytica Chimica Acta,1998,365:89~93.
    [37] Matsui J, Takeuchi T. A molecularly imprinted polymer rod as nicotine selective affinitymedia prepared with2-(trifluoromethyl) acrylic acid. Analytical Communication,1997,34:199~200.
    [38] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with predeterminedselectivity obtained through molecular imprinting. Analytical Chemistry,1997,69:1179~1183.
    [39] Glad M, Norrlow O, Sellergren B, et al. Use of silane monomers for molecular imprintingand enzyme entrapment in polysiloxane-coated porous silica. Journal of Chromatography A,1985,347:11~23.
    [40] Wulff G, Oberkobusch D, Minarik M. Enzyme-analogue built polymers,18chiral cavities inpolymer layers coated on wide-pore silica. Reactive Polymers, Ion Exchangers, Sorbents.,1985,3:261~275.
    [41] Shi H Q, Tsai W B, Garrison M D, et al. Template-imprinted nanostructured surfaces forprotein recognition. Nature,1999,398:593~597.
    [42] Shi H Q, Ratner B D. Template recognition of protein-imprinted polymer surfaces. Journal ofBiomedical Materials Research,2000,49(1):1~11.
    [43] Bonini F, Piletsky S, Turner A P F. Surface imprinted beads for the recognition of humanserum albumin. Biosensors and Bioelectronics,2007,22:2322~2328
    [44] Guo T Y, Xia Y Q, Hao G J, et al. Adsorptive separation of hemoglobin by molecularlyimprinted chitosan beads. Biomaterials,2004,25(27):5905~5912.
    [45] Wang Y T, Zhou Y X, Sokolov J, et al. A potentiometric protein sensor built with surfacemolecular imprinting method. Biosensors and Bioelectronics,2008,24:162~166.
    [46] Rachkov A, Minoura N. Recognition of oxytocin and oxytocin-related peptides in aqueousmedia using a molecularly imprinted polymer synthesized by the epitope approach. Journalof Chromatography A,2000,889:111~118.
    [47] Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides andproteins. The epitope approach. Biochimica et Biophysica Acta (BBA)-Protein Structure andMolecular Enzymology,2001,1544:255~266
    [48] Lu C H, Zhang Y, Tang S F, et al. Sensing HIV related protein using epitope imprintedhydrophilic polymer coated quartz crystal microbalance. Biosensors and Bioelectronics,2012,31:439~444
    [49] Chou P C, Rick J, Chou T C. C-reactive protein thin-film molecularly imprinted polymersformed using a micro-contact approach. Analytica Chimica Acta,2005,542:20~25
    [50] Lin H Y, Hsu C Y, Thomas J L, et al. The microcontact imprinting of proteins: The effect ofcross-linking monomers for lysozyme, ribonuclease A and myoglobin. Biosensors andBioelectronics,2006,22(4):534~543.
    [51] Lin H Y, Rick J, Chou T C. Optimizing the formulation of a myoglobin molecularlyimprinted thin-film polymer-formed using a micro-contact imprinting method. Biosensorsand Bioelectronics,2007,22:3293~3301
    [52] Duffy D J, Dak K, Hsu S L. Binding efficiency and transport properties of molecularlyimprinted polymer thin films. Journal of the American Chemical Society,2002,124:8290~8296.
    [53] Lanza F, Ruther M, Hall A J, et al. In: molecularly imprinted materials-sensors and otherdevices. MRS Symposium Proceedings. Warrendale, Pennsylvania: Materials ResearchSociety,2002,723:93~103
    [54]姜忠义,吴洪.分子印迹技术.北京:化学工业出版社,2003
    [55] Ferrer I, Lanza F, Tolokan A, et al.Selective trace enrichment of chlorotriazine pesticidesfrom natural waters and sediment samples using terbuthylazine molecularly imprintedpolymers. Analytical Chemistry,2000,72(16):3934~3941.
    [56] Curcio M, Puoci F, Cirillo G, et al. Selective Determination of Melamine in aqueous mediumby molecularly imprinted solid phase extraction. Journal of Agricultural and Food Chemistry,2010,58:11883~11887
    [57] Caro E, Masque N, Marce R M, et al. Non-covalent and semi-covalent molecularly imprintedpolymers for selective on-line solid-phase extraction of4-nitrophenol from water samples.Journal of Chromatography A,2002,963:169~178.
    [58] Hantash J, Bartlett A, Oldfield P, et al. Use of an on-line imprinted polymer pre-column, forthe liquid chromatographic-UV absorbance determination of carbaryl and its metabolite incomplex matrices. Journal of Chromatography A,2006,1125:104~111
    [59] Sanchez-Barragan I, Karim K, Costa-Fernandez J M, et al. A molecularly imprinted polymerfor carbaryl determination in water. Sensors and Actuators B: Chemical,2007,123:798~804.
    [60] Sellergren B. Direct Drug determination by selective sample enrichment on an imprintedpolymer. Analytical Chemistry,1994,66(9):1578~1582.
    [61] Wulff, G. Molecular recognition in polymers prepared by imprinting with templates.American Chemical Society Symposium Series,1986,308:186~230.
    [62] Natalina P M, Andrew G M. Direct rapid synthesis of MIPbeads in SPE cartridges.Biosensors and Bioelectronics,2006,21:1798~1803.
    [63] Blanco L, Lobo C, Miranda O. Voltammetric sensor for vanillylmandelic acid based onmolecularly imprinted polymer-modified electrodes. Biosensors and Bioelectronics,2003,18:353~362.
    [64] Panasyuk T L, Mirsky V M, Piletsky S A, et al. Electropolymerized molecularly imprintedpolymers as receptor layers in a capacitive chemical sensors. Analytical Chemistry,1999,71(20):4609~4613.
    [65] Liang C D,Peng H,Nie L H. Bulk acoustic wave sensor for herbicide assay based onmolecular imprinted polymer. Journal of Analytical Chemistry,2000,367(6):551~555.
    [66] Fischerauer G, Dickert F, Forth P, et al.Chemical sensors based on SAW resonators workingat up to1GHz. IEEE. Ultrasonics Symposium Proceedings,1996,1(3-6):439~442
    [67] Kriz D, Ramstroem O, Mosbach K. A Biomimetic sensor based on a molecularly imprintedpolymer as a recognition element combined with fiber-optic detection. Analytical Chemistry,1995,67(13):2142~2144
    [68] Valero-Navarro A, Salinas-Castillo A, Fernandez-Sanchez J F, et al. The development of aMIP-optosensor for the detection of monoamine naphthalenes in drinking water. Biosensorsand Bioelectronics,2009,24:2305~2311
    [69] Lin J M, Yamada M. Chemiluminescent flow-through sensor for1,10-phenanthroline basedon the combination of molecular imprinting and chemiluminescence. Analyst,2001,126(6):810~815.
    [70] Zhao P N, Yan M, Zhang C C, et al. Determination of glyphosate in foodstuff by one novelchemiluminescence-molecular imprinting sensor. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy,2011,78:1482~1486
    [71] Leonhardt A, Mosbach K. Enzyme-mimicking polymers exhibiting specific substrate bindingand catalytic functions. Reactive Polymers,1987,6(2-3):285~290.
    [72] Sellergren B, Karmalkar R N, Shea K J. Enantioselective ester hydrolysis catalyzed byimprinted polymers. Journal of Organic Chemistry,2000,65(13):4009~4027
    [73] Visnjevski A, Yilmaz E, Brüggemann O. Catalyzing a cycloaddition with molecularlyimprinted polymers obtained via immobilized templates. Applied Catalysis A: General,2004,260:169~174
    [74] Hedin-Dahlstr m J, Shoravi S, Nicholls I A. Stereoselective reduction of menthone bymolecularly imprinted polymers. Tetrahedron: Asymmetry,2004,15:2431~2436.
    [75] Medintz I L, Clapp A R, Mattoussi H. Self-assembled nanoscale biosensors based onquantum dot FRET donors. Nature materials,2003,2:630~637.
    [76] Yu J C C, Lai E P C. Determination of ochratoxin A in red wines by multiple pulsed elutionsfrom molecularly imprinted polypyrrole. Food Chemistry,2007,105:301~310.
    [77] Kan X W, Zhu J J. Composites of multiwalled carbon nanotubes and molecularly imprintedpolymers for dopamine recognition. Journal of Physical Chemistry C,2008,112(13):4849~4854.
    [78] Heister E, Neves V, Tilmaciu C.Triple functionalisation of singlewalled carbon nanotubeswith doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancertherapy. Carbon.2009,47:2152~2160.
    [79] Li H, Li G, Li Z P, et al. Surface imprinting on nano-TiO2as sacrificial material for thepreparation of hollow chlorogenic acid imprinted polymer and its recognition behavior.Applied Surface Science,2013,264:644~652
    [80] Afkhami A, Ghaedi H, Madrakian T, et al. Fabrication of a new electrochemical sensor basedon a new nano-molecularly imprinted polymer for highly selective and sensitivedetermination of tramadol in human urine samples. Biosensors and Bioelectronics,2013,44:34~40
    [81] Allsell R J, Mosbach K. Magnetic molecularly imprinted polymer polymer beads for usingdrug radioligand binding assay. Analyst,1998,123:1611~1616.
    [82] Chen L, Zhang X, Sun L. Fast and selective extraction of sulfonamides from honey based onmagnetic molecularly imprinted polymer. Journal of Agricultural and Food Chemistry,2009,57:10073~10080.
    [83] Hu Y L, Liu R J, Li G K. Improvement of extraction capability of magnetic molecularlyimprinted polymer beads in aqueous media via dual-phase solvent system. Talanta,2009,79:576~582.
    [84] Hu Y L, Wang Y Y, Chen X G, et al. A novel molecularly imprinted solid-phasemicroextraction fiber coupled with performance liquid chromatography for analysis of traceestrogens in fishery samples. Talanta,2010,80:2099~2105.
    [85] Lu F, Li H J, Sun M, et al. Flow injection chemiluminescence sensor based on core-shellmagnetic molecularly imprinted nanoparticles for determination of sulfadiazine. AnalyticaChimica Acta,2012,718:84~91
    [86] Lin Z, He Q, Wang L, et al. Preparation of magnetic multi-functional molecularlyimprinted polymer beads for determining environmental estrogens in water samples. Journalof Hazardous Materials,2013,252:57~63
    [87] Liu H M, Liu C H, Yang X J, Zeng S J, Xiong Y Q, Xua W Y. Uniformly sized β-cyclodextrinmolecularly imprinted microspheres prepared by a novel surface imprinting technique forursolic acid. Analytica Chimica Acta,2008,628:87~94
    [88] Jing T, Xia H, Niu J W, et al. Determination of trace2,4-dinitrophenol in surface watersamples based on hydrophilic molecularly imprinted polymers/nickel fiber electrode.Biosensors and Bioelectronics,2011,26:4450~4456
    [89] Javanbakht M, Namjumanesh M H, Akbari A B. Molecularly imprinted solid-phaseextraction for the selective determination of bromhexine in human serum and urine with highperformance liquid chromatography. Talanta,2009,80:133~138
    [90] Ouyang R Z, Lei J P, Ju H X. A molecularly imprinted copolymer designed forenantioselective recognition of glutamic acid. Advanced Functional Materials,2007,17(16):3223~3230.
    [91] Ouyang R Z, Lei J P, Ju H X. Surface molecularly imprinted nanowire for protein recognition.Chemical Communications,2008,44,5761~5763.
    [92] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymer coatingsuperparamagnetic nanoparticles for protein recognition. Journal of Materials Chemistry,2010,20(5):880~883.
    [93] Zhou W H, Tang S F, Yao Q H, et al. A quartz crystal microbalance sensor based onmussel-inspired molecularly imprinted polymer. Biosensors and Bioelectronics,2010,26:585-589.
    [94]翟毓秀,郭莹荣,耿霞.孔雀石绿的代谢机理及生物毒性研究进展.中国海洋大学学报,2007,37(l):27~32
    [95] Bills T D, Hunn J B. Changes in the blood chemistry of coho salmon exposed to malachitegreen. Progressive Fish-Culturist,1976,38(4):214~216.
    [96]吴建中,黄雪松,胡长鹰,等.结晶紫分子印迹聚合物的合成及吸附性能评价.离子交换与吸附,2010,26(3):210~217
    [97]车会莲,茅文玺,何计国.孔雀石绿分子印迹聚合物微球的制备.中国卫生检疫杂志,2006,16(11):1285~1287.
    [98] Dowling G, Mulder P P J, Regan L. Confirmatory analysis of malachite green, leuco-malachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta.,2007,586:411~419.
    [99]林洪,付晓婷,邱绪建,等.液相色谱法测定鱼肌肉中孔雀石绿、结晶紫及其代谢物.中国海洋大学学报,2006,36(6):919~922
    [100] Xie J, Peng T, Chen D D, et al. Determination of malachite green, crystal violet and theirleuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up.Journal of Chromatography B,2013,913-914:123~128
    [101] Tao Y F, Chen D M, Chao X Q. Simultaneous determination of malachite green, gentianviolet and their leuco-metabolites in shrimp and salmon by liquid chromatography-tandemmass spectrometry with accelerated solvent extraction and auto solid-phase clean-up. FoodControl.2011,22:1246~1252.
    [102] Luo X B, Jiang X, Tu X M. Determination of malachite green in fish water samples bycloud-point extraction coupled to cation-selective exhaustive injection and sweeping-MEKC. Electrophoresis,2010,31:688~694.
    [103]陈振桂,占春瑞,郭平,等.高效液相色谱法同时测定水产品中13种磺胺类药物残留的研究.食品科学,2007,28:448~450
    [104]邹潍力,方炳虎,何绮霞,等.动物源性食品中磺胺类药物残留检测方法进展.中国兽药杂志,2007,41:24~28
    [105]郝晓丽.磺胺类药物残留检测方法研究:[硕士学位论文].北京:首都师范大学,2009
    [106]郝晓丽,谷学新,叶能胜,等.毛细管电泳法检测肉类中五种磺胺类药物残留研究.药物分析杂志,2009,29:579~581.
    [107]段振娟,张鸿雁,王硕.动物性食品中磺胺类药物残留分析研究进展.食品研究与开发,2007,28(6):149~152
    [108] Preechaworapun A, Chuanuwatanakul S, Einaga Y, et al. Electroanalysis of sulfonamides byflow injection system/high-performance liquid chromatography coupled with amperometricdetection using borondoped diamond electrode. Talanta,2006,68:1726~1731.
    [109] Liu M M, Xu L, Cheng W Q, et al. Surface-modified CdS quantum dots as luminescentprobes for sulfadiazine determination. Spectrochim. Acta A,2008,70:1198~1202.
    [110] Sun L, Chen L G, Sun X, et al. Analysis of sulfonamides in environmental water samplesbased on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UVdetection. Chemosphere,2009,77:1306~1312.
    [111] Campestrini I, Braga O C D, Vieira I C, et al. Application of bismuth-film electrode forcathodic electroanalytical determination of sulfadiazine. Electrochimica Acta,2010,55:4970~4975.
    [112] Chafer-Pericas C, Maquieira A, Puchades R, et al. Fast screening immuno-assay ofsulfonamides in commercial fish samples. Analytical and Bioanalytical Chemistry,2010,396:911~921.
    [113]张海琪,宋琍琍,徐晓林.液相色谱-串联质谱法同时测定大黄鱼中20种磺胺类药残留.分析化学,2007,35(2):268~272.
    [114]李瑞丹.赤潮产毒藻亚历山大藻生长及产毒特性分析:[硕士学位论文].上海:上海交通大学,2009.
    [115]王云峰.麻痹性贝毒毒素的制备和活性研究:[博士学位论文].青岛:中国科学院海洋研究所,2001.
    [116]于姬.北黄海虾夷扇贝体内麻痹性贝毒研究:[硕士学位论文].大连:大连海事大学,2009.
    [117] Sommer H, Whedon W F, Kofoid C A, et al. Relation of paralytic shellfish poison to certainplankton organisms of the genus Gonyaula. Arch. Path.,1937b,24:537~559.
    [118]陈光.塔玛亚历山大藻所产麻痹性贝毒(PSP)在菲律宾蛤仔体内的累积与排出:[硕士学位论文].青岛:国家海洋局第一海洋研究所,2008
    [119] Schantz E J, Mold J D, Stanger D W, et al. Paralytic shellfish poison.Ⅵ.A procedure for theisolation and purification of the poison from toxic clam and mussel tissues. Journal of theAmerican Chemical Society,1957,79:5230~5235.
    [120] Oshima Y, Yasumoto T. Analysis of toxins in cultured Gonyaulax excavata cells originatingin Ofunato Bay, Japan. In:Toxic dinoflagellate blooms, Taylor K L, Seliger H E.eds. NewYork.1979,377~380
    [121] Shimizu Y, Yoshioka M. Transformation of paralytic shellfish toxin as demonstrated inscallop homogenates. Science,1981,212:547~549
    [122] Shimizu Y. Paralytic shellfish poisons. In: Progress in the Chemistry of Organic NaturalProducts.1984,235~264.
    [123]张树刚.亚历山大藻产毒生理及合成机制研究:[硕士学位论文].厦门:厦门大学,2006
    [124]刘仁沿,马德毅,梁玉波.赤潮甲藻毒素麻痹性贝毒的生物合成研究进展.海洋环境科学,2004,23(4):71~74.
    [125] Rodrigues S M, Carvalho M, Mestre T, et al. Paralytic shellfish poisoning due to ingestionof Gymnodinium catenatum contaminated cockles-Application of the AOAC HPLC OfficialMethod. Toxicon,2012,59:558~566
    [126] Campbell K, Huet A C, Charlier C, et al. Comparison of ELISA and SPR biosensortechnology for the detection of paralytic shellfish poisoning toxins. Journal ofChromatography B,2009,877:4079~4089
    [127] Zhang X W, Zhang Z X. Capillary electrophoresis-based immunoassay with electrochemicaldetection as rapid method for determination of saxitoxin and decarbamoylsaxitoxin inshellfish samples. Journal of Food Composition and Analysis,2012,28:61~68
    [128] Zhen Y, Mi T Z, Yu Z G. Quantification methods for Alexandrium catenella, a toxicdinoflagellate: Comparison of competitive enzyme-linked immunosorbent assay andsandwich hybridization integrated with a nuclease protection assay. Harmful Algae,2011,10:589~597
    [129] Bates H A, Rapoport H. A chemical assay for saxitoxin, the paralytic shellfish poison.Journal of Agricultural and Food Chemistry,1975,23(2):237~239
    [130] Sullivan J J, Wekel M M. The application of high performance liquid Chromatography inparalytic shellfish poisoning monitoring program Seafood quality Determination.Proceedings of an International Symposium Coordinated by the University of Alaska.1986,357~370
    [131] Oshima Y, Sugino K, YasumotoT. Latest advances in HPLC analysis of paralytic shellfishtoxins. Mycotoxins and phycotoxins,1989,319~326.
    [132] Lawrence J F, Menard C. Liquid chromatographic determination of paralytic shellfishpoisons in shellfish after prechromatographic oxidation. Journal of the Association ofOfficial Analytical Chemists,1991a,74:1006~1012.
    [133] Lawrence J F, Menard C, Hall S. A study of ten toxins associated with paralytic shellfishpoison using prechromatographic oxidation and liquid chromatography with fluorescencedetection. Journal of Association of Official Analytical Chemists,1991b,74:404~409.
    [134] Thielert G, Peters K, Kaiser I, et al. Application on HPLC for determination of PSP toxins.Strategies for Food Quality Control and Analytical Methods in Europe, proceedings of the6European Conference on Food Chemistry. Hamburg, Germany,1991,816~820
    [135]于仁诚.塔玛亚历山大藻(Alexandrium tamarense)产毒生理学研究:[博士学位论文].青岛:中国科学院海洋所,1998.
    [136] Yu R C, Hummert C, Luckas B, et al. A Modified HPLC Method for Analysis of PSP Toxinsin Algae and Shellfish from China. Chromatographia,1998,48:671~676
    [137] Schnick R A. The Impetus to Register New Therapeutants for Aquaculture. ProgressiveFish-Culturist,1988,50:190~196.
    [138] Culp S J, Beland F A. Malachite Green: A Toxicological Review. Journal of the AmericanCollege of Toxicology,1996,15:219~238.
    [139] Guo Z Y, Gai P P, Hao T T, et al. Determination of malachite green residues in fish using ahighly sensitive select rochemiluminescence method combined with molecularly imprintedsolid-phase extraction. Journal of Agricultural and Food Chemistry,2011,59:5257~5262.
    [140]任秀莲,魏琦峰,曲径.反相高效液相色谱法测定水产品中孔雀石绿、结晶紫及其代谢物.化学分析计量,2006,15:32~34.
    [141]胡萍,赵鹏,余少文.高效液相色谱法监测市售水产品中孔雀石绿.深圳大学学报,2012,29(1):61~66.
    [142] U.S. Food Drug Administration. Guideline for Industry: Mass Spectrometry forConfirmation of the Identity of Animal Drug Residues. Federal Register2003,68:25617~25618.
    [143] Commission Decision (2002/657/EC) of12August2002. Implementing Council Directive96/23/EC concerning the performance of analytical methods and the interpretation of results.Official Journal of the European Communities L221, Brussels, Belgium,8~36
    [144]张建文,熊勇华,陈雪岚,等.磺酸化磁珠富集鱼塘水中的孔雀石绿.分析化学,2011,39(5):753~756.
    [145]李亚辉,王悦秋,张朔瑶.孔雀石绿分子印迹物的制备及其在固相萃取中的应用.化学研究与应用,2008,20(9):1162~1164.
    [146]王志霞,王兵.莠去津分子印迹聚合物的合成及识别性能研究.化学学报,2011,69(22):2717~2722.
    [147] Sellergren B. Direct drug determination by selective sample enrichment on an imprintedpolymer. Analytical Chemistry,1994,66:1578~1582
    [148] Wang H, Yan H Y, Qiu M D, et al. Determination of dicofol in aquatic products usingmolecularly imprinted solid-phase extraction coupled with GC-ECD detection. Talanta,2011,85:2100~2105.
    [149] Pavlovic D M, Babic S, Dolar D, et al. Development and optimization of the SPEprocedure for determination of pharmaceuticals in water samples by HPLC-diode arraydetection. Journal of Separation Science,2010,33:258~267.
    [150]吴建中,黄雪松,胡长鹰.结晶紫分子印迹聚合物的合成及吸附性能评价.离子交换与吸附,2010,26(3):210~217.
    [151]李丽丽,周文辉,李永,等.软骨藻酸分子印迹聚合物的制备及其固相萃取应用.应用化学,2010,27(2):132~136.
    [152] Yan S L, Gao Z X, Fang Y J, et al. Characterization and quality assessment of bindingproperties of malachite green molecularly imprinted polymers prepared by precipitationpolymerization in acetonitrile. Dyes and Pigments,2007,74:572~577.
    [153] Lin C I, Joseph A K, Chang C K, et al. Synthesis of Molecular Imprinted Organic-inorganicHybrid Polymer Binding Caffeine. Analytica Chimica Acta,2003,481:175~180
    [154]王江涛,宋兴良.虚拟模板/硅胶表面分子印迹材料的制备及其在海水溶液中的吸附行为研究.分析化学,2010,38(8):1121~1126.
    [156] Song X L, Li J H, Wang J T. Quercetin Molecularly imprinted polymers: Preparation,Recognition Characteristics and Properties as Sorbent for Solid-phase Extraction. Talanta,2009,80:694~702
    [157]张彤晴,杨洪生,林海,等.高效液相色谱法测定养殖水体孔雀石绿和无色孔雀石绿.水产学报,2007,31(5):699~703
    [158] Pourreza N., Elhami Sh. Spectrophtometric determination of malachite green in fish farmingwater samples after cloud point extraction using nonionic surfactant Triton X-100.Analytica Chimica Acta,2007,596:62~65
    [159] Rushing L G, Bowman M C. Determination of gentian violet in animal feed, human urine,and wastewater by high pressure liquid chromatography. Journal of ChromatographicScience,1980,18:224~232.
    [160] Mittal A, Mittal J, Malviya A, et al. Adsorption of hazardous dye crystal violet fromwastewater by waste materials. Journal of Colloid and Interface Science,2010,343:463~473
    [161] Safarik I, Safarikova M. Detection of low concentrations of malachite green and crystalviolet in water. Water Research,2002,36:196~200.
    [162] Shivaji S, Ranjana S, Roy D. Toxicological effects of malachite green. Journal of AquaticToxicology,2004,66:319~329.
    [163] European Commission, Report for2004on the Results of Residue Monitoring in Food ofAnimal Origin in the Member States. SANCO/3400/2005.
    [164] Rushing L G, Hansen E B. Confirmation of malachite green, gentian violet and their leucoanalogs in catfish and trout tissue by high-performance liquid chromatography utilizingelectrochemistry with ultraviolet-visible diode array detection and fluorescence detection.Journal of Chromatography B,1997,700:223~231.
    [165] Oplatowska M, Connolly L, Stevenson P, et al. Development and validation of a fastmonoclonal based disequilibrium enzyme-linked immunosorbent assay for the detection oftriphenylmethane dyes and their metabolites in fish. Analytica Chimica Acta,2011,698:51~60.
    [166] Villar-Pulido M, Gilbert-Lopez B, Garcia-Reyes J F, et al. Multiclass detection andquantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatographytime-of-flight mass spectrometry. Talanta,2011,85:1419~1427.
    [167] An L, Deng J, Zhou L, et al. Simultaneous spectrophotometric determination of traceamount of malachite green and crystal violet in water after cloud point extraction usingpartial least squares regression. Journal of Hazardous Materials,2010,175:883~888.
    [168] Wang Y X, Liu Q M, Rong F, et al. Comparison of three cross-linking agents for imprintingdiethylstilbestrol in solid-phase extraction. Polymers for Advanced Technology,2012,23:720~727.
    [169] Lucci P, Nú ez O, Galceran M T. Solid-phase extraction using molecularly imprintedpolymer for selective extraction of natural and synthetic estrogens from aqueous samples.Journal of Chromatography A,2011,1218:4828~4833
    [170] Pan M F, Wang J P, Fang G Z, et al. Synthesis and characterization of a molecularlyimprinted polymer and its application as SPE enrichment sorbent for determination of tracemethimazole in pig samples using HPLC-UV. Journal of Chromato-graphy B,2010,878:1531~1536.
    [171] Sun Z, Schussler W, Seng M, et al. Selective trace analysis of diclofenac in surface andwastewater samples using solid-phase extraction with a new molecularly imprinted polymer.Analytica Chimica Acta,2008,620:73~81.
    [172] Prieto A, Schrader S, M der M. Synthesis of a molecularly imprinted polymer and itsapplication for microextraction by packed sorbent for the determination of fluoroquinolonerelated compounds in water. Analytica Chimica Acta,2011,685:146~152
    [173] Claude B, Morin P, Lafosse M, et al. Selective solid-phase extraction of a triterpene acidfrom a plant extract by molecularly imprinted polymer. Talanta,2008,75:344~350.
    [174] Michailof C, Manesiotis P, Panayiotou C. Synthesis of caffeic acid and phydroxybenzoicacid molecularly imprinted polymers and their application for the selective extraction ofpolyphenols from olive mill waste waters. Journal of Chromatography A,2008,1182:25~33.
    [175] Li Y H, Yang T, Qi X, et al. Development of a group selective molecularly imprintedpolymers based solid phase extraction of malachite green from fish water and fish feedsamples. Analytica Chimica Acta,2008,624:317~325.
    [176]肖琴,林一,郑琳,等.分子印迹固相萃取-高效液相色谱法检测鱼肉中的孔雀石绿和结晶紫.粮油食品科技,2011,19:31~34
    [177] Zhou J, He X W. Study of the nature of recognition in molecularly imprinted polymerselective for2-aminopyridine. Analytica Chimica Acta,1999,381:85~91.
    [178]高吉刚,周杰,曲祥金.植物激素吲哚乙酸分子模板聚合物的分子识别特性.分析化学,2003,31(10):1173~1177
    [179] She Y X, Cao W Q, Shi X M, et al. Class-specific molecularly imprinted polymers for theselective extraction and determination of sulfonylurea herbicides in maize samples byhigh-performance liquid chromatography–tandem mass spectrometry. Journal ofChromatography B,2010,878:2047~2053.
    [180] Lee T P, Saad B, Salleh B. Molecularly imprinted polymer as sorbent in micro-solid phaseextraction of ochratoxin A in coffee, grape juice and urine.Talanta,2012,88:129~135
    [181] Rigos G, Troisi G M. Antibacterial agents in mediterranean finfish farming: a synopsis ofdrug pharmaco kinetics in important euryhaline fish species and possible environmentalimplications. Reviews in Fish Biology and Fisheries,2005,15:53~73.
    [182] Bialk-Bielinska A, Stolte S, Arning J, et al. Ecotoxicity evaluation of selected sulfonamides.Chemosphere,2011,85:928~933
    [183] Managaki S, Murata A, Takada H, et al. Distribution of macrolides, sulfonamides, andtrimethoprim in tropical waters: Ubiquitous occurrence of veterinary antibiotics in themekong delta. Environment Science Technology,2009,43:2963~2968.
    [184] Shelver W L, Shapell N W, Rubio F R. ELISA for sulfonamides and its application forscreening in water contamination. Journal of Agricultural and Food Chemistry,2008,56:6609~6615.
    [185] Kummerer K. Antibiotics in the aquatic environment-A review-Part I. Chemosphere,2009,75:417~434.
    [186]苏仲毅,陈猛,袁东星,等.固相萃取-超高压液相色谱-串联质谱法分析海水中9种磺胺类抗生素.厦门大学学报(自然科学版),2007,46:72~76
    [187] Campestrini I, Braga O C D, Spinelli A. Application of bismuth-film electrode for cathodicelectroanalytical determination of sulfadiazine. Electrochim Acta2010,55:4970~4975.
    [188] Preechaworapun A, Chuanuwatanakul S, Einaga Y, et al. Electroanalysis of sulfonamides byflow injection system/high-performance liquid chromatography coupled with amperometricdetection using boron-doped diamond electrode.Talanta,2006,68:1726~1731.
    [189] Sun L, Chen L G, Sun X, et al.Analysis of sulfonamides in environmental water samplesbased on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UVdetection. Chemosphere,2009,77:1306~1312.
    [190] Liu M M, Xu L, Cheng W Q, et al. Surface-modified CdS quantum dots as luminescentprobes for sulfadiazine determination. Spectrochim Acta A,2008,70:1198~1202.
    [191] Cháfer-Pericás C, Maquieira á, Puchades R, et al. Fast screening immuno-assay ofsulfonamides in commercial fish samples. Analytical and Bioanalytical Chemistry,2010,396:911~921.
    [192] Hu S G, Li L, He X W. Comparison of trimethoprim molecularly imprinted polymers in bulkand in sphere as the sorbent for solid-phase extraction and extraction of trimethoprim fromhuman urine and pharmaceutical tablet and their determination by high-performance liquidchromatography. Analytica Chimica Acta,2005,537:215~222.
    [193] Lv Y K, Wang L M, Yang L, et al. Synthesis and application of molecularly imprinted poly(methacrylic acid)-silica hybrid composite material for selective solid-phase extraction andhigh-performance liquid chromatography determination of oxytetracycline residues in milk.Journal of Chromatography A,2012,1227:48~53
    [194] Manesiotis P, Fitzhenry L, Theodoridis G, et al. Applications of SPE-MIP in the field offood analysis.Comprehensive Sampling and Sample Preparation,2012,4:457~471
    [195] Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selectivedetermination of environmental pollutants-A review. Analytica Chimica Acta,2008,622:48~61.
    [196] Moullec S L, Truong L, Montauban C, et al. Extraction of alkyl methylphosphonic acidsfrom aqueous samples using a conventional polymeric solid-phase extraction sorbent and amolecularly imprinted polymer. Journal of Chromatography A,2007,1139:171~177
    [197] Baggiani C, Anfossi L, Tozzi C. Binding properties of2,4,5-trichlorophenoxyaceticacid-imprinted polymers prepared with different molar ratios between template andfunctional monomer. Talanta,2004,62:1029~1034.
    [198]宋兴良.分子印迹固相萃取材料的制备及应用研究:[博士学位论文].青岛:中国海洋大学,2010.
    [199] Dobashi A, Nishida S, Kurata K. Chiral separation of enantiomeric1,2-diamine usingmolecular imprinted method and selectivity enhancement by addition of achiral primaryamine into eluents. Analytical Sciences,2002,18:35-39
    [200] Dong W G, Yan M L, Li Y M. A computational and experimental investigation of theinteraction between the template molecule and the functional monomer used in themolecularly imprinted polymer. Analytica Chimica Acta,2005,542:186~192
    [201] Guo L Y, Jiang X M, Zhang H X. Analysis of sulfamerazine in pond water and several fishesby high-performance liquid chromatography using molecularly imprinted solid-phaseextraction. Analytical and Bioanalytical Chemistry,2008,391:2291~2298.
    [202] Piletska E V, Guerreiro Antonio R, Whitcombe M J, et al. Influence of the polymerizationconditions on the performance of molecularly imprinted polymers. Macromolecules,2009,42:4921~4928
    [203] Zhang Y G, Song D, Lanni L M, et al. Importance of Functional Monomer Dimerization inthe Molecular Imprinting Process. Macromolecules,2010,43:6284~6294.
    [204]杨卫华.胶州湾扇贝养殖对环境的影响及其数值模型研究:[硕士学位论文].青岛:中国海洋大学,2005.
    [205]王刚.胶州湾入海点源、海水养殖污染物通量研究:[硕士学位论文].青岛:中国海洋大学,2009.
    [206] Wei R C, Ge F, Huang S Y, et al. Occurrence of veterinary antibiotics in animal wastewaterand surface water around farms in Jiangsu Province, China. Chemosphere,2011,82:1408~1414.
    [207] Li B, Zhang T, Xu ZY, et al. Rapid analysis of21antibiotics of multiple classes in municipalwastewater using ultra performance liquid chromatography-tandem mass spectrometry.Analytica Chimica Acta,2009,645:64~72.
    [208] Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation ofantibiotics in the Huangpu River, Shanghai, China. Chemosphere,2011,82:822~828.
    [209]徐维海,张干,邹世春.香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化.环境科学,2006,27(12):2458~2462.
    [210]叶赛,张奎文,姚子伟,等.环渤海水域磺胺类药物的含量特征.大连海事大学学报,2007,33:70~74.
    [211]罗辉武.膝沟藻毒素GTX2,3单克隆抗体的制备、鉴定及酶免疫检测方法的初步建立:
    [硕士学位论文].广州:暨南大学,2006.
    [212]雷芳.深圳市售贝类麻痹性贝类毒素和腹泻性贝类毒素污染状况研究:[硕士学位论文].广州:暨南大学,2009
    [213] Ichimi K, Suzuki T, Ito A. Variety of PSP toxin profiles in various culture strains ofAlexandrium tamarense and change of toxin profile in natural A. tamarense population.Journal of Experimental Marine Biology and Ecology,2002,273:51~60.
    [214] Flynn K J. Toxin production in migrating dinoflagellates: a modelling study of PSPproducing Alexandrium. Harmful Algae,2002,1:147~155
    [215] Stewart J E. Enhancement by gonyautoxin V of the iron(III) reducing or binding activityproduced by the dinoflagellate, Alexandrium excavatum. Harmful Algae,2011,10:706~712
    [216] Tang Y, Wang H, Xiang J J, Chen Y Q, He W F, Deng N, Yang H Y. A sensitiveimmunosorbent bio-barcode assay combining PCR with ELISA for detection ofgonyautoxin2/3. Analytica Chimica Acta,2010,657:210~214.
    [217] Ramstr m O, Ye L, Mosbach K. Artificial antibodies to corticosteroids prepared bymolecular imprinting. Chemistry and Biology,1996,3:471~477
    [218] Verheyen E, Schillemans J P, Wijk M, et al.Challenges for the effective molecularimprinting of proteins. Biomaterials,2011,32:3008~3020.
    [219] Joshi V P, Karode S K, Kulkarni M G, et al. Novel separation strategies based onmolecularly imprinted adsorbents. Chemical Engineering Science,1998,53:2271~2284.
    [220] Lai J P, Lu X Y, Lu C Y, et al. Preparation and evaluation of molecularly imprintedpolymeric microspheres by aqueous suspension polymerization for use as ahigh-performance liquid chromatography stationary phase. Analytica Chimica Acta,2001,442:105~111
    [221] Ye L, Cormack P A G, Mosbach K. Molecular imprinting on microgel spheres. AnalyticaChimica Acta,2001,435:187~196.
    [222] Araki K, Goto M, Furusaki S. Enantioselective polymer prepared by surface imprintingtechnique using a bifunctional molecule. Analytica Chimica Acta,2002,469:173~181.
    [223] Shiomi T, Matsui M, Mizukami F, et al. A method for the molecular imprinting ofhemoglobin on silica surfaces using silanes. Biomaterials,2005,26:5564~5571.
    [224]张宇辉.新型分子印迹聚合物制备方法的研究及其分子识别应用:[硕士学位论文].北京:清华大学,2003.
    [225] Walsh R, Osmani Q, Hughes H, et al. Synthesis of imprinted beads by aqueous suspensionpolymerisation for chiral recognition of antihistamines. Journal of Chromatography B,2011,879:3523~3530.
    [226]郑永军.基于分子印迹技术的大蒜功能成分的分离提取及药理活性研究:[博士学位论文].青岛:中国海洋大学,2012
    [227] Theodoridis G, Kantifes A, Manesiotis P, et al. Preparation of a molecularly imprintedpolymer for the solid-phase extraction of scopolamine with hyoscyamine as a dummytemplate molecule. Journal of Chromatography A,2003,987:103~109.
    [228] Zhang L, Han F, Hu Y Y, et al. Selective trace analysis of chloroacetamide herbicides infood samples using dummy molecularly imprinted solid phase extraction based onchemometrics and quantum chemistry. Analytica Chimica Acta,2012,729:36~44
    [229] Yin Y M, Chen Y P, Wang X F, et al. Dummy molecularly imprinted polymers on silicaparticles for selective solid-phase extraction of tetrabromobisphenol A from water samples.Journal of Chromatography A,2012,1220:7~13.
    [230]陈移姣.生物碱分子印迹聚合物的制备与其性能研究:[硕士学位论文].武汉:华中科技大学,2005.
    [231] Lawrence J F, Wong B, Menard C. Determination of decarbamoyl saxitoxin and itsanalogues in shellfish by prechromatographic oxidation and liquid chromatography withfluorescence detection. Journal of AOAC International,1996,79:1111~1115
    [232]赖家平,曹现峰,何锡文,等.水溶液中制备分子印迹聚合物微球及其分子识别特性研究.化学学报,2002,60:322~327.
    [233] Beltran A, Borrull F, MarcéR M, et al. Molecularly-imprinted polymers: useful sorbents forselective extractions. Trends in Analytical Chemistry,2010,29:1363~1375.
    [234] Gill R S, Marquez M, Larsen G. Molecular imprinting of a cellulose/silica composite withcaffeine and its characterization. Microporous and Mesoporous Materials,2005,85:129~135.
    [235] Farrington K, Magner E, Regan F. Predicting the performance of molecularly imprintedpolymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction.Analytica Chimica Acta,2006,566:60~68.
    [236] Schweitz L, Andersson L I, Nilsson S. Molecular imprint-based stationary phases forcapillary electrochromatography. Journal of Chromatography A,1998,817:5~13.
    [237] Kempe M. Chiral separations|Molecular Imprints As Stationary Phases. Encyclopedia ofSeparation Science,2000,2387~2397
    [238]郑细鸣,范荣玉,涂伟萍.分子印迹聚合物微球结构与性能的关系.高校化学工程学报,2010,24:492~497.
    [239]李小红.分子印迹-固相萃取牛奶中有机磷农药残留:[硕士学位论文].无锡:江南大学,2008
    [240] He C Y, Long Y Y, Pan J L, et al. Application of molecularly imprinted polymers tosolid-phase extraction of analytes from real samples. Journal of Biochemical andBiophysical Methods,2007,70:133~150.
    [241] Khorrami A R, Rashidpur A. Design of a new cartridge for selective solid phase extractionusing molecularly imprinted polymers: Selective extraction of theophylline from humanserum samples. Biosensors and Bioelectronics,2009,25:647~651.
    [242] El-Sheikh A H, Al-Quse R W, El-Barghouthi M I, et al. Derivatization of2-chlorophenolwith4-amino-anti-pyrine: A novel method for improving the selectivity of molecularlyimprinted solid phase extraction of2-chlorophenol from water. Talanta,2010,83:667~673.
    [243] Tarley C R T, Kubota L T. Molecularly-imprinted solid phase extraction of catechol fromaqueous effluents for its selective determination by differential pulse voltammetry.Analytica Chimica Acta,2005,548:11~19.
    [244] Burrell S, Gunnarsson T, Gunnarsson K, et al. First detection of paralytic shellfishpoisoning (PSP) toxins in Icelandic mussels (Mytilus edulis): Links to causativephytoplankton species. Food Control,2013,31:295~301.
    [245] Moro o A, Arévalo F, Fernandez M L, et al. Accumulation and transformation of DSPtoxins in mussels Mytilus galloprovincialis during a toxic episode caused by Dinophysisacuminata. Aquatic Toxicology,2003,62:269~280.
    [246]张纯超.大亚湾贝类毒素特征研究:[硕士学位论文].青岛:中国海洋大学,2008
    [247]陈洋,颜天,谭志军,等.四种/株亚历山大藻(Alexandrium)毒性的比较研究.海洋与湖沼,2007,38:55~61.
    [248] Wang D Z, Lin L, Gu H F, et al. Comparative studies on morphology, ITS sequence andprotein profile of Alexandrium tamarense and A. catenella isolated from the China Sea.Harmful Algae,2008,7:106~113.
    [249]洪专,高亚辉,易瑞灶,等.赤潮毒藻塔玛亚历山大藻研究进展.海洋科学,2006,30(11):82~87.
    [250]田华.麻痹性贝毒的累积、转化、排出过及预警诊断指标研究:[博士学位论文].青岛:中国海洋大学,2009
    [251] Chen C Y, Chou H N. A modified high-performance liquid chromatography method foranalysis of PSP toxins in dinoflagellate, Alexandrium minutum, and shellfish from Taiwan.Food Research International.,2002,35:715~720
    [252]缪宇平.海藻生物活性物质研究:[博士学位论文].上海:复旦大学,2003.
    [253]缪宇平,周宏农,闻韧.膝沟藻毒素Gonyautoxins的分离纯化.药学学报,2004,39(1):52~55
    [254]林华娟,秦小明,章超桦,等.扇贝中麻痹性毒素的提取与分离纯化.水产学报,2010,34:428~434
    [255] Zhuo L Y, Yin Y C, Fu W S, et al. Determination of paralytic shellfish poisoning toxins byHILIC–MS/MS coupled with dispersive solid phase extraction. Food Chemistry,2013,137:115~121
    [256] Lotierzo M, Henry O Y F, Piletsky S, et al.Surface plasmon resonance sensor for domoicacid based on grafted imprinted polymer. Biosensors and Bioelectronics,2004,20(2):145~152.
    [257] Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymer coatingsuperparamagnetic nanoparticles for protein recognition. Journal of Materials Chemistry,2010,20(5):880~883.
    [258] Aversano C D, Hess P, Quilliam M A. Hydrophilic interaction liquid chromatography-massspectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. Journal ofChromatography A,2005,1081:190~201.
    [259] Rodriguez P, Alfonso A, Botana A M, et al. Comparative analysis of pre-and post-columnoxidation methods for detection of paralytic shellfish toxins. Toxicon,2010,56:448~457.
    [260] Lawrence J F, Niedzwiadek B, Menard C. Quantitative determination of paralytic shellfishpoisoning toxins in shellfish using prechromatographic oxidation and liquid chromato-graphy with florescence detection: collaborative study. Journal of AOAC International,2005,88:1714~1732

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700