用户名: 密码: 验证码:
磁流变阻尼器的自传感与自供能原理及关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变(Magnetorheological, MR)阻尼器具有响应快、阻尼力连续可调、结构简单、耐久性好和低功耗等特点,被认为是极具应用前景的半主动执行器件之一,逐渐被用作车辆悬架、医疗设备、土木建筑、航空航天器以及武器装备等结构的减震耗能器件进行研究或应用,成为保障诸多结构的耐久性、舒适性与安全性的重要途径。然而要充分发挥采用MR阻尼器构成的半主动控制系统的特长,实现反馈控制是必不可少的,其前提是能够采用传感器获取应用对象的动态信息。现有的基于MR阻尼器的半主动控制系统通常采用与MR阻尼器“分离”的传感器实现动态传感,由此引起的明显问题是使系统更复杂,导致需要更大的安装空间、增加重量、提高系统成本、降低系统可靠性等缺点。此外,基于MR阻尼器的半主动控制系统需要额外配置供电电源,也将很大程度上缩小基于MR阻尼器的半主动控制系统的应用环境。因此,如何简化基于MR阻尼器的半主动控制系统的结构、降低系统成本、提高系统可靠性是实现MR阻尼器的大规模工业化应用亟待解决的问题,开展这方面的研究具有重要的学术意义和工程应用前景。
     为了解决上述问题,本文在Wang和Wang (2009)提出的集成相对位移自传感MR阻尼器(Integrated relative displacement self-sensing magnetorheological damper,IRDSMRD)的原理的基础上,开发了一种IRDSMRD原型及其电子系统;提出了一种能量自供给的相对位移自传感MR阻尼器(Self-powered self-sensingmagnetorheological damper, SPSSMRD)的原理,开发了一种SPSSMRD原型;建立了基于MTS849和实时仿真实验系统(Type: DS1103, dSPACE GmbH)的实验测试系统对SPSSMRD/IRDSMRD原型进行了实验测试;在此基础上,一方面提出了一种基于“Pareto优化”原理实现对SPSSMRD/IRDSMRD的性能的协调优化的方法,另一方面提出并实现了一种基于SPSSMRD/IRDSMRD的单自由度(Singledegree-of-freedom, SDOF)半主动振动与冲击控制系统。
     本文的主要研究工作和创新点可以归纳为以下五个方面:
     1.开发并研究了一种基于Wang和Wang (2009)提出的IRDSMRD原理的IRDSMRD原型及其相应的实现集成相对位移传感与可控阻尼力的电路系统,包括IRDSMRD相对位移调制/解调器、线性可控电流驱动器和传感载波信号与励磁电流的信号叠加电路,建立了基于MTS849减震器测试系统和实时仿真系统的实验系统对IRDSMRD原型及其电子系统进行了实验研究。
     2.针对IRDSMRD的IRDS及基于IRDSMRD的半主动控制系统的电子系统的能量供给问题,提出并研究了一种SPSSMRD的原理,建立了在考虑电磁扩散情况下的SPSSMRD的能量拾取线圈上的感生电能量、IRDS以及可控阻尼力的数学模型,分析了SPSSMRD的能量获取特性、IRDS性能以及可控阻尼力性能。
     3.基于SPSSMRD及其电子系统的原理,设计并开发了一种SPSSMRD原型及其电子系统,建立了基于MTS849减震器测试系统和实时仿真系统的实验系统对SPSSMRD原型的性能进行了实验测试,包括能量获取转换性能、IRDS的相对位移传感性能(线性度、灵敏度和迟滞误差)以及可控阻尼力性能(可控阻尼力范围和动态可控阻尼比)。
     4.针对SPSSMRD/IRDSMRD的可控阻尼力特性和相对位移传感特性相互影响的特点,为了权衡和优化在缸体体积一定时SPSSMRD/IRDSMRD的可控阻尼力性能和相对位移传感性能,提出并研究了一种基于“Pareto优化”原理实现针对目标函数为SPSSMRD/IRDSMRD的可控阻尼力性能和相对位移传感性能优化其关键结构参数的方法。在作用于SPSSMRD/IRDSMRD的励磁线圈上的最大磁动势一定时,获取表征权衡IRDSMRD的可控阻尼力性能与相对位移传感性能之间的关系的Pareto最优曲线(即Pareto前沿)。根据Pareto前沿上的点所对应的SPSSMRD/IRDSMRD的关键结构参数,开发了三种具有不同尺寸组合的SPSSMRD/IRDSMRD原型,并建立了基于MTS849减震器测试系统和实时仿真系统的实验系统对具有优化结构尺寸的SPSSMRD/IRDSMRD进行的实验研究。
     5.由于SPSSMRD/IRDSMRD的可控阻尼力特性和相对位移传感特性相互影响,为衡量相对位移传感性能对半主动控制系统的影响程度,建立了基于SPSSMRD/IRDSMRD的SDOF半主动振动与冲击控制系统,比较了半主动振动与冲击控制系统在使用SPSSMRD/IRDSMRD集成的相对位移传感器(Integratedrelative displacement sensor, IRDS)和LVDT (Linear variable differential transformer)情况下的控制效果,讨论了SPSSMRD/IRDSMRD在SDOF半主动振动与冲击控制系统中应用的可行性。
     本文的研究工作为简化基于MR阻尼器的半主动控制系统的结构、降低MR阻尼器的应用成本和提高基于MR阻尼器的半主动控制系统的可靠性奠定了理论基础。同时,本文中实现的SPSSMRD/IRDSMRD原型及半主动控制系统具有明显的工程应用前景。
Magnetorheological (MR) dampers, based on MR fluids, have attractedconsiderable interests and are expected as one of the most prospective semi-activeactuators, as they can provide fast response, controllable damping force, simplestructure, long durability, and low power consumption. MR dampers have been widelyused or studied as shock absorbers and vibration isolation dampers in vehiclesuspensions, medical equipments, civil structures, aircrafts and space vehicles, andweaponry, to guarantee the durability, comfortability, and safety. However, to make fulluse of the adjustable damping characteristics of MR dampers by altering the externalcurrent, the premise lies in that MR dampers integrated into the plant should besemi-actively controlled through accessing the dynamic responses of the plant andfeeding back to the system controller. For the current semi-active systems, the extradynamic sensors are needed to access the dynamic responses of the plant integrated withMR dampers, so that the extra dynamic sensors will not only increase the cost but alsocomplicate the structure, occupy too much installation space, as well as increase theweight. In addition, the reliability of the semi-active systems will be decreased due tothe added dynamic sensors, which may be disturbed or even damaged due to theirexposure to the circumstance. Moreover, the MR dampers, the dynamic sensors, and thesemi-active controllers, as the key elements of the semi-active systems based on MRdampers, should be supplied with extra power source, which will restrict theapplications of the MR dampers based semi-active systems. Therefore, how to simplifythe structure, save the installation space, decrease the application cost, guarantee thereliability of semi-active MR systems is the key factor to determine whether or not MRdampers can be massively applied in industry. To solve these issues has academicsignificance and prospect of engineering applications.
     Aiming at solving aforementioned problems, this study develops a prototype ofintegrated relative displacement self-sensing magnetorheological damper (IRDSMRD)based on the principle proposed by Wang and Wang (2009) and its electronic system.Sequently, the principle of a self-powered self-sensing magnetorheological damper(SPSSMRD) is proposed and its prototype is developed. Experimental setup based onMTS849shock absorber test system and the real-time simulation system (type: DS1103from the dSPACE GmbH) is established to test the performance of the prototype of the SPSSMRD/IRDSMRD. Based on the experimental results, on one hand, aprinciple based on the Pareto optimization to optimize the performances of the dampingforce and the linearity of the integrated relative displacement sensor (IRDS) is proposed.On the other hand, a single-degree-of-freedom (SDOF) semi-active vibration and shockcontrol system is proposed, established, and investigated.
     The major research and innovations in this dissertation are summarized as follows:
     1. The prototypes of the IRDSMRD and the corresponding electronic system toachieve the integrated relative displacement sensing and controllable damping force,including the relative displacement modulator/demodulator, circuit for superposing thecarrier signal for the IRDS on the current from the controllable current driver for thecontrollable damping, and controllable current driver are developed and tested. Thecharacteristics of the developed IRDSMRD, including the linearity, sensitivity, andhysteresis error of the IRDS and the controllable damping force are tested on theestablished experimental setup based on the MTS849shock absorber test system andthe real time simulation system.
     2. Aiming at self-powering the IRDS and the corresponding electronic system ofthe IRDSMRD based semi-active systems, the principle of a SPSSMRD is proposed andrealized. The characteristics of the developed SPSSMRD, including the energyharvested by the pick-up coil, the relative displacement sensed by the IRDS, and thecontrollable damping force, are modeled and analyzed.
     3. The established experimental setup based on the MTS849shock absorber testsystem and the real time simulation system is established and the prototype of theSPSSMRD and its electronic system are developed. The characteristics of the developedSPSSMRD, including the energy harvested by the pick-up coil, the relativedisplacement sensed by the IRDS, and the controllable damping force, are tested andanalyzed.
     4. In order to make the best compromise between the damping force and thelinearity of the IRDS of an SPSSMRD/IRDSMRD, a Pareto optimization based method,which optimizes the key structural parameters by taking the damping force and thelinearity of the IRDS of the SPSSMRD/IRDSMRD as the objective functions, isproposed and realized. The Pareto front, representing the best tradeoff between thedamping force and the linearity of the IRDS of the SPSSMRD/IRDSMRD, is obtainedby considering that the maximum magnetomotive force applied to the exciting coil ofthe SPSSMRD/IRDSMRD is constant. Three SPSSMRDs/IRDSMRDs with different piston modules, which are determined according to the Pareto optimal solutions, aredeveloped and tested.
     5. According to the experimental results of the SPSSMRD/IRDSMRD, thecharacteristics of the damping force and the IRDS influence each other. In order tostudy whether the SPSSMRD/IRDSMRD can be used for applications to replace the“MR damper plus additional sensor”, a SDOF semi-active systems based on theSPSSMRD/IRDSMRD for vibration and shock control is established. The controleffectiveness of the SDOF systems based on the SPSSMRD/IRDSMRD and the “MRdamper plus additional sensor” for vibration and shock control are investigated,compared and the discussed.
     The research results in the dissertation have established the theoretical foundationfor simplifying the structure, decreasing the application cost, guaranteeing the reliability,and saving the installation space of semi-active MR systems. Meanwhile, the realizedSPSSMRD/IRDSMRD and its semi-active control system have apparent engineeringprospect.
引文
陈吉安,赵晓昱,应用于汽车减振的磁流变阻尼器的设计原理[J].汽车技术,2002, Vol.8, No.1,9-13.
    陈无畏,王其东,王志军,王启瑞,范迪斌,李志超,汽车半主动悬架的非线性神经网络自适应控制研究[J].机械工程学报,2000, Vol.36, No.1,75-78.
    陈无畏,王启瑞,朱婉玲,基于遗传算法和控制的悬架系统集成设计[J].振动工程学报,2003,Vol.16, No.2,143-148.
    董小闵,汽车磁流变半主动悬架仿人智能控制研究[D].博士学位论文,重庆大学,2006.
    关新春,磁流变液及其智能控制结构驱动器的理论与试验研究[D].博士学位论文,哈尔滨工业大学,2000.
    关新春,郭鹏飞,欧进萍,磁流变阻尼器的多目标优化设计与分析[J].工程力学,2009, Vol.26,No.9,30-35.
    郭大蕾,车辆悬架振动的神经网络半主动控制[M],博士学位论文,南京航空航天大学,2002.
    韩民春,西方经济学(第二部分:微观经济学)[M].北京:北京大学出版社,2007,273-280.
    胡红生,王炅,李延成,火炮磁流变后坐阻尼器的设计与磁路分析[J].弹道学报,2009, Vol.21,No.2,78-82.
    李锐,余淼,廖昌荣,陈伟民,汽车磁流变半主动悬架模糊控制技术[J].重庆大学学报,2004,Vol.27, No.3,1-4.
    李祖枢,力矩受限单摆的摆起倒立控制——仿人智能控制在非线性系统中的应用[J].控制理论与应用,1999, Vol.16, No.2,225-229.
    李祖枢,涂亚庆,仿人智能控制[M],国防工业出版社,2003.
    廖昌荣,张玉麟,陈伟民,黄尚廉,汽车磁流变阻尼器的设计与试验研究[J].功能材料与器件学报,2001, Vol.7, No.4,350-354.
    刘奇,张平,王东亚,黄元龙,磁流变体(MRF)材料的制备与性能研究[J].功能材料,2001, Vol.32, No.3,257-259.
    潘胜,吴建耀,胡林,沈峰,孙猛,周鲁卫,磁流变液的屈服应力与温度效应[J].功能材料,1997, Vol.3,264-267.
    丘玲,一种新型磁流变流体阻尼器组件[P].实用新型专利,专利号: ZL00229771.X,2000.
    司鹄,彭向和,磁流变材料的流变性能研究[J].材料科学与工程,2002, Vol.20, No.1,61-63.
    孙伟,胡海岩,基于多级磁流变阻尼器的操纵面振动半主动抑制[J].振动工程学报,2005, Vol.18, No.1,8-13.
    汪涛,缸体感应式集成相对位移磁流变阻尼器的设计与实验验证[D].硕士学位论文,重庆大学,2008.
    王代华,赖大坤,磁电式相对位移自传感磁流变阻尼器[P].实用新型专利,专利号:200520010193.5,2007.
    王恩荣,陈余寿,车辆座椅减振系统中可控磁流液阻尼器的性能测试研究[J].工业控制计算机,2003, Vol.16, No.6,44-54.
    王昊,胡海岩,磁流变阻尼器的模糊逼近[J].振动工程学报,2006, Vol.19, No.1,31-36.
    翁建生,胡海岩,张庙康,磁流变阻尼器的实验建模[J].振动工程学报,2000, Vol.13, No.4,616-621.
    杨绍普,李韶华,磁流变阻尼力建模与主共振研究[J].动力学与控制学报,2004, Vol.2, No.4,62-66.
    余淼,汽车磁流变半主动悬架控制系统研究[D].博士学位论文,重庆大学,2003.
    袁刚,王代华,李一平,摩托车用磁流变阻尼器的可控电流驱动器[J].功能材料,2006, Vol.37,No.5,736-738.
    张红辉,磁偏置内旁通式磁流变阻尼器[D].博士学位论文,重庆大学,2006.
    赵晓鹏,电流变液与压电陶瓷复合的自适应阻尼器[P].实用新型专利,专利号: ZL96236145.3,1999b.
    赵晓鹏,楔型施力的自适应阻尼器[P].实用新型专利,专利号: ZL96236426.6,1999a.
    郑玲,邓兆祥,李以农,汽车半主动悬架的滑模变结构控制[J].振动工程学报,2003, Vol.16,No.4,457-462.
    周刚毅,用于车辆的直线型磁流变阻尼器[P].实用新型专利,专利号: ZL01113535.2,2001.
    周强,瞿伟廉,磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002, Vol.22, No.4,144-150.
    朱应顺,龚兴龙,李辉,张培强,磁流变液剪切屈服应力的数值分析[J].中国矿业大学学报,2006, Vol.35, No.4,498-503.
    Ahmadian M and Gravatt J, A comparative analysis of passive twin tube and skyhook MRF dampersfor motorcycle front suspensions [C]. Proceedings of SPIE Smart Structures and Materials,2004, Vol.5386,238-249.
    Ahmadian M and Poynor J C, An evaluation of magnetorheological dampers for controlling gunrecoil dynamics [J]. Shock and Vibration,2001, Vol.8, No.3-4,147-155.
    Ahmadian M, Appleton R J and Norris J A, Designing magneto-reheological dampers in a fireout-of-battery recoil system [J]. IEEE Transactions on Magnetics,2003, Vol.39, No.1,480-485.
    Ai H X, Wang D H and Liao W H, Design and modeling of a magnetorheological valve with bothannular and radial flow paths [J]. Journal of Intelligent Material Systems and Structures,2006,Vol.17, No.4,327-334.
    Ashour O, Rogers C A and Kodonsky W I, Magnetorheological fluids: materials, characteristics, anddevices [J]. Journal of Intelligent Material Systems and Structures,1996, Vol.7, No.2,123-130.
    Avadhany S, Abel P, Tarasov V and Anderson Z, Regenerative shock absorber [P]. US Patent, No.20090260935A1,2009.
    Aydar G, Wang X and Gordaninejad F, A novel two-way-controllable magneto-rheological fluiddamper [J]. Smart Materials and Structures,2010, Vol.19, No.06,065024(7pp).
    Biedermann L, Leg prosthesis with an artificial knee joint provided with an adjustment device [P].International Patent, WO/1999/029272,1999.
    Bouc R, Mathematical model for hysteresis [J], Acustica,1971, Vol.24,16-25.
    Cao M, Wang K W and Lee K Y, Scalable and invertible PMNN model for magneto-rheologicalfluid dampers [J]. Journal of Vibration Control,2008, Vol.14, No.5,731-751.
    Carlson J D, The promise of controllable fluids [C]. Proceedings of Actuator1994, AXONTechnologies Consult GmbH,1994a,266-270.
    Carlson J D and Dweiss K, A growing attraction to magnetic fluids [J]. Machine Design,1994b, Vol.66, No.15,61-64.
    Carlson J D and Jolly M R, MR fluid, foam and elastomer devices [J]. Mechatronics,2000, Vol.10,No.4-5,555-569.
    Carlson J D and Michael J, Magentorheological fluid dampers [P]. US Patent, No.5277281,1994c.
    Carlson J D and Spencer Jr. B F, Magneto-Rheological Fluid Dampers for Semi-Active SeismicControl [C]. Proceedings of3rdInternational Conference on Motion and Vibration Control,Chiba, Japan,1996, Vol.3,35-40.
    Chandrakasan A, Amirtharajah R, Goodman J, and Rabiner W, Trends in low power digital signalprocessing [C]. Proceedings of IEEE International Symposium on Circuits and Systems,1998,Vol.4,604-607.
    Chang C C and Zhou L, Neural network emulation of inverse dynamics for a magnetorheologicaldamper [J]. Journal of Structural Engineering, ASCE,2002, Vol.128, No.2,231-239.
    Chen C and Liao W H, A self-powered, self-sensing magnetorheological damper [C]. Proceedings ofthe2010IEEE International Conference on Mechatronics and Automation, Xi’an China,2010,Vol.1,1364-1369.
    Chen C and Liao W H, A self-sensing magnetorheological damper with power generation [J]. SmartMaterials and Structures,2012, Vol.21, No.2,025014(14pp).
    Chen J Z and Liao W H, Design, testing and control of a magnetorheological actuator for assistiveknee braces [J]. Smart Materials and Structures,2010, Vol.19, No.3,035029(10pp).
    Choi S B, Choi J H, Lee Y S and Han M S, Vibration control of an ER seat suspension for acommercial vehicle [J]. Journal of Dynamic Systems, Measurement, and Control,2003a, Vol.125, No.1,60-68.
    Choi S B and Han M S, MR seat suspension for vibration control of a commercial vehicle [J].International Journal of Vehicle Design,2003b, Vol.31, No.2,202-215.
    Choi S B, Lee S K and Park Y P, A hysteresis model for the field-dependent damping force of amagnetorheological damper [J]. Journal of Sound and Vibration,2001, Vol.245, No.2,375-383.
    Choi S B, Nam M H, and Lee B K, Vibration control of a MR seat damper for commercial vehicles[J]. Journal of Intelligent Material Systems and Structures,2000, Vol.11, No.12,936-944.
    Choi Y T and Wereley N M, Vibration control of a landing gear system featuringelectrorheological/magnetorheological fluids [J]. Journal of Aircraft,2003, Vol.40, No.3,432-439.
    Choi Y T and Wereley N M, Biodynamic response mitigation to shock loads usingmagnetorheological helicopter crew seat suspensions [J]. AIAA Journal of Aircraft,2005, Vol.42, No.5,1288-1295.
    Choi Y T and Wereley N M, Self-powered magnetorheological dampers [C]. ASME Conference onInternational Mechanical Engineering Congress and Exposition (IMECE2006), Chicago, USA,2006, November5-10, Paper No. IMECE2006-15317.
    Choi Y T and Wereley N M, Self-powered magnetorheological dampers [C]. ASME Conference onInternational Mechanical Engineering Congress and Exposition (IMECE2006), Chicago, USA,Paper Number: IMECE2006-15317, November5-10,2006.
    Choi Y T and Wereley N M, Shock isolation system using magnetorheological dampers [J]. Journalof Vibration and Acoustics,2008, Vol.130, No.2,024503(6pp).
    Choi Y T Yoo J H and Wereley N M, Dual adjustable magnetorheological dampers for a gun recoilsystem [C]. Proceedings of ASME IMECE2005,2005,429-438.
    Christopher A. Paré, Experimental evaluation of semiactive magneto-rheological suspensions forpassenger vehicles [D]. Master Degree Dissertation of Virginia Polytechnic Institute and StateUniversity, Virginia, USA,1998.
    David E S, Experimental evaluation of semi-active magnetorheological primary suspensions forheavy truck applications [D]. Master Degree Dissertation of Virginia Polytechnic Institute andState University, Virginia, USA,1998.
    Desjardins S P, The evolution of energy absorption systems for crashworthy helicopter seats [J].Journal of the American Helicopter Society,2006, Vol.51,150-163.
    Dietl J M and Garcia E, Beam shape optimization for power harvesting [J]. Smart Materials andStructures,2010, Vol.21, No.6,633-646.
    Dogruer U, Gordaninejad F and Evrensel C A, A new magneto-rheological fluid damper forhigh-mobility multi-purpose wheeled vehicle (HMMWV)[J]. Journal of Intelligent MaterialSystems and Structures,2008, Vol.19, No.6,641-650.
    Donelan J M, Li Q, Naing V, Hoffer J A, Weber D J and Kuo A D, Biomechanical energy harvestinggenerating electricity during walking with minimal user effort [J]. Science,2008, Vol.319,807-810.
    Dong X M, Yu M, Liao C R and Chen W M, Human-simulated intelligent control of vehiclesuspension with magneto-rheological dampers [J]. Journal of Advanced Science,2006, Vol.18,No.1-2,103-106.
    Duan Y F, Ni Y Q and Ko J M, Cable vibration control using magnetorheological dampers [J].Journal of Intelligent Material Systems and Structures,2006, Vol.17, No.4,321-325.
    Dyke S J, Spencer B F, Sain M K and Carlson J D, Modeling and control of magnetorheologicaldampers for seismic response reduction [J]. Smart Materials and Structures,1996, Vol.5, No.5,565-575.
    Ericksen E O and Gordaninejad F, A magneto-rheological fluid shock absorber for an off-roadmotorcycle [J]. International Journal of Vehicle Design,2003, Vol.33, No.1-3,139-152.
    Erturk A, Vieira W G R, DeMarqui C Jr, and Inman D J, On the energy harvesting potential ofpiezoaeroelastic systems [J]. Applied Physics Letters,2010, Vol.96, No.18,184103(3pp).
    Fernando D G and Ahmadian M, A hybrid control policy for semi-active vehicle suspensions [J].Shock and Vibration,2003, Vol.10, No.1,59-69.
    Gordaninejad F and Kelso S P, Magnetorheological fluid shock absorber for HMMWV [C].Proceedings of SPIE on Smart Structures and Materials2000: Damping and Isolation,2000,Vol.3989,266-273.
    Gordaninejad F, Wang X, Hitchcock G, Bangrakulur K, Ruan S and Siino M, Modular high-forceseismic magneto-rheological fluid damper [J]. ASCE Journal of Structural Engineering,2010,Vol.16, No.2,135-143.
    Gravatt J W, Magneto-rheological dampers for super-sport motorcycle applications [D]. MasterThesis of University of Virginia, Virginia, USA,2003.
    Guan M J and Liao W H, On the efficiency of piezoelectric energy harvesting circuits towardsstorage device voltages [J]. Smart Materials and Structures,2007, Vol.16, No.2,498-505.
    Hiemenz G J, Choi Y T and Wereley N M, Semi-active control of vertical stroking helicopter crewseat for enhanced crashworthiness [J]. AIAA Journal of Aircraft,2007, Vol.44, No.3,1031-1034.
    Hiemenz G J, Hu W and Wereley N M, Semi-active magnetorheological helicopter crew seatsuspension for vibration isolation [J]. AIAA Journal of Aircraft,2008, Vol.45, No.3,945-953.
    Hiemenz G J, Semi-active magnetorheological seat suspension for enhanced crashworthiness andvibration isolation of rotorcraft seats [D]. Ph.D. Dissertation of University of Maryland,Maryland, USA,2007.
    Hitchcock G H, Gordaninejad F and Wang X, A new bypass magnetorheological fluid damper [J].Journal of Vibration and Acoustics-Transactions of the ASME,2007, Vol.129, No.5,641-647.
    http://www.aitherengineering.com/aither mr apache.html
    http://www.avdl.me.vt.edu/
    http://www.basf.com/group/corporate/en/
    http://www.counter-currents.com/2011/07/vilfredo-pareto-the-karl-marx-of-fascism
    http://www.delphiauto.com
    http://www.futurlec.com/News/TI/DSP.shtml
    http://www.lord.com
    http://www.mrfluid.com
    http://www.mts.com
    http://www.nbshangong.com
    http://www.theautochannel.com/news/2002/11/09/150285.html
    Hu W, Cook E and Wereley N M, Energy absorber using a magnetorheological bypass valve filledwith ferromagnetic beads [J]. IEEE Transactions on Magnetics,2007, Vol.43, No.6,2695-2697.
    Hu W and Wereley N M, Magnetorheological fluid and elastomeric lag damper for helicopterstability augmentation [J]. International Journal of Modern Physics B,2005, Vol.19, No.7-9,1471-1477.
    Hu W and Wereley N M, Hybrid magnetorheological mfluid elastomeric dampers for helicopterstability augmentation [J]. Smart Materials and Structures,2008, Vol.17, No.4,045021(16pp).
    Hu W, Wilson N L, Hiemenz G J and Wereley, Magnetorheological shock absorber for crew seats inthe expeditionary fighting vehicle [C]. ASME Conference on Smart Materials, AdaptiveStructures and Intelligent Systems, October2008, Maryland, USA.
    Huang S J and Lin W C, Adaptive fuzzy controller with sliding surface for vehicle suspensioncontrol [J]. IEEE Transactions on Fuzzy Systems,2003, Vol.11, No.4,550-559.
    Jolly M R and Margolis D L, Regenerative systems for vibration control [J]. Journal of Vibrationand Acoustics,1997, Vol.119, No.2,208-215.
    Jolly M R, Bender J W and Carlson J D, Properties and applications of commercialmagnetorheological fluids [J]. Journal of Intelligent Material Systems and Structures,1999, Vol.10, No.1,5-13.
    Jung H J, Spencer B F Jr, Ni Y Q and Lee I W, State-of-the-art of semiactive control systems usingMR dampers in civil engineering applications [J]. Structural Engineering and Mechanics,2004,Vol.17, No.3-4,493-526.
    Kang H, Rotor blade lag damping using embedded chordwise absorber [D]. Ph.D. Dissertation,Pennsylvania State University, Pennsylvania, USA,2007.
    Karnopp D C, Active damping in road vehicle suspension system [J]. Vehicle System Dynamic,1983,Vol.12,291-316.
    Karnopp D, Crosby M and Harwood R, Vibration control using semiactive force generators [J].Journal of Engineering For Industry,1974, Vol.96, No.2,619-626.
    Kim S S and Okada Y, Variable resistance type energy regenerative damper using pulse widthmodulated step-up chopper [J]. Journal of Vibration and Acoustics,2002, Vol.124, No.1,110-115.
    Kordorsky W I, Magnetorehological effect as a base of new devices and technologies [J]. Journal ofMagnetism and Magnetic Materials,1993a, Vol.122,395-398.
    Kordorsky W I, Magnetorehological fluids and their applications [J]. Materials Technology,1993b,Vol.8, No.11,240-242.
    Kurata N and Kobori T, Takahashi M, Ishibashi T, Niwa N, Tagami J, Midorikawa H, Forcedvibration test of a building with semi-active damper system [J]. Earthquake Engineering andStructural Dynamics,2000, Vol.29, No.5,629-645.
    Lai D K and Wang D H, Principle, Modeling and validation of a relative displacement self-sensingmagnetorheological damper [C]. Proceedings of SPIE Conference on Smart Structures andMaterials,2005, Vol.5764.
    Lallart M and Inman D J, Low-cost integrable tuning-free converter for piezoelectric energyharvesting optimization [J]. IEEE Transactions on Power Electronics,2010, Vol.25, No.7,1811-1819.
    Lam A H F and Liao W H, Semi-active control of automotive suspension systems withmagnetorheological dampers [J]. International Journal of Vehicle Design,2003, Vol.33, No.1-3,50-75.
    Lam K H, Chen Z H, Ni Y Q, and Chan H L W, A magnetorheological damper capable of force anddisplacement sensing [J]. Sensors and Actuators A: Physical,2010, Vol.158, No.1,5-59.
    Lau Y K and Liao W H, Design and analysis of magnetorheological dampers for train suspension[C]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and RapidTransit,2005, Vol.219, No.4,261-276.
    Lee H S and Choi S B, Control and response characteristics of a magneto-rheological fluid damperfor passenger vehicles [J]. Journal of Intelligent Material Systems and Structures,2000, Vol.11,No.1,80-87.
    Li W H, Du H and Guo N Q, Design and testing of an MR steering damper for motorcycles [J].International Journal of Advanced Manufacturing Technology,2003, Vol.22No.3-4,288-294.
    Liao W H and Wang D H, Semiactive vibration control of train suspension systems viamagnetorheological dampers [J]. Journal of Intelligent Material Systems and Structures,2003,Vol.14, No.3,161-172.
    Lindler J and Wereley N M, Quasi-steady bingham plastic analysis of an electrorheological flowmode bypass damper with piston bleed [J]. Smart Materials and Structures,2003, Vol.12, No.3,305-317.
    Liu M, Sethi V, Song G and Li H, Investigation of locking force for stay cable vibration controlusing magnetorheological fluid damper [J]. ASME Journal of Vibration and Acoustics,2008,Vol.130, No.5,054504(6pp).
    Ma X N, Yang S P and Di S L, Study on lateral semi-active vibration control of high-speedlocomotive based on magnetorheological damper [J]. Journal of Vibration Shock,2009, Vol.28,No.7,126-130.
    Makoto Y, Hedrick J K and Shigehiro T, A model following sliding mode controller for semi-activesuspension systems with MR damper [C]. Proceedings of the American control Conference,Arlington,2001, VA June25-27,2652-2657.
    Mao M, Choi Y T and Wereley N M, Effective design strategy for a magnetorheological damperusing a nonlinear flow model [C]. Proceedings of the SPIE-The International Society forOptical Engineering structures on Smart Structures and Materials2005: Damping andIsolation, San Diego, CA, USA,2005, Vol.5760, No.1,446-455.
    Mao M, Hu W, Choi Y T and Wereley N M, A magnetorheological damper with bifold valves forshock and vibration mitigation [J]. Journal of Intelligent Material Systems and Structures,2007,Vol.18, No.12,1227-1232.
    Nagode C, Ahmadian M and Taheri S, Effective energy harvesting devices for railroad applications[C]. Proceedings of SPIE Active and Passive Smart Structures and Integrated Systems2010,2010, Vol.7643,76430X (2010).
    Nam Y J and Park M K, Electromagnetic design of a magnetorheological damper [J]. Journal ofIntelligent Material Systems and Structures,2009, Vol.20, No.2,181-191.
    Nehl T W and Jeri B A, Vehicle suspension damper with relative velocity sensor having controlledflux path [P]. US Patent, No.5251729,1993.
    Nehl T W, Jeri B A and Larry M S, An integrated relative velocity sensor for real-time dampingapplications [C]. IEEE Transactions on Industry Application,1996, Vol.32, No.4,484-491.
    Ng T H and Liao W H, Sensitivity analysis and energy harvesting for a self-powered piezoelectricsensor [J]. Journal of Intelligent Material Systems and Structures,2005, Vol.16, No.10,785-797.
    Nguyen Q H and Choi S B, Optimal design of a vehicle magnetorheological damper considering thedamping force and dynamic range [J]. Smart Materials and Structures,2009, Vol.18, No.1,015013(10pp).
    Nguyen Q H, Choi S B and Wereley N M, Optimal design of magnetorheological valves via a finiteelement method considering control energy and a time constant [J]. Smart Materials andStructures,2008, Vol.17, No.2,025024(12pp).
    Oliver M J and Priya S, Design, fabrication, and modeling of a four-bar electromagnetic vibrationpower generator [J]. Journal of Intelligent Material Systems and Structures,2010, Vol.21, No.13,1303-1316.
    Palovics L, Bokor J and Venhovens P, Design problems of the semi-active wheel suspension systemand a possible way of their elimination [C]. FISITA,1994, No.945065.
    Papila M, Haftka R T, Nishida T and Sheplak M, Piezoresistive microphone design Paretooptimization: tradeoff between sensitivity and noise floor [J]. Journal ofMicroelectromechanics,2006, Vol.15, No.6,1632-1643.
    Papila M, Sheplak M and Cattafesta III L N, Optimization of clamped circular piezoelectriccomposite actuators [J]. Sensors and Actuators A: Physical,2008, Vol.147, No.1,310-323.
    Phillips R W, Engineering applications of fluids with a variable yield stress [D]. PhD Dissertation ofUniversity of California Berkeley, California, USA,1969.
    Rabinow J, The magnetic fluid clutch [J]. ATEE Transactions,1948, Vol.67,1308-1315.
    Rao G. L.V.V. and Narayanan S, Sky-hook control of nonlinear quarter car model traversing roughroad matching performance of LQR control [J]. Journal of Sound and Vibration,2009, Vol.323,No.3-5,515-529.
    Rosenfeld N C and Wereley N M, Volume-constrained optimization of magnetorheological andelectrorheological valves and dampers [J]. Smart Materials and Structures,2004, Vol.13, No.6,
    Russell J L J, Magnetostrictive position sensors enter the automotive market spring field [J]. SensorsOnline (http://www.sensorsmag.com),2001, Vol.18, No.12.
    Sapinski B, Vibration power generator for a linear MR damper [J]. Smart Materials and Structures,2010, Vol.19, No.10,105012(12pp).
    Shen Y, Golnaraghi M F and Heppler G R, Analytical and experimental study of the response of asuspension system with a magnetorheological damper [J]. Journal of Intelligent MaterialSystems and Structures,2005a, Vol.16, No.2,135-147.
    Shen Y, Vehicle suspension vibration control with magnetorheological dampers [D]. Ph.D.Dissertation, University of Waterloo, Ontario, Canada,2005b.
    Shulman Z P, Kordonsky V I, Zaltsgendler E A, Prokhorov I V, Khusid B M, Demchuk S A,Structure physical properties and dynamics of magnetorheological suspensions [J].International Journal of Mutiphase Flow,1986, Vol.12, No.6,935-955.
    Simon D and Ahmadian M, Vehicle evaluation of the performance of magneto-rheological dampersfor heavy truck suspensions [J]. ASME Journal of Vibration and Acoustics,2001, Vol.123, No.3,365-375.
    Singh H J and Wereley N M,2011, Biodynamic response mitigation for seat suspension withadaptive energy absorbers [J]. American Helicopter Society67thAnnual Forum, Virginia Beach,VA, May3-5,2011.
    Snyder R A, Kamath G M, and Wereley N M, Characterization and analysis of magnetorheologicaldamper behavior under sinusoidal loading [J]. AIAA Journal,2001, Vol.39, No.7,1240-1253.
    Spencer Jr. B F and Nagarajaiah S, State of the art of structural control [J]. Journal of StructuralEngineering,2003, Vol.129, No.7,845-856.
    Spencer Jr. B F, Dyke S J, Sain M K and Carlson J D, Phenomenological model formagnetorheological dampers [J]. Journal of Engineering Mechanics, ASCE,1997, Vol.123, No.230,230-238.
    Stanway R, Sproston J L and El-Wahed A K, Applications of electro-rheological fluids in vibrationcontrol: a survey [J]. Smart Materials and Structures,1996, Vol.5, No.4,464-482.
    Wang D H and Bai X X, Pareto optimization based tradeoff between the controllable damping forceand the relative displacement sensing of a self-sensing magnetroheological damper [C]. ASMEConference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS10),Philadelphia, USA, September28-October1,2010a, Paper Number: SMASIS2010-3716.
    Wang D H and Bai X X, Pareto optimization based tradeoff between the controllable damping forceand the sensed relative displacement of a self-sensing magnetroheological damper [J]. Journalof Intelligent Material Systems and Structures,2010b, Vol.22, No.13,1451-1467.
    Wang D H and Bai X X, Principle of a self-powered self-sensing magnetorheological damper [C].Proceedings of the21stInternational Conference on Adaptive Structures and Technologies,University Park, Pennsylvania, USA, October4-6,2010c.
    Wang D H and Liao W H, Semi-active controllers for magnetorheological fluid dampers [J]. Journalof Intelligent Material Systems and Structures,2005a, Vol.16, No.11-12,983-993.
    Wang D H and Liao W H, Modeling and control of magneto-rheological fluid dampers using neuralnetworks [J]. Smart Materials and Structures,2005b, Vol.14, No.1,111-126.
    Wang D H and Liao W H, Semi-active suspension systems for railway vehicles usingmagnetorheological dampers: Part I. System integration and modeling [J]. Vehicle SystemDynamics,2009a, Vol.47, No.11,1305-1325.
    Wang D H and Liao W H, Semi-active suspension systems for railway vehicles usingmagnetorheological dampers: Part II. Simulation and analysis [J]. Vehicle System Dynamics,2009b, Vol.47, No.12,1439-1471.
    Wang D H and Wang T, Principle, design and modeling of an integrated relative displacementself-sensing magnetorheological damper based on electromagnetic induction [J]. SmartMaterials and Structures,2009, Vol.18, No.9,095025(20pp).
    Wang D H, Ai H X and Liao W H, A magnetorheological valve with both annular and radial fluidflow resistance gaps [J]. Smart Materials and Structures,2009, Vol.18, No.11,115001(16pp).
    Wang D H, Bai X X and Liao W H, An integrated relative displacement self-sensingmagnetorheological damper: prototyping and testing [J]. Smart Materials and Structures,2010,Vol.19, No.10,105008(19pp).
    Wang D H, Wang T, Bai X X, Yuan G and Liao W H, A self-sensing magnetorheological shockabsorber for motorcycles [C]. Proceedings of the19thInternational Conference on AdaptiveStructures and Technologies, Ascona, Switzerland, October6-9,2008.
    Weiss K D and Duclos T G, Controllable fluids: the temperature dependence of post-yield properties[C]. Proceedings of4thInternational Conference on ER Fluids (Singapore: World Scientific),Singapore,1994,43-59.
    Wen Y K, Method for random vibration of hysteretic systems [J]. Journal of EngineeringMechanics, ASCE,1976, Vol.102, No.2,2492-263.
    Wereley N M, Choi Y T and Singh H J, Adaptive energy absorber for drop-induced shock mitigation[J]. Journal of Intelligent Material Systems and Structures,2011, Vol.22, No.6,515-519.
    Wereley N M, Lindler J, Rosenfeld N and Choi Y T, Biviscous damping behavior inelectrorheological shock absorbers [J]. Smart Materials and Structures,2004, Vol.13, No.4,743-752.
    Wereley N M, Pang L and Kamath G M, Idealized hysteresis modeling of electrorheological andmagnetorheological dampers [J]. Journal of Intelligent Materials and System Structures,1998,Vol.9, No.8,642-649.
    Wilson S D R, Squeezing flow of a Bingham material [J]. Journal of Non-Newtonian FluidMechanics,1993, Vol.47,211-219.
    Winslow W M, Induced fibration of suspensions [J]. Journal of Applied Physics,1948, Vol.20, No.12,1137-1140.
    Winslow W M, Method and means for translating electrical impulses into mechanical force [P]. USPatent, No.2417850,1947.
    Xia P Q, An inverse model of MR damper using optimal neural network and system identification[J]. Journal of Sound Vibration,2003. Vol.266, No.5,1009-1023.
    Yang G, Spencer Jr. B F. Carlson J D and Sain M K, Large-scale MR fluid dampers: modeling anddynamic performance [J]. Engineering Structures,2002, Vol.24, No.1,309-323.
    Yang S P and Li S H, Primary resonance reduction of a single-degree-of-freedom system usingmagnetorheological fluid dampers [J]. Journal of Dynamic Control,2004, Vol.2, No.4,62-66.
    Zhang H H, Liao C R, Yu M, and Huang S L, A study of an inner bypass magneto-rheologicaldamper with magnetic bias [J]. Smart Materials and Structures,2007, Vol.16, No.5,40-46.
    Zhang X Z, Gong X L, Zhang P Q, Wang Q M, Study on the mechanism of the squeeze-strengtheneffect in magnetorheological fluids [J]. Journal of Applied Physics,2004, Vol.96, No.4,2359-2364.
    Zhao Y, Choi Y T and Wereley N M, Semi-active damping of ground resonance in helicopters usingmagnetorheological dampers [J]. Journal of the American Helicopter Society,2004, Vol.49, No.4,468-482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700